-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_snp2p_model.py
274 lines (242 loc) · 13.4 KB
/
train_snp2p_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import argparse
import os
import subprocess
import socket
import warnings
import pandas as pd
import torch
import torch.nn.parallel
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
from prettytable import PrettyTable
from src.model.model.snp2phenotype import SNP2PhenotypeModel
from src.utils.data.dataset import SNP2PDataset, SNP2PCollator, CohortSampler, DistributedCohortSampler, BinaryCohortSampler, DistributedBinaryCohortSampler, PLINKDataset
from src.utils.tree import SNPTreeParser
from src.utils.trainer import SNP2PTrainer
from datetime import timedelta
from torch.utils.data.dataloader import DataLoader
def count_parameters(model):
table = PrettyTable(["Modules", "Parameters", "Trainable"])
total_params = 0
for name, parameter in model.named_parameters():
params = parameter.numel()
#print(name, params, parameter.requires_grad)
table.add_row([name, params, parameter.requires_grad])
if parameter.requires_grad:
total_params+=params
print(table)
print(f"Total Trainable Params: {total_params}")
return total_params
def main():
parser = argparse.ArgumentParser(description='Some beautiful description')
# Participant Genotype file
parser.add_argument('--genotype-csv', help='Personal genotype file', type=str, default=None)
parser.add_argument('--n_cov', help='The number of covariates', type=int, default=4)
# Indexing files
#parser.add_argument('--snp2id', help='SNP to ID mapping file', type=str)
#parser.add_argument('--gene2id', help='Gene to ID mapping file', type=str)
# Hierarchy files
parser.add_argument('--onto', help='Ontology file used to guide the neural network', type=str)
parser.add_argument('--snp2gene', help='SNP to gene mapping file', type=str)
parser.add_argument('--subtree_order', help='Subtree cascading order', nargs='+', default=['default'])
# Train bfile format
parser.add_argument('--train-bfile', help='Training genotype dataset', type=str, default=None)
parser.add_argument('--train-cov', help='Training covariates dataset', type=str, default=None)
parser.add_argument('--val-bfile', help='Validation dataset', type=str, default=None)
parser.add_argument('--val-cov', help='Validation covariates dataset', type=str, default=None)
parser.add_argument('--test-bfile', help='Test dataset', type=str, default=None)
parser.add_argument('--test-cov', help='Validation covariates dataset', type=str, default=None)
# Propagation option
parser.add_argument('--sys2env', action='store_true', default=False)
parser.add_argument('--env2sys', action='store_true', default=False)
parser.add_argument('--sys2gene', action='store_true', default=False)
parser.add_argument('--regression', action='store_true', default=False)
# Model parameters
parser.add_argument('--hidden-dims', help='hidden dimension for model', default=256, type=int)
# Training parameters
parser.add_argument('--epochs', help='Training epochs for training', type=int, default=300)
parser.add_argument('--lr', help='Learning rate', type=float, default=0.001)
parser.add_argument('--wd', help='Weight decay', type=float, default=0.001)
parser.add_argument('--z-weight', help='Sampling weight', type=float, default=1.0)
parser.add_argument('--dropout', help='dropout ratio', type=float, default=0.2)
parser.add_argument('--batch-size', help='Batch size', type=int, default=128)
parser.add_argument('--val-step', help='Validation step', type=int, default=20)
parser.add_argument('--jobs', help="The number of threads", type=int, default=0)
# GPU option
parser.add_argument('--cuda', help='Specify GPU', type=int, default=None)
# Multi-GPU option
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--local-rank', default=1)
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
# Model input and output
parser.add_argument('--model', help='path to trained model', default=None)
parser.add_argument('--out', help="output model path")
args = parser.parse_args()
if args.cuda is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
#if 'SLURM_PROCID' in os.environ:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
# if args.dist_url == "env://" and args.world_size == -1:
# args.world_size = int(os.environ["WORLD_SIZE"])
# addr = os.environ["MASTER_ADDR"]
# port = os.environ["MASTER_PORT"]
# print("Address: %s:%s" % (addr, port))
#else:
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
print("The world size is %d"%args.world_size)
mp.spawn(main_worker, nprocs=args.world_size, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.cuda, ngpus_per_node, args)
def main_worker(rank, ngpus_per_node, args):
global best_acc1
node_name = socket.gethostname()
print(f"Initialize main worker {rank} at node {node_name}")
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = rank
gpu = rank % ngpus_per_node
print("GPU %d rank is %d" % (gpu, rank))
timeout = timedelta(hours=5)
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank, timeout=timeout)
print("GPU %d process initialized" % (gpu))
torch.cuda.empty_cache()
print("Finish setup main worker", rank)
if args.distributed:
device = torch.device("cuda:%d" % gpu)
elif args.cuda is not None:
device = torch.device("cuda:%d" % args.cuda)
else:
device = torch.device("cpu")
tree_parser = SNPTreeParser(args.onto, args.snp2gene)
fix_system = False
if args.train_bfile is None:
print("Loading Genotype dataset... at %s" % args.genotype_csv)
genotype = pd.read_csv(args.genotype_csv, index_col=0, sep='\t') # .astype('int32')
print("Loading done...")
train_dataset = pd.read_csv(args.train_cov, header=None, sep='\t')
snp2p_dataset = SNP2PDataset(train_dataset, genotype, tree_parser, n_cov=args.n_cov)
else:
print("Loading PLINK bfile... at %s" % args.train_bfile)
snp2p_dataset = PLINKDataset(tree_parser, args.train_bfile, args.train_cov)
args.cov_mean_dict = snp2p_dataset.cov_mean_dict
args.cov_std_dict = snp2p_dataset.cov_std_dict
print("Loading done...")
snp2p_collator = SNP2PCollator(tree_parser)
print("Summary of trainable parameters")
if args.sys2env:
print("Model will use Sys2Env")
if args.env2sys:
print("Model will use Env2Sys")
if args.sys2gene:
print("Model will use Sys2Gene")
if args.model is not None:
snp2p_model_dict = torch.load(args.model, map_location=device)
print(args.model, 'loaded')
snp2p_model = SNP2PhenotypeModel(tree_parser, args.hidden_dims, subtree_order=args.subtree_order,
dropout=args.dropout, n_covariates=snp2p_dataset.n_cov,
binary=(not args.regression), activation='softmax')
print(args.model, 'initialized')
snp2p_model.load_state_dict(snp2p_model_dict['state_dict'])
if args.model.split('.')[-1].isdigit():
args.start_epoch = int(args.model.split('.')[-1])
else:
args.start_epoch = 0
else:
snp2p_model = SNP2PhenotypeModel(tree_parser, args.hidden_dims, subtree_order=args.subtree_order,
dropout=args.dropout, n_covariates=snp2p_dataset.n_cov,
binary=(not args.regression), activation='softmax')
args.start_epoch = 0
if not torch.cuda.is_available():
print('using CPU, this will be slow')
elif args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.cuda is None:
#torch.cuda.set_device(args.gpu)
print("Distributed trainings are set up")
snp2p_model.to(device)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.jobs = int((args.jobs + ngpus_per_node - 1) / ngpus_per_node)
print(args.batch_size, args.jobs)
snp2p_model = torch.nn.parallel.DistributedDataParallel(snp2p_model, device_ids=[gpu], find_unused_parameters=True)
else:
snp2p_model.to(device)
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
snp2p_model = torch.nn.parallel.DistributedDataParallel(snp2p_model, find_unused_parameters=True)
elif args.cuda is not None:
#torch.cuda.set_device(args.gpu)
snp2p_model = snp2p_model.to(device)
print("Model is loaded at GPU(%d)" % args.cuda)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
snp2p_model = torch.nn.DataParallel(snp2p_model).to(device)
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % torch.cuda.device_count() == 0):
print("Summary of trainable parameters")
count_parameters(snp2p_model)
if args.distributed:
if args.regression:
snp2p_sampler = DistributedCohortSampler(snp2p_dataset, num_replicas=args.world_size, rank=args.rank,
phenotype_col=1, sex_col=2, z_weight=args.z_weight)
#snp2p_sampler = torch.utils.data.distributed.DistributedSampler(snp2p_dataset)
else:
#snp2p_sampler = torch.utils.data.distributed.DistributedSampler(snp2p_dataset)
snp2p_sampler = DistributedBinaryCohortSampler(snp2p_dataset, num_replicas=args.world_size, rank=args.rank)
shuffle = False
else:
shuffle = False
if args.regression:
snp2p_sampler = CohortSampler(snp2p_dataset, phenotype_col=1, sex_col=2, z_weight=args.z_weight)
else:
snp2p_sampler = BinaryCohortSampler(snp2p_dataset)
snp2p_dataloader = DataLoader(snp2p_dataset, batch_size=args.batch_size, collate_fn=snp2p_collator,
num_workers=args.jobs, shuffle=shuffle, sampler=snp2p_sampler)
if args.val_bfile is not None:
val_snp2p_dataset = PLINKDataset(tree_parser, args.val_bfile, args.val_cov, cov_mean_dict=args.cov_mean_dict, cov_std_dict=args.cov_std_dict)
val_snp2p_dataloader = DataLoader(val_snp2p_dataset, shuffle=False, batch_size=args.batch_size,
num_workers=args.jobs, collate_fn=snp2p_collator)
elif args.val_cov is not None:
val_dataset = pd.read_csv(args.val_cov, header=None, sep='\t')
val_snp2p_dataset = SNP2PDataset(val_dataset, genotype, tree_parser, age_mean=snp2p_dataset.age_mean,
age_std=snp2p_dataset.age_std, n_cov=args.n_cov)
val_snp2p_dataloader = DataLoader(val_snp2p_dataset, shuffle=False, batch_size=args.batch_size,
num_workers=args.jobs, collate_fn=snp2p_collator)
else:
val_snp2p_dataloader = None
drug_response_trainer = SNP2PTrainer(snp2p_model, snp2p_dataloader, device, args,
validation_dataloader=val_snp2p_dataloader, fix_system=fix_system)
drug_response_trainer.train(args.epochs, args.out)
if __name__ == '__main__':
main()