diff --git a/scripts/V2024/create_full_info_uc.py b/scripts/V2024/create_full_info_uc.py index 7851f83..715154a 100644 --- a/scripts/V2024/create_full_info_uc.py +++ b/scripts/V2024/create_full_info_uc.py @@ -10,65 +10,65 @@ def create_full_info_uc(inputfile_uc, layer_uc, inputfile_grid, layer_grid): grid_sum = ( grid_df[ [ - "ID_UC_G0", - "GHS_POP", - "wc_built_up_sqkm", - "wc_tree_cover_sqkm", - "wc_sparse_vegetation_sqkm", + "urban_center_id", + "ghs_pop_2023", + "worldcover_2021_built_up_sqkm", + "worldcover_2021_tree_cover_sqkm", + "worldcover_2021_sparse_vegetation_sqkm", "selected_road_length_km", "reference_building_area_sqkm", - "prediction_improved_sqkm", - "osm_building_area_sqkm_2008-01", - "osm_building_area_sqkm_2009-01", - "osm_building_area_sqkm_2010-01", - "osm_building_area_sqkm_2011-01", - "osm_building_area_sqkm_2012-01", - "osm_building_area_sqkm_2013-01", - "osm_building_area_sqkm_2014-01", - "osm_building_area_sqkm_2015-01", - "osm_building_area_sqkm_2016-01", - "osm_building_area_sqkm_2017-01", - "osm_building_area_sqkm_2018-01", - "osm_building_area_sqkm_2019-01", - "osm_building_area_sqkm_2020-01", - "osm_building_area_sqkm_2021-01", - "osm_building_area_sqkm_2022-01", - "osm_building_area_sqkm_2023-01", - "osm_building_area_sqkm_2024-01", - "osm_building_area_sqkm_2024-05", + "prediction", + "osm_building_area_sqkm_2008_01", + "osm_building_area_sqkm_2009_01", + "osm_building_area_sqkm_2010_01", + "osm_building_area_sqkm_2011_01", + "osm_building_area_sqkm_2012_01", + "osm_building_area_sqkm_2013_01", + "osm_building_area_sqkm_2014_01", + "osm_building_area_sqkm_2015_01", + "osm_building_area_sqkm_2016_01", + "osm_building_area_sqkm_2017_01", + "osm_building_area_sqkm_2018_01", + "osm_building_area_sqkm_2019_01", + "osm_building_area_sqkm_2020_01", + "osm_building_area_sqkm_2021_01", + "osm_building_area_sqkm_2022_01", + "osm_building_area_sqkm_2023_01", + "osm_building_area_sqkm_2024_01", + "osm_building_area_sqkm_2024_05", ] ] - .groupby("ID_UC_G0") + .groupby("urban_center_id") .sum() ) grid_avg = ( grid_df[ [ - "ID_UC_G0", - "shdi", - "vnl_mean", - "osm_completeness_2008_01", - "osm_completeness_2009_01", - "osm_completeness_2010_01", - "osm_completeness_2011_01", - "osm_completeness_2012_01", - "osm_completeness_2013_01", - "osm_completeness_2014_01", - "osm_completeness_2015_01", - "osm_completeness_2016_01", - "osm_completeness_2017_01", - "osm_completeness_2018_01", - "osm_completeness_2019_01", - "osm_completeness_2020_01", - "osm_completeness_2021_01", - "osm_completeness_2022_01", - "osm_completeness_2023_01", - "osm_completeness_2024_01", - "osm_completeness_2024_05", + "urban_center_id", + "shdi_2021", + "vnl_2023", + "prediction_osm_completeness_2008_01", + "prediction_osm_completeness_2009_01", + "prediction_osm_completeness_2010_01", + "prediction_osm_completeness_2011_01", + "prediction_osm_completeness_2012_01", + "prediction_osm_completeness_2013_01", + "prediction_osm_completeness_2014_01", + "prediction_osm_completeness_2015_01", + "prediction_osm_completeness_2016_01", + "prediction_osm_completeness_2017_01", + "prediction_osm_completeness_2018_01", + "prediction_osm_completeness_2019_01", + "prediction_osm_completeness_2020_01", + "prediction_osm_completeness_2021_01", + "prediction_osm_completeness_2022_01", + "prediction_osm_completeness_2023_01", + "prediction_osm_completeness_2024_01", + "prediction_osm_completeness_2024_05", ] ] - .groupby("ID_UC_G0") + .groupby("urban_center_id") .mean() ) del grid_df @@ -76,7 +76,7 @@ def create_full_info_uc(inputfile_uc, layer_uc, inputfile_grid, layer_grid): grid_sum = pd.merge( grid_sum, grid_avg, - on="ID_UC_G0", + on="urban_center_id", how="left", ) del grid_avg @@ -85,12 +85,12 @@ def create_full_info_uc(inputfile_uc, layer_uc, inputfile_grid, layer_grid): uc_df = pd.merge( uc_df, grid_sum, - on="ID_UC_G0", + on="urban_center_id", how="left", ) del grid_sum - uc_df.to_file("../full_info_uc.gpkg", layer="full_info_uc", driver="GPKG") + uc_df.to_file("../abgabe.gpkg", layer="uc_full_info_V2024", driver="GPKG") if __name__ == "__main__": @@ -99,7 +99,7 @@ def create_full_info_uc(inputfile_uc, layer_uc, inputfile_grid, layer_grid): format="%(asctime)s - %(levelname)s - %(filename)s - %(funcName)s - %(message)s", ) - inputfile_uc = pathlib.Path("../jrc_uc_wgs84.gpkg") + inputfile_uc = pathlib.Path("../abgabe.gpkg") layer_uc = "uc_2025" inputfile_grid = pathlib.Path("../abgabe.gpkg") diff --git a/scripts/V2024/model_performance.py b/scripts/V2024/model_performance.py index c9f898d..cc1de78 100644 --- a/scripts/V2024/model_performance.py +++ b/scripts/V2024/model_performance.py @@ -15,7 +15,7 @@ def load_urban_centers_grid(input_file, layer_grid): df["region_wb_cat"] = pd.Categorical(df["region_wb"]) df["region_code"] = df.region_wb_cat.cat.codes - df["shdi"].fillna((df["shdi"].mean()), inplace=True) + df["shdi_2021"].fillna((df["shdi_2021"].mean()), inplace=True) df["selected_road_length_km"].fillna( (df["selected_road_length_km"].mean()), inplace=True ) @@ -25,7 +25,7 @@ def load_urban_centers_grid(input_file, layer_grid): "external_reference_building_area_sqkm", "microsoft_building_area_sqkm", "reference_building_area_sqkm", - "reference_osm_completeness", + "reference_completeness", "region_wb", "region_wb_cat", "region_code", @@ -42,11 +42,11 @@ def get_urban_center_centroids(inputfile, layer_uc, grid_df): """Get the centroids of the urban centers.""" # returns message, that centroids are likely incorrect because the data is in a geographic CRS. is reprojecting neccessary?? copy_df = grid_df[ - ["ID_UC_G0", "osm_building_area_sqkm_2024-05", "reference_building_area_sqkm"] + ["urban_center_id", "osm_building_area_sqkm_2024_05", "reference_building_area_sqkm"] ] - copy_df = copy_df.groupby("ID_UC_G0").sum() - copy_df["reference_osm_completeness"] = round( - copy_df["osm_building_area_sqkm_2024-05"] + copy_df = copy_df.groupby("urban_center_id").sum() + copy_df["reference_completeness"] = round( + copy_df["osm_building_area_sqkm_2024_05"] / copy_df["reference_building_area_sqkm"], 3, ) @@ -54,14 +54,14 @@ def get_urban_center_centroids(inputfile, layer_uc, grid_df): uc_grid = gpd.read_file(inputfile, layer=layer_uc) uc_grid = pd.merge( uc_grid, - copy_df[["reference_building_area_sqkm", "reference_osm_completeness"]], - on="ID_UC_G0", + copy_df[["reference_building_area_sqkm", "reference_completeness"]], + on="urban_center_id", how="left", ) # filter the columns out, where the (training) data might not be complete df = uc_grid[ - (uc_grid["reference_osm_completeness"] < 1.5) + (uc_grid["reference_completeness"] < 1.5) & (uc_grid["reference_building_area_sqkm"].notnull()) ] @@ -72,7 +72,7 @@ def get_urban_center_centroids(inputfile, layer_uc, grid_df): logging.info(f"got {len(df)} urban centers with centroid coordinates") - return df[["ID_UC_G0", "x", "y"]] + return df[["urban_center_id", "x", "y"]] def spatial_train_test_split_cluster(df, cluster_label, n=0): @@ -113,7 +113,7 @@ def estimate_model_performance(inputfile, layer_uc, layer_prediction, n_clusters cluster_df, n_clusters = kmeans_cluster_urban_centers( urban_centers_df, "x", "y", n_clusters ) - df = df.join(cluster_df.set_index("ID_UC_G0"), on="ID_UC_G0", how="inner") + df = df.join(cluster_df.set_index("urban_center_id"), on="urban_center_id", how="inner") region_groups = list(range(0, n_clusters)) # df for model @@ -165,7 +165,7 @@ def estimate_model_performance(inputfile, layer_uc, layer_prediction, n_clusters # save predictions to Geopackage df_export = df_test[ [ - "ID_UC_G0", + "urban_center_id", "identifier", "region_wb", "repeat", @@ -202,18 +202,18 @@ def estimate_model_performance(inputfile, layer_uc, layer_prediction, n_clusters format="%(asctime)s - %(levelname)s - %(filename)s - %(funcName)s - %(message)s", ) - inputfile = pathlib.Path("../jrc_uc_wgs84.gpkg") + inputfile = pathlib.Path("../abgabe.gpkg") layer_uc = "uc_2025" - layer_grid = "uc_grid" + layer_grid = "grid_full_info_v2024" layer_grid_prediction = "prediction_improved" COVARIATE_COLUMNS = [ - "wc_built_up_sqkm", - "wc_tree_cover_sqkm", - "wc_sparse_vegetation_sqkm", - "GHS_POP", - "vnl_mean", - "shdi", + "worldcover_2021_built_up_sqkm", + "worldcover_2021_tree_cover_sqkm", + "worldcover_2021_sparse_vegetation_sqkm", + "ghs_pop_2023", + "vnl_2023", + "shdi_2021", "selected_road_length_km", "region_code", ] diff --git a/scripts/V2024/run_prediction.py b/scripts/V2024/run_prediction.py index 6e0f1bf..c2434d5 100644 --- a/scripts/V2024/run_prediction.py +++ b/scripts/V2024/run_prediction.py @@ -1,5 +1,6 @@ import logging import pathlib +import sys import geopandas as gpd import pandas as pd @@ -13,7 +14,7 @@ def load_urban_centers_grid(input_file, layer_grid): df["region_wb_cat"] = pd.Categorical(df["region_wb"]) df["region_code"] = df.region_wb_cat.cat.codes - df["shdi"].fillna((df["shdi"].mean()), inplace=True) + df["shdi_2021"].fillna((df["shdi_2021"].mean()), inplace=True) df["selected_road_length_km"].fillna( (df["selected_road_length_km"].mean()), inplace=True ) @@ -23,7 +24,7 @@ def load_urban_centers_grid(input_file, layer_grid): "external_reference_building_area_sqkm", "microsoft_building_area_sqkm", "reference_building_area_sqkm", - "reference_osm_completeness", + "reference_completeness", "region_wb", "region_wb_cat", "region_code", @@ -37,14 +38,14 @@ def load_urban_centers_grid(input_file, layer_grid): def get_outliers(df, uc_file, layer_UC, threshold=0.005): - copy_df = df[["ID_UC_G0", "osm_building_area_sqkm_2024-05", "prediction_sqkm"]] - copy_df = copy_df.groupby("ID_UC_G0").sum() + copy_df = df[["urban_center_id", "osm_building_area_sqkm_2024_05", "prediction_sqkm"]] + copy_df = copy_df.groupby("urban_center_id").sum() uc_df = gpd.read_file(uc_file, layer=layer_UC) uc_df = pd.merge( uc_df, - copy_df[["osm_building_area_sqkm_2024-05", "prediction_sqkm"]], - on="ID_UC_G0", + copy_df[["osm_building_area_sqkm_2024_05", "prediction_sqkm"]], + on="urban_center_id", how="left", ) @@ -53,11 +54,11 @@ def get_outliers(df, uc_file, layer_UC, threshold=0.005): # select all rows where area is greater than threshold uc_df_subset = uc_df[ - (uc_df["osm_building_area_sqkm_2024-05"] - uc_df["prediction_sqkm"]) + (uc_df["osm_building_area_sqkm_2024_05"] - uc_df["prediction_sqkm"]) > uc_df["area"] * threshold ] - outliers = uc_df_subset["ID_UC_G0"].values + outliers = uc_df_subset["urban_center_id"].values logging.info( f"got {len(outliers)} urban center ids with prediction below threshold (th = {threshold})" ) @@ -74,18 +75,18 @@ def run_prediction(training_data, uc_file, layer_grid, layer_UC): urban_center_ids = get_outliers(df, uc_file, layer_UC, threshold=0.005) df[f"reference_building_area_sqkm_initial"] = df[f"reference_building_area_sqkm"] df.loc[ - (df["ID_UC_G0"].isin(urban_center_ids)), "reference_building_area_sqkm" - ] = df["osm_building_area_sqkm_2024-05"] + (df["urban_center_id"].isin(urban_center_ids)), "reference_building_area_sqkm" + ] = df["osm_building_area_sqkm_2024_05"] - df["reference_completeness_area_sqkm"] = round( - df["osm_building_area_sqkm_2024-05"] / df["reference_building_area_sqkm"], 3 + df["reference_completeness"] = round( + df["osm_building_area_sqkm_2024_05"] / df["reference_building_area_sqkm"], 3 ) df_train = df[ (df["reference_building_area_sqkm"] > 0) & # avoid urban centers for which training data might not be complete - (df["reference_osm_completeness"] < 1.5) + (df["reference_completeness"] < 1.5) ] logging.info(f"training samples: {len(df_train)}") @@ -126,9 +127,9 @@ def run_prediction(training_data, uc_file, layer_grid, layer_UC): gdf_temp.to_file(uc_file, layer="prediction", driver="GPKG") else: gdf_temp["prediction_improved_sqkm"] = y_pred - gdf_temp["osm_completeness"] = ( + gdf_temp["prediction_osm_completeness_2024_05"] = ( ( - gdf_temp["osm_building_area_sqkm_2024-05"] + gdf_temp["osm_building_area_sqkm_2024_05"] / gdf_temp["prediction_improved_sqkm"] ) * 100 @@ -143,18 +144,18 @@ def run_prediction(training_data, uc_file, layer_grid, layer_UC): format="%(asctime)s - %(levelname)s - %(filename)s - %(funcName)s - %(message)s", ) - uc_file = pathlib.Path("../jrc_uc_wgs84.gpkg") + uc_file = pathlib.Path("../abgabe.gpkg") layer_UC = "uc_2025" - layer_grid = "uc_grid" + layer_grid = "grid_full_info_v2024" layer_grid_prediction = "prediction" COVARIATE_COLUMNS = [ - "wc_built_up_sqkm", - "wc_tree_cover_sqkm", - "wc_sparse_vegetation_sqkm", - "GHS_POP", - "vnl_mean", - "shdi", + "worldcover_2021_built_up_sqkm", + "worldcover_2021_tree_cover_sqkm", + "worldcover_2021_sparse_vegetation_sqkm", + "ghs_pop_2023", + "vnl_2023", + "shdi_2021", "selected_road_length_km", "region_code", ] @@ -163,7 +164,8 @@ def run_prediction(training_data, uc_file, layer_grid, layer_UC): """python scripts/run_prediction.py reference_and_osm""" - # training_data = "reference" + # training_data = sys.argv[1] + #training_data = "reference" training_data = "reference_and_osm" if training_data == "reference": diff --git a/scripts/V2024/version_2_Table 4 - regional performance scores.ipynb b/scripts/V2024/version_2_Table 4 - regional performance scores.ipynb index 3973102..913cc04 100644 --- a/scripts/V2024/version_2_Table 4 - regional performance scores.ipynb +++ b/scripts/V2024/version_2_Table 4 - regional performance scores.ipynb @@ -40,15 +40,15 @@ " with agg_prediction as (\n", " select\n", " a.identifier\n", - " ,a.ID_UC_G0\n", + " ,a.urban_center_id\n", " ,a.split\n", " ,avg(a.prediction) as prediction\n", " from performance_20_clusters_reference_and_osm_v2024 as a \n", - " group by identifier, ID_UC_G0, split\n", + " group by identifier, urban_center_id, split\n", " )\n", " select\n", " a.identifier\n", - " ,a.ID_UC_G0\n", + " ,a.urban_center_id\n", " ,a.region_wb\n", " ,'rf_adjusted' as model_name\n", " ,b.split\n", @@ -56,13 +56,13 @@ " ,a.reference_completeness\n", " ,a.reference_building_area_sqkm\n", " ,a.osm_building_area_sqkm_2024_05 / b.prediction as prediction_osm_completeness\n", - " from grid_full_info_v2024 a\n", + " from rf_adjusted_prediction_reference_and_osm_v2024 a\n", " left join agg_prediction b\n", " on a.identifier = b.identifier\n", " where\n", " reference_building_area_sqkm is not null\n", " and\n", - " prediction is not null\n", + " b.prediction is not null\n", " \"\"\"\n", " df = pd.read_sql(query, con=con)\n", " print(f\"got dataframe with {len(df)} samples\")\n", @@ -74,9 +74,9 @@ " query = f\"\"\"\n", " select \n", " a.identifier as id\n", - " ,a.ID_UC_G0\n", + " ,a.urban_center_id\n", " ,b.region_wb \n", - " from grid_full_info_v2024 a\n", + " from rf_adjusted_prediction_reference_and_osm_v2024 a\n", " left join ne_10m_admin_0_countries b\n", " on a.iso_a3 = b.iso_a3\n", " \"\"\"\n", @@ -140,7 +140,7 @@ "output_type": "stream", "text": [ "got dataframe with 684718 samples from table: grid_full_info_v2024\n", - "got dataframe with 506170 samples\n" + "got dataframe with 506178 samples\n" ] }, { @@ -165,7 +165,7 @@ "
11686 rows × 48 columns
\n", + "11686 rows × 53 columns
\n", "" ], "text/plain": [ - " ID_UC_G0 GHS_POP wc_built_up_sqkm wc_tree_cover_sqkm \\\n", - "0 1 60043 5.988389 12.555578 \n", - "1 2 51992 5.915353 2.544346 \n", - "2 3 53721 7.765687 1.549071 \n", - "3 4 109748 18.007347 13.902134 \n", - "4 5 76707 16.166797 0.615121 \n", - "... ... ... ... ... \n", - "11681 11682 252067 21.815658 13.733894 \n", - "11682 11683 54242 5.823000 3.420040 \n", - "11683 11684 80162 10.861062 2.879976 \n", - "11684 11685 73418 8.691671 6.055332 \n", - "11685 11686 107086 8.636053 3.179274 \n", + " urban_center_id ghs_pop_2023 worldcover_2021_built_up_sqkm \\\n", + "0 1 60043 5.988389 \n", + "1 2 51992 5.915353 \n", + "2 3 53721 7.765687 \n", + "3 4 109748 18.007347 \n", + "4 5 76707 16.166797 \n", + "... ... ... ... \n", + "11681 11682 252067 21.815658 \n", + "11682 11683 54242 5.823000 \n", + "11683 11684 80162 10.861062 \n", + "11684 11685 73418 8.691671 \n", + "11685 11686 107086 8.636053 \n", + "\n", + " worldcover_2021_tree_cover_sqkm \\\n", + "0 12.555578 \n", + "1 2.544346 \n", + "2 1.549071 \n", + "3 13.902134 \n", + "4 0.615121 \n", + "... ... \n", + "11681 13.733894 \n", + "11682 3.420040 \n", + "11683 2.879976 \n", + "11684 6.055332 \n", + "11685 3.179274 \n", "\n", - " wc_sparse_vegetation_sqkm selected_road_length_km \\\n", - "0 0.027807 159.73268 \n", - "1 0.065721 144.96438 \n", - "2 0.245182 134.50359 \n", - "3 0.154894 512.06884 \n", - "4 2.574366 425.72589 \n", - "... ... ... \n", - "11681 2.040092 279.39488 \n", - "11682 0.290778 73.62697 \n", - "11683 0.633112 105.84604 \n", - "11684 0.815049 80.81759 \n", - "11685 0.615766 109.68613 \n", + " worldcover_2021_sparse_vegetation_sqkm selected_road_length_km \\\n", + "0 0.027807 159.73268 \n", + "1 0.065721 144.96438 \n", + "2 0.245182 134.50359 \n", + "3 0.154894 512.06884 \n", + "4 2.574366 425.72589 \n", + "... ... ... \n", + "11681 2.040092 279.39488 \n", + "11682 0.290778 73.62697 \n", + "11683 0.633112 105.84604 \n", + "11684 0.815049 80.81759 \n", + "11685 0.615766 109.68613 \n", "\n", - " reference_building_area_sqkm prediction_improved_sqkm \\\n", - "0 0.000000 2.028533 \n", - "1 0.000000 1.700809 \n", - "2 1.670102 1.816676 \n", - "3 6.287605 5.759209 \n", - "4 3.203175 3.363398 \n", - "... ... ... \n", - "11681 0.000000 7.515344 \n", - "11682 0.000000 1.983068 \n", - "11683 0.000000 3.401703 \n", - "11684 0.000000 2.688027 \n", - "11685 0.000000 2.976785 \n", + " reference_building_area_sqkm prediction \\\n", + "0 0.000000 2.324382 \n", + "1 0.000000 1.843358 \n", + "2 1.670102 1.831028 \n", + "3 6.287605 6.101699 \n", + "4 3.203175 3.425973 \n", + "... ... ... \n", + "11681 0.000000 7.137708 \n", + "11682 0.000000 1.916450 \n", + "11683 0.000000 3.137552 \n", + "11684 0.000000 2.516636 \n", + "11685 0.000000 2.837875 \n", "\n", - " osm_building_area_sqkm_2008-01 osm_building_area_sqkm_2009-01 \\\n", + " osm_building_area_sqkm_2008_01 osm_building_area_sqkm_2009_01 \\\n", "0 0.0 0.0 \n", "1 0.0 0.0 \n", "2 0.0 0.0 \n", @@ -1581,7 +1654,7 @@ "11684 0.0 0.0 \n", "11685 0.0 0.0 \n", "\n", - " osm_building_area_sqkm_2010-01 osm_building_area_sqkm_2011-01 \\\n", + " osm_building_area_sqkm_2010_01 osm_building_area_sqkm_2011_01 \\\n", "0 0.000000 0.000000 \n", "1 0.000000 0.000000 \n", "2 0.000000 0.000000 \n", @@ -1594,7 +1667,7 @@ "11684 0.000000 0.000000 \n", "11685 0.000000 0.000000 \n", "\n", - " osm_building_area_sqkm_2012-01 osm_building_area_sqkm_2013-01 \\\n", + " osm_building_area_sqkm_2012_01 osm_building_area_sqkm_2013_01 \\\n", "0 0.062051 0.273118 \n", "1 0.003224 0.003370 \n", "2 0.000000 0.000000 \n", @@ -1607,7 +1680,7 @@ "11684 0.000000 0.000000 \n", "11685 0.000000 0.001669 \n", "\n", - " osm_building_area_sqkm_2014-01 osm_building_area_sqkm_2015-01 \\\n", + " osm_building_area_sqkm_2014_01 osm_building_area_sqkm_2015_01 \\\n", "0 0.291588 0.299160 \n", "1 0.027491 0.307089 \n", "2 0.000000 0.000000 \n", @@ -1620,7 +1693,7 @@ "11684 0.000000 0.000000 \n", "11685 0.001669 0.001669 \n", "\n", - " osm_building_area_sqkm_2016-01 osm_building_area_sqkm_2017-01 \\\n", + " osm_building_area_sqkm_2016_01 osm_building_area_sqkm_2017_01 \\\n", "0 0.344058 0.366325 \n", "1 1.425560 1.426726 \n", "2 0.000000 0.000000 \n", @@ -1633,7 +1706,7 @@ "11684 0.000000 0.000000 \n", "11685 0.001669 0.001669 \n", "\n", - " osm_building_area_sqkm_2018-01 osm_building_area_sqkm_2019-01 \\\n", + " osm_building_area_sqkm_2018_01 osm_building_area_sqkm_2019_01 \\\n", "0 0.370777 0.475503 \n", "1 1.424854 1.626145 \n", "2 0.000000 0.037462 \n", @@ -1646,7 +1719,7 @@ "11684 0.000000 0.000000 \n", "11685 0.016482 0.033762 \n", "\n", - " osm_building_area_sqkm_2020-01 osm_building_area_sqkm_2021-01 \\\n", + " osm_building_area_sqkm_2020_01 osm_building_area_sqkm_2021_01 \\\n", "0 0.561869 0.631707 \n", "1 1.625575 1.628737 \n", "2 0.045946 0.099080 \n", @@ -1659,7 +1732,7 @@ "11684 0.000000 0.015021 \n", "11685 0.033762 0.033762 \n", "\n", - " osm_building_area_sqkm_2022-01 osm_building_area_sqkm_2023-01 \\\n", + " osm_building_area_sqkm_2022_01 osm_building_area_sqkm_2023_01 \\\n", "0 0.665965 1.520192 \n", "1 1.629207 1.633950 \n", "2 0.084206 0.139549 \n", @@ -1672,7 +1745,7 @@ "11684 0.028400 0.026133 \n", "11685 0.089338 0.089338 \n", "\n", - " osm_building_area_sqkm_2024-01 osm_building_area_sqkm_2024-05 \\\n", + " osm_building_area_sqkm_2024_01 osm_building_area_sqkm_2024_05 \\\n", "0 1.559349 1.568521 \n", "1 1.641720 1.685883 \n", "2 0.139863 0.141995 \n", @@ -1685,135 +1758,265 @@ "11684 0.026133 0.026133 \n", "11685 0.089623 0.089623 \n", "\n", - " shdi vnl_mean osm_completeness_2008_01 \\\n", - "0 0.702000 4.351451 0.0 \n", - "1 0.652000 4.939129 0.0 \n", - "2 0.899000 14.999293 0.0 \n", - "3 0.597166 6.794596 0.0 \n", - "4 0.697000 23.702313 0.0 \n", - "... ... ... ... \n", - "11681 0.516000 11.507672 0.0 \n", - "11682 0.516000 12.250077 0.0 \n", - "11683 0.516000 11.503886 0.0 \n", - "11684 0.516000 6.423387 0.0 \n", - "11685 0.485000 26.480700 0.0 \n", + " shdi_2021 vnl_2023 prediction_osm_completeness_2008_01 \\\n", + "0 0.707 4.351451 0.0 \n", + "1 0.745 4.939129 0.0 \n", + "2 0.940 14.999293 0.0 \n", + "3 NaN 6.794596 0.0 \n", + "4 0.788 23.702313 0.0 \n", + "... ... ... ... \n", + "11681 0.801 11.507672 0.0 \n", + "11682 0.801 12.250077 0.0 \n", + "11683 0.801 11.503886 0.0 \n", + "11684 0.801 6.423387 0.0 \n", + "11685 0.775 26.480700 0.0 \n", + "\n", + " prediction_osm_completeness_2009_01 \\\n", + "0 0.0 \n", + "1 0.0 \n", + "2 0.0 \n", + "3 0.0 \n", + "4 0.0 \n", + "... ... \n", + "11681 0.0 \n", + "11682 0.0 \n", + "11683 0.0 \n", + "11684 0.0 \n", + "11685 0.0 \n", + "\n", + " prediction_osm_completeness_2010_01 \\\n", + "0 0.000000 \n", + "1 0.000000 \n", + "2 0.000000 \n", + "3 0.000253 \n", + "4 0.032486 \n", + "... ... \n", + "11681 0.000000 \n", + "11682 0.000000 \n", + "11683 0.000000 \n", + "11684 0.000000 \n", + "11685 0.000000 \n", + "\n", + " prediction_osm_completeness_2011_01 \\\n", + "0 0.000000 \n", + "1 0.000000 \n", + "2 0.000000 \n", + "3 0.000253 \n", + "4 0.033710 \n", + "... ... \n", + "11681 0.000000 \n", + "11682 0.000000 \n", + "11683 0.000000 \n", + "11684 0.000000 \n", + "11685 0.000000 \n", + "\n", + " prediction_osm_completeness_2012_01 \\\n", + "0 0.063767 \n", + "1 0.000822 \n", + "2 0.000000 \n", + "3 0.006859 \n", + "4 0.033710 \n", + "... ... \n", + "11681 0.000000 \n", + "11682 0.000000 \n", + "11683 0.000000 \n", + "11684 0.000000 \n", + "11685 0.000000 \n", + "\n", + " prediction_osm_completeness_2013_01 \\\n", + "0 0.163730 \n", + "1 0.000883 \n", + "2 0.000000 \n", + "3 0.012942 \n", + "4 0.044361 \n", + "... ... \n", + "11681 0.000000 \n", + "11682 0.000000 \n", + "11683 0.000000 \n", + "11684 0.000000 \n", + "11685 0.000310 \n", + "\n", + " prediction_osm_completeness_2014_01 \\\n", + "0 0.166716 \n", + "1 0.018637 \n", + "2 0.000000 \n", + "3 0.132607 \n", + "4 0.044296 \n", + "... ... \n", + "11681 0.000000 \n", + "11682 0.000000 \n", + "11683 0.000000 \n", + "11684 0.000000 \n", + "11685 0.000310 \n", + "\n", + " prediction_osm_completeness_2015_01 \\\n", + "0 0.171311 \n", + "1 0.152596 \n", + "2 0.000000 \n", + "3 0.156795 \n", + "4 0.018624 \n", + "... ... \n", + "11681 0.000000 \n", + "11682 0.000000 \n", + "11683 0.000000 \n", + "11684 0.000000 \n", + "11685 0.000310 \n", + "\n", + " prediction_osm_completeness_2016_01 \\\n", + "0 0.188576 \n", + "1 0.783101 \n", + "2 0.000000 \n", + "3 0.207317 \n", + "4 0.024147 \n", + "... ... \n", + "11681 0.000000 \n", + "11682 0.000000 \n", + "11683 0.000000 \n", + "11684 0.000000 \n", + "11685 0.000310 \n", + "\n", + " prediction_osm_completeness_2017_01 \\\n", + "0 0.202116 \n", + "1 0.783734 \n", + "2 0.000000 \n", + "3 0.210715 \n", + "4 0.024327 \n", + "... ... \n", + "11681 0.002320 \n", + "11682 0.000000 \n", + "11683 0.000000 \n", + "11684 0.000000 \n", + "11685 0.000310 \n", "\n", - " osm_completeness_2009_01 osm_completeness_2010_01 \\\n", - "0 0.0 0.000000 \n", - "1 0.0 0.000000 \n", - "2 0.0 0.000000 \n", - "3 0.0 0.035751 \n", - "4 0.0 3.293938 \n", - "... ... ... \n", - "11681 0.0 0.000000 \n", - "11682 0.0 0.000000 \n", - "11683 0.0 0.000000 \n", - "11684 0.0 0.000000 \n", - "11685 0.0 0.000000 \n", + " prediction_osm_completeness_2018_01 \\\n", + "0 0.203699 \n", + "1 0.783273 \n", + "2 0.000000 \n", + "3 0.250420 \n", + "4 0.023059 \n", + "... ... \n", + "11681 0.002986 \n", + "11682 0.000000 \n", + "11683 0.000000 \n", + "11684 0.000000 \n", + "11685 0.006174 \n", "\n", - " osm_completeness_2011_01 osm_completeness_2012_01 \\\n", - "0 0.000000 5.442658 \n", - "1 0.000000 0.095091 \n", - "2 0.000000 0.000000 \n", - "3 0.035751 0.724767 \n", - "4 3.423679 3.423679 \n", - "... ... ... \n", - "11681 0.000000 0.000000 \n", - "11682 0.000000 0.000000 \n", - "11683 0.000000 0.000000 \n", - "11684 0.000000 0.000000 \n", - "11685 0.000000 0.000000 \n", + " prediction_osm_completeness_2019_01 \\\n", + "0 0.237329 \n", + "1 0.901063 \n", + "2 0.015071 \n", + "3 0.260357 \n", + "4 0.132346 \n", + "... ... \n", + "11681 0.005998 \n", + "11682 0.000000 \n", + "11683 0.000000 \n", + "11684 0.000000 \n", + "11685 0.007979 \n", "\n", - " osm_completeness_2013_01 osm_completeness_2014_01 \\\n", - "0 17.116582 17.547127 \n", - "1 0.101329 2.087314 \n", - "2 0.000000 0.000000 \n", - "3 1.395817 16.395079 \n", - "4 4.608115 4.600608 \n", - "... ... ... \n", - "11681 0.000000 0.000000 \n", - "11682 0.000000 0.000000 \n", - "11683 0.000000 0.000000 \n", - "11684 0.000000 0.000000 \n", - "11685 0.027020 0.027020 \n", + " prediction_osm_completeness_2020_01 \\\n", + "0 0.264390 \n", + "1 0.900828 \n", + "2 0.020622 \n", + "3 1.020683 \n", + "4 0.132319 \n", + "... ... \n", + "11681 0.032858 \n", + "11682 0.000000 \n", + "11683 0.000000 \n", + "11684 0.000000 \n", + "11685 0.007979 \n", "\n", - " osm_completeness_2015_01 osm_completeness_2016_01 \\\n", - "0 18.073713 20.074884 \n", - "1 17.391497 84.595916 \n", - "2 0.000000 0.000000 \n", - "3 18.912151 24.325914 \n", - "4 1.948809 2.504590 \n", - "... ... ... \n", - "11681 0.000000 0.000000 \n", - "11682 0.000000 0.000000 \n", - "11683 0.000000 0.000000 \n", - "11684 0.000000 0.000000 \n", - "11685 0.027020 0.027020 \n", + " prediction_osm_completeness_2021_01 \\\n", + "0 0.313722 \n", + "1 0.901067 \n", + "2 0.048817 \n", + "3 1.020921 \n", + "4 0.145884 \n", + "... ... \n", + "11681 0.032858 \n", + "11682 0.012559 \n", + "11683 0.002044 \n", + "11684 0.004004 \n", + "11685 0.007979 \n", "\n", - " osm_completeness_2017_01 osm_completeness_2018_01 \\\n", - "0 21.559690 21.692216 \n", - "1 84.660119 84.605391 \n", - "2 0.000000 0.000000 \n", - "3 24.818145 29.492595 \n", - "4 2.521983 2.338196 \n", - "... ... ... \n", - "11681 0.207872 0.270684 \n", - "11682 0.000000 0.000000 \n", - "11683 0.000000 0.000000 \n", - "11684 0.000000 0.000000 \n", - "11685 0.027020 0.645885 \n", + " prediction_osm_completeness_2022_01 \\\n", + "0 0.336734 \n", + "1 0.902121 \n", + "2 0.043124 \n", + "3 1.018852 \n", + "4 0.168810 \n", + "... ... \n", + "11681 0.039957 \n", + "11682 0.012559 \n", + "11683 0.002044 \n", + "11684 0.007571 \n", + "11685 0.024298 \n", "\n", - " osm_completeness_2019_01 osm_completeness_2020_01 \\\n", - "0 25.674679 28.566575 \n", - "1 97.066208 97.040778 \n", - "2 1.518298 2.085576 \n", - "3 30.606405 116.695076 \n", - "4 13.090183 13.087702 \n", - "... ... ... \n", - "11681 0.555425 3.055792 \n", - "11682 0.000000 0.000000 \n", - "11683 0.000000 0.000000 \n", - "11684 0.000000 0.000000 \n", - "11685 0.784991 0.784991 \n", + " prediction_osm_completeness_2023_01 \\\n", + "0 0.720924 \n", + "1 0.904437 \n", + "2 0.077236 \n", + "3 1.020911 \n", + "4 0.168214 \n", + "... ... \n", + "11681 0.040609 \n", + "11682 0.012559 \n", + "11683 0.002044 \n", + "11684 0.006967 \n", + "11685 0.024298 \n", "\n", - " osm_completeness_2021_01 osm_completeness_2022_01 \\\n", - "0 33.087056 35.619517 \n", - "1 97.069821 97.148841 \n", - "2 4.879578 4.328472 \n", - "3 116.707555 116.529463 \n", - "4 14.564341 16.630656 \n", - "... ... ... \n", - "11681 3.055790 3.645045 \n", - "11682 1.263001 1.263001 \n", - "11683 0.187618 0.187618 \n", - "11684 0.496961 0.948052 \n", - "11685 0.784991 2.344693 \n", + " prediction_osm_completeness_2024_01 \\\n", + "0 0.744398 \n", + "1 0.907950 \n", + "2 0.077356 \n", + "3 1.025525 \n", + "4 0.168644 \n", + "... ... \n", + "11681 0.041699 \n", + "11682 0.012559 \n", + "11683 0.002044 \n", + "11684 0.006967 \n", + "11685 0.024360 \n", "\n", - " osm_completeness_2023_01 osm_completeness_2024_01 \\\n", - "0 78.965543 81.644399 \n", - "1 97.382958 97.760565 \n", - "2 7.845958 7.857594 \n", - "3 116.802142 117.615592 \n", - "4 16.571571 16.613528 \n", - "... ... ... \n", - "11681 3.704992 3.753177 \n", - "11682 1.263001 1.263001 \n", - "11683 0.187618 0.187618 \n", - "11684 0.870041 0.870041 \n", - "11685 2.344693 2.350426 \n", + " prediction_osm_completeness_2024_05 total_area_sqkm \\\n", + "0 0.747106 34.792 \n", + "1 0.935053 19.901 \n", + "2 0.079047 14.926 \n", + "3 1.029091 49.725 \n", + "4 0.172562 28.917 \n", + "... ... ... \n", + "11681 0.041780 53.798 \n", + "11682 0.012559 10.958 \n", + "11683 0.002044 23.913 \n", + "11684 0.006967 31.881 \n", + "11685 0.024360 14.937 \n", "\n", - " osm_completeness_2024_05 total_area_sqkm \\\n", - "0 81.975882 34.792 \n", - "1 100.641484 19.901 \n", - "2 8.029926 14.926 \n", - "3 117.778049 49.725 \n", - "4 17.015572 28.917 \n", - "... ... ... \n", - "11681 3.762510 53.798 \n", - "11682 1.263001 10.958 \n", - "11683 0.187618 23.913 \n", - "11684 0.870041 31.881 \n", - "11685 2.350426 14.937 \n", + " reference_osm_completeness_2024_05 region_wb iso_a3 \\\n", + "0 NaN East Asia & Pacific WSM \n", + "1 NaN East Asia & Pacific TON \n", + "2 0.085 North America USA \n", + "3 1.000 East Asia & Pacific PYF \n", + "4 0.182 Latin America & Caribbean MEX \n", + "... ... ... ... \n", + "11681 NaN East Asia & Pacific CHN \n", + "11682 NaN East Asia & Pacific CHN \n", + "11683 NaN East Asia & Pacific CHN \n", + "11684 NaN East Asia & Pacific CHN \n", + "11685 NaN East Asia & Pacific CHN \n", + "\n", + " ghs_pop_2023_class shdi_2021_class \\\n", + "0 small urban areas high \n", + "1 small urban areas high \n", + "2 small urban areas very high \n", + "3 small urban areas very high \n", + "4 small urban areas high \n", + "... ... ... \n", + "11681 medium-size urban areas very high \n", + "11682 small urban areas very high \n", + "11683 small urban areas very high \n", + "11684 small urban areas very high \n", + "11685 small urban areas high \n", "\n", " geometry \n", "0 MULTIPOLYGON (((-171.77356 -13.82480, -171.763... \n", @@ -1828,10 +2031,10 @@ "11684 MULTIPOLYGON (((121.60246 28.29808, 121.61325 ... \n", "11685 MULTIPOLYGON (((119.80544 25.50990, 119.81608 ... \n", "\n", - "[11686 rows x 48 columns]" + "[11686 rows x 53 columns]" ] }, - "execution_count": 10, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -1851,7 +2054,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "7e43f297", "metadata": {}, "outputs": [], @@ -1861,7 +2064,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 10, "id": "b805b4bf", "metadata": {}, "outputs": [], @@ -1872,15 +2075,15 @@ " with agg_prediction as (\n", " select\n", " a.identifier\n", - " ,a.ID_UC_G0\n", + " ,a.urban_center_id\n", " ,'rf_adjusted' as model_name\n", " ,split\n", " ,avg(a.prediction) as prediction\n", " from performance_20_clusters_reference_and_osm_v2024 as a \n", - " group by ID_UC_G0, identifier, split, model_name\n", + " group by urban_center_id, identifier, split, model_name\n", " )\n", " select\n", - " a.ID_UC_G0\n", + " a.urban_center_id\n", " ,a.total_area_sqkm\n", " ,a.reference_osm_completeness_2024_05\n", " ,a.region_wb\n", @@ -1892,15 +2095,15 @@ " when a.osm_building_area_sqkm_2024_05 / SUM(b.prediction) > 1.5 then 1.5\n", " else a.osm_building_area_sqkm_2024_05 / SUM(b.prediction)\n", " end as prediction_osm_completeness\n", - " from uc_full_info_v2024 a\n", + " from rf_adjusted_prediction_reference_and_osm_urban_centers_v2024 a\n", " left join agg_prediction b\n", - " on a.ID_UC_G0 = b.ID_UC_G0\n", + " on a.urban_center_id = b.urban_center_id\n", " where\n", " reference_building_area_sqkm is not null\n", " and\n", " reference_osm_completeness_2024_05 < 1.5\n", " group by\n", - " a.ID_UC_G0\n", + " a.urban_center_id\n", " ,reference_osm_completeness_2024_05\n", " ,b.model_name\n", " ,a.osm_building_area_sqkm_2024_05\n", @@ -1919,12 +2122,12 @@ " query = f\"\"\"\n", " select \n", " a.identifier as id\n", - " ,a.ID_UC_G0\n", + " ,a.urban_center_id\n", " ,a.region_wb \n", - " from grid_full_info_V2024 a\n", + " from rf_adjusted_prediction_reference_and_osm_v2024 a\n", " \"\"\"\n", " df = pd.read_sql(query, con=con)\n", - " print(f\"got dataframe with {len(df)} samples from table: grid_full_info_V2024\")\n", + " print(f\"got dataframe with {len(df)} samples from table: rf_adjusted_prediction_reference_and_osm_v2024\")\n", " return df" ] }, @@ -1938,7 +2141,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 11, "id": "90f667e8", "metadata": {}, "outputs": [ @@ -1946,8 +2149,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "got dataframe with 7758 samples.\n", - "got dataframe with 675779 samples from table: all_parameters_urban_centers_grid\n" + "got dataframe with 7757 samples.\n", + "got dataframe with 677806 samples from table: rf_adjusted_prediction_reference_and_osm_v2024\n" ] } ], @@ -1971,7 +2174,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 12, "id": "4e081dbf", "metadata": {}, "outputs": [ @@ -1979,7 +2182,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_39288/2200566900.py:30: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.\n", + "/tmp/ipykernel_17183/2200566900.py:30: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed in 3.11. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap()`` or ``pyplot.get_cmap()`` instead.\n", " cmap = matplotlib.cm.get_cmap('tab10')\n" ] }, @@ -1993,29 +2196,29 @@ "41 0.855\n", "45 1.000\n", " ... \n", - "6200 0.871\n", - "6208 0.902\n", - "6222 0.761\n", - "6240 1.000\n", - "6268 1.078\n", - "Name: reference_osm_completeness_2024_05, Length: 1377, dtype: float64 0.0 1.438\n", - "27 0.784535\n", - "32 0.971466\n", - "38 0.931734\n", - "41 1.083921\n", - "45 1.184852\n", + "6199 0.871\n", + "6207 0.902\n", + "6221 0.761\n", + "6239 1.000\n", + "6267 1.078\n", + "Name: reference_osm_completeness_2024_05, Length: 1376, dtype: float64 0.0 1.438\n", + "27 0.815030\n", + "32 0.922054\n", + "38 0.893098\n", + "41 1.136587\n", + "45 1.123000\n", " ... \n", - "6200 0.804035\n", - "6208 0.846972\n", - "6222 0.623468\n", - "6240 1.032679\n", - "6268 0.786795\n", - "Name: prediction_osm_completeness, Length: 1377, dtype: float64 0.0 1.5\n" + "6199 0.784621\n", + "6207 0.828293\n", + "6221 0.645118\n", + "6239 1.011687\n", + "6267 0.792918\n", + "Name: prediction_osm_completeness, Length: 1376, dtype: float64 0.0 1.5\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNMAAAHECAYAAAATemzMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hTZ/vA8W/CDntvFBFRcSvuurdttdrW2vp229pqf/btsm+n3XvXLru3q27rqFXcG0GciIBsCJskhJDk98cxkTBkD/X5XBdXzBnPeRIP4eQ+93M/MqPRaEQQBEEQBEEQBEEQBEEQhDrJ27oDgiAIgiAIgiAIgiAIgnC1EME0QRAEQRAEQRAEQRAEQagnEUwTBEEQBEEQBEEQBEEQhHoSwTRBEARBEARBEARBEARBqCcRTBMEQRAEQRAEQRAEQRCEehLBNEEQBEEQBEEQBEEQBEGoJxFMEwRBEARBEARBEARBEIR6EsE0QRAEQRAEQRAEQRAEQagnEUwTBEEQBEEQBEEQBEEQhHoSwbTrwP7EPDo+u5H9iXlt3RVBEIQr+uL4F/T8qWdbd6NNrTm/hp4/9SS9NL2tuyI00Omu3cj97PM6t8v97HNOd+3WqDYL/1rN6a7dKE8T54cgCIIgXK927NjB4sWLUalUbd0Vs/bYp5Zk3dYdaG0rjqTy9Mq4Wtf/9ehQ+oW4N+sxs4vL+P3gRSZE+hIZ4NqgfX/Zn8yLa0/SO9iNtfOHNWu/mupoSgHvbD7DqYxi7Kzl9Ah05bExnRnQ0aOtuybE/AZrH619/QP/QHBU6/WnLWgK4J9X4NxmKCsCj07Q63YYtrCte3ZVWnN+DS/ufZE/p/5JpFdkk9rSVGj4If4HovyiiPJrvfPwQuEFpq2dhq3clh2zduBi69Jqx75aHM85zsfHPuZM/hnsrOzo5tmNh3s9TF+fvm3dtVZT+NdqMp97DoAOv/2Kon9/i/VGo5Hzo8dQkZWF08iRBH/9VVt0s9moDh7i4j331Lo+4IP3cZ06tVmPadBoyPv2OxQDB+I4aGC991PHxJD7wYeUnT6NzM4O+8hIvB6Zh6Jfv2btnyAIgiC0hOzsbHbu3ElGRgalpaUoFAq8vb2JiIhg0KBBrd4frVbLvn37OHXqFIWFhVhbW+Pi4kLHjh0ZNmwYLi7iWvlKrrtgmskT47sQ7OFQbXlHT8dmP1Z2cRmfbE8gyN2hwcG0NcczCHJ3IDa1kGSlio5eDe/foFAPzrw2CVur5ktETC/UcM/3h3BT2PD4uHCMRth9Xsne83kimNaejH4e3DpUX+7RqfX70trWPAoJW2HgQ+AVDlnxELdCBNPagbKKMr6M/RKgWjDtoV4P8UDPB1rkuBsubMDLwYtibTHbkrcxs8vMFjlOU93U6SYmh07GVm7bqsfNLM1k3j/zcLNz49Hej2LEyP6M/RzIPHBdBdNMZHZ2FG3YUC2Ypj50mIqsLGS21f9/ImKPI7Oyaq0uNiv3//wHh549qi1X9OnT7McylJWhXLIEL6h3ME2XkUHqg3OxcnPD67EFYDCi2rcP1f79IpgmCIIgtHsXL17kp59+wtXVlX79+uHk5ERxcTFpaWkcOHCg1YNper2eH374AaVSSZ8+fRg0aBDl5eXk5ORw4sQJunbtKoJpdbhug2mjIrzpFeTW1t24otR8NUdTCvhqTn+eX32CNcfTeXxclwa3I5fLsJc378X9v2dyKNVW8NuDg+gd7AbA3BGd0Fbom/U4QhN1HgeBLfglo1wFts0fgG6ycpWUkTbgfpj01uXlFdq265NQL9Zya6xb4E+T0WhkU9ImpoROIb00nY1JG9tdME2tU6OwUWAlt8KK1g/I7ErbhUqn4tsJ39LDSwqq3BN5D+X68lbvS3vgNGIEJZu34Pf888isL5+TxRs2YB8Zib6goNo+cju71uxis1L074/LpIlt3Y1alUZHY1CpCPnxBxx6SkPBPe+/D0P59Xl+CoIgCFeX3bt3Y2dnx9y5c3FwsEzqKS0tbfX+nDlzhqysLGbMmEGvXr0s1ul0OvT69vm93mg0UlFRgY2NTVt35foNptXHN7sS2RyfxQWlCk25nnBfJx4d1ZkpPf0tttudkMsn/yRwNrsEvcGIn4s9k3r48cykruxPzGP20gMAPL0yzjzE9L1be3HbgOArHn9NTDquDjaM6erD5J5+rD2eUWMwbV1sBt/sSiQpV4VMJiPQzYFZUcHcPzwUwNyHP+YOZkiYJwCHkvL5cV8Sxy8Woiwtx9PJlsk9/HlmUgT2NnV/iZPLpEdjleV21lfnHfnrVtJu+OlGuGcDhN5weXlBCnzSC6Z9AX3vkpatfgROrYVH9sCmZ+DifggdCbN/l4JXO96Ek6tBlQtuIdDvHhj6GMhkl9td7ApRcyF4IES/A4Wp4NMVJr4FHasMYy7OgH/fgIQtl4dpDlkA/f5Tjxcmk36MVc5Q66v3i+7VQKfX8XXc1+xK20VqSSp6o55uHt2Y32c+A/2l7JP00nQmrZoEwJexX5oz1B7p/QiP9nmUL45/wZexX3LinhPmdnv+1JM7Iu5gcMBgPo/5nJTiFEKcQ3gq6imGBw6vV99icmJIL01ncuhk0krTWLRrEVmqLPwc/Sy2m7hyIp3dO3Nv5L28f+R9EgsTCXYO5rlBzxHlF8U/Kf+w5PgSLhZfJMwtjFeGvkI3T8vaVxeKLvB5zOcczDxIWUUZnd07M6/XPEaHjDZvYxo2+/3E79mSvIVtKdvQGXTsm73PvG7zzM0EOgWa99mdtpvv4r/jdN5pZDIZHV068p/u/2FqJ2kI3tHso/x2+jdOKE+Qp8nDw96D8R3Gs7DfQuyt7et8j2SXfleNVX5vbK1aN0OuvXCZOpWSf/5BtW8fTiNGAGAsL6d461a85s2j4Jdfqu1zums3vObPx/uxBeZl6qNHyX7rbbTnzmHt64vnAzVnXhrKy8n94AOK1q3HqNWiGDQIv5dfqnd/S3ftQvn1N5SdOoVMJsMhagC+Tz2FXXh4A1957QpX/UXRunVoExIwlJRgExKCx5y7cJ8922I7zYl4cj/+mLKTJzFoNFh7eaEYNIiAN9+gPC2dxHHjAFAuWYJyyRKAau9bNbJL2fVVzk95DRmCgiAIgtDe5Ofn4+PjUy2QBuDk5ARAQUEBn3zyCdOmTaNvX8tRAYsXL2bkyJGMHj3aYrlarWbjxo2cP38eKysrevXqxbhx4+oMNuXn5wMQEhJSbZ2NjY3F/llZWezfv5+UlBRKSkqwt7cnPDycCRMmoFAoqu1fVlbG1q1bOXPmDADdunVjypQp2Fb6mx0TE0NsbCw5OTlotVrc3d0ZNGgQUVGWo1Y++ugjfHx8GDRoENu3bycnJ4dx48YxZMiQBrcxfPhwtmzZQnZ2Ns7OzowaNYo+TcjAv24nICgpqyBfVW7xU6CyvLv5w95kIgNceWJ8F56eGIGVXM6jvx3j3zPZ5m3OZZfwwI9HKNcbeGJ8F56f2o1x3X05kiLdse7s48QT46UA2OyBIXw0qzcfzerNoFDPOvu45ng6kyL9sLWWc3PvQJKUKmJTCy222Z2Qy//9EYOrgw3PTu7KokkRDO7kwdGU6nfMK9t0IhNNuZ67Bndg8c2RjAj35qf9yTyx/Hg93j2YFOmHs701b246TXmFoV77CG1AWwyqPMsfdX7j2zNUwC8zwNEbJrwG3W+Wvtj8cQfsXwKdx8LEN8EzHLa9CFueq95Gyl7Y/Cz0mgWjnwN1Afw6E7JPXd6mNAe+HQcXdkrDNCe9LQXT1i2A/V/U3U9bBUTeAsd/h8zYxr9eoUFKdaX8lfAXUX5R/Lf/f3mk9yPkl+Xz8D8PcyZf+mPqbufOi4NfBGBsyFjeHP4mbw5/k7EhY6/YdkxODG8ceINJHSfxRP8n0Oq1PLHzCQrLCuvVt40XNhLsHEwPrx6MChqFvZU9fyf9XeO2F4svsmjXIkYFjWJhv4UUlxezYPsCNlzYwLuH3+XGTjfyaJ9HSStJ46nopzAYL38Gni84z5yNc7hQeIEHej7AU1FP4WDtwMIdC9mesr3asd448AaJhYk83OthHuhR+/DWNefXMH/7fIq0RTzY80Ee7/c4XT26sjd9r3mbrclbKasoY1bELP436H8MCxzGH2f+4Lk9Nfwe1mBch3E42zjzwdEP0Ol19drnWmYTGIhDnz4Ub9xoXla6ezeGkhJcpkypVxtlZ89x8YEHqcjPw2vBAtxm3ELu559T8s8/1bbNfOEF8n/6Gcdhw/B+8glk1takPjyvXscpWruW1IfnIVco8HnySbwefYTy84kk3zWn3hMVGFQqKgoKqv1UDq4W/PknNgEBeD38ED6LFmHj50fWK6+S/9tv5m0q8vK4+OCD6NLT8Zw7F98XnsflphvRxEqfxdYe7vgtfhkA5/HjCHj3HQLefQfnCeOv2D/nCeOROzuT8+57GEU2miAIgnCVcXNzIyMjg+zs7Lo3boAVK1ZQUVHBuHHjCA8P5+DBg6xfv75e/QGIjY2tdiO1qgsXLlBQUEDfvn2ZMmUKPXr0ID4+nt9++63GfVesWEF5eTnjxo0jMjKS48ePEx0dbbHN4cOHcXNz44YbbmDChAm4urqyceNGDh06VK29vLw8Vq5cSVhYGJMnT8bPz6/BbeTn57N8+XLCwsKYOHEiDg4OrFmzhpycnDrfq9pct5lpd317sNoyW2s5516fbH6+46lRFlla9wztyI2f7uHb3UmM6eoLwO4EJeV6Az/eNxAPx+p3R72d7RgV4c2H287RL8SNW/oG1at/J9KKSMxV8crN0lCbqI7u+Lvas+Z4unlYJUjDLZ3trPn5/kFYyWW1tFbds5O7Wry2OweF0MFLwXtbzpJeqCHQrXrEvLLkPDVymYzjFwv577LjfDq7b4OOL7SSn6dVX2ZlBy828kNDr4XI6TBu8eVlZzZC0i4Y8wKMeFpaNnAuLL8bDnwp/btyjbacU/DQTgi4dLelx0z4fADseAPuuPSFbPurYNDDo/tBcakGX9QDsPJ+2Pk2DLgPbK5wjmpLQa0Eox5+vRXu3wyeYY17zUK9udi6sGXmFmysLt/JmtllJjevvpnfT//Oq8NeRWGjYHyH8bx24DW6uHfhprCb6tX2haILrJ22lmAXKaM3yi+KW9ffyqakTdzZ7c4r7qsz6NiaspXbutwGgL21PaOCR7Hxwkbu63Ffte2Ti5P5ZfIv9PHpA0CYaxgP//Mwr+x7hXXT1+HvJGUnu9i58Or+VzmafdRc++3tw2/j5+THn1P/NGd03RFxB3f/fTcfHfuIsR0sg4audq58O+FbrK4wFL+kvIS3D71NT6+efD/pe+ysLmdYVr6A+W///1pkoN3W5TaCnYP59NinZJZmmvtdm4vFF5HJZMTlxvHs7md5d8S7V+zX9cDlxqnkfvgRhrIy5Pb2FK3fgCIqChtfn3rtn/vZp2A00vHXX7EJCADAecIELtxs+dlcduYMxevW437nbPxekrLRPO66i/SnnkZ79uwVj2FQqch6403cbr0V/9deNS93nT6dxMlTyPv6a4vltcl8/vkal4fv3oW1tzcAHX75Gbn95XPMY85dXHxwLvk//oTHXVIWsyYmBkNREQHffmtRg83n8ccBkCsUOE+cSNbiV7DrEoHrzTfX2TeA8pQUkMvRxMaS/swiAj94/6qtTycIgiBcf4YOHcqvv/7KV199RWBgIB06dCA0NJTQ0FCsmvD3zN3dndmXMsQHDhyInZ0dhw8fZujQoeagU026du2Kp6cnO3bs4NixY4SGhhISEkKXLl3MmXImUVFRDB061GJZUFAQq1at4uLFi3ToYFmj29/fn2nTLl/rqNVqjh07xvjxl2+c3XfffRbZb4MGDeKXX35h//79DBxoWU81Pz+fOXPm0LlzZ4vlDWkjLy+P++67z9zXyMhIPvzwQ2JiYpg4sXFlLq7bzLTXpkXy6wODLH5+vM8yHbBysKlIraOkrIKoUHfi04vMy13spXjktlNZGAxXjug2xJrj6Xg52ZmHZcpkMm7s5c/62Ez0lY7jYm+DWqdnd0Jug9qv/NrU5VKWXv8Qd4xGOFnp9dUkrUDNfT8cYlZUMF/f3Z8tJ7N4dlWcxZe6//11giFvVc/CEFrZlPfhP2ssf+asbFqbA6pkzyRsBZkVDKqSQTHkMcAICVUyMIIGXg6kAbgFQ8QUSPxXCqAZjXB6HURMkv5dOasubCxoi+rONlv9MBRehAWHwdFLCioWpl5en3pIGnJ6YWdDX71wBVZyK3MgzWA0UKQtQm/QE+kVyen8001qe7D/YHMgDSDCIwInGyfSStPq3HdP2h4KtYVMCb2cTTQldApnC85yvuB8te3DXMPMgTSAnt5SfaaB/gMtAlK9vKT6EmklUh+KtEUcyjzExA4TUelUFJQVUFBWQKG2kKGBQ0kpTiFbZXk3cmaXmXUGrPZn7EelU3F/z/stAmlweWgmYBFIU+vUFJQV0Me7D0aMdb7/GaUZPLr9UWaEz+CT0Z/w78V/Wbx/scXn+iv7X2HcinFXbOda4zJ5MgatltKdO9GXqijduROXG+s3s6VRr0e1Zy/OY8eaA2kAdmFhOA63HNZeGr0LAPc5lsPYPe65u87jlO7bh6G4GJepUy0yyrCywqFXL1SHqt88rInXo48S8v131X6sXC9PnFQ5kKYvKaGioABFVBS61FT0JSXSNs5SseLSnTsx6ponw1GXnk7qw/NwmzmToCVSZl/miy9ZnJ+ZL71MwqjRV2hFEARBENpOWFgYDz74IBEREWRnZ7N3715+/fVXPvjgA/NwyMaoOqTRFERKSEi44n42NjbMnTvXHCQ7fvw469at44MPPmDTpk1UVFRYbGui0+lQqVQEBUlJQpmZmdXaHjBggMXzDh06oNFoKCsrq7HNsrIyVCoVHTt2pKCgwGI7kLLoqgbSGtqGt7e3RdDP0dERLy8vCmqogVtf121mWu9gtzonINh+OpvP/j3Pqcxii6GMlUtA3dQ7gGWHU1m06gTvbD7L0DBPJvXwY0oPf+SNzNTSG4ysj81gSJgnqflq8/I+we4s3Z3E3vNKRnSR7hL/Z0gHNp7I5N4fDuPnYs8N4V5M7eXPqIgr3zVPL9Tw4dZz/HM6myKN5cVuSVlFLXtJvtiZiFwu48kJXbCztuLdW3vx5IpYHO2sWXxzJCANf+1TKYNOaCOB/Zt3AgK5NbgEWi4rTAVnf7Bztlzufam+X9FFy+U1ZYh5dgadGlRKqS5OWREc/VH6qYnqCsHj1MNwZgPc9iO4d4Q5q+C7CVJA7f7N4OQjZcfJrcG/T+3tCI2y9vxafjr1E0lFSVQYLn+WVK791Rj+jtWzqlxsXSjWFte574YLGwh0CsTWypaLxdL5GOwcjIO1AxuTNrLQ3XKGVz8ny7t4zrbSue2nsFzuZCvdtSsul/pwsfgiRox8fvxzPj/+eY19yS/Lx9fR1/y8Pu9LaokUCA53u3Ltq8zSTD4//jk7U3ea+2RSqrtyYdtvT3yLXCbnsb6PYWtly6vDXuX5Pc/jaOPIswOfBaQhrL28e12xnWuNtYcHjkOGULRhAwZNGej1uNTz7qU+Px9jWRm2HavPqGzXMRTVpQAaSDNVIpdjG2JZS9U2NLTO4+hSUgC4eO+9Na6XV7m7XBu7Ll1wrHLXuSr1sWPkfvYZmuOxGDUai3WGkhKsnJ1RDIzCecIElEuWkP/TTygGDsR57Fhcbrqx0fXNlN8sRSaT4f34QuS2tgS88ToZz/4PuaMjfs9Lw5i1CQk49Lq+zk9BEATh6hIYGMgdd9xBRUUF2dnZnD59mgMHDrB8+XLmzZvXqKL6np6W5aM8PDyQyWQUFhYCUlZY5ckEbGxssL90c8ze3p4JEyYwYcIECgsLuXDhAvv27ePQoUPY2dkxduxYcxvR0dHEx8ejUqksjlc1aAXgWulGnOk4pm1N/7548SI7duwgLS0NXZWbb5W3Ayn7riYNaaNqn0z9qqn/9XXdBtPqcigpnwd/PsLAjh68Pq0H3i522MjlrDiaytrjGebt7G2sWP7wEPZfyOPfMzlEn8tlQ1wmQ8Mu8ssDDRt6abIvUUlOiZb1sRmsj82otn7N8XRzMM3LyY5N/3cDu87lsvNcDjvP5rLiaBoz+gXy4e19amxfbzDyn28PUqjRMW9kGGHejihsrckqLuOpFbEY6hgzfSylgO7+LubJBmb0C0JZquXNTWdwsrPmpt4BHLtYwJd39W/waxdamayW89NYy+wtVnYgb+GEVlP9qV6zoPfsmrfx7VHzcoDUS1kYQZfu0rgEwJy/4PuJ8PN0uHeDFKQLnwAObs3UaQFgfeJ6Xtj7AmOCx3Bf5H142Hsgl8n57sR35oBQY8llNZ93xmrToFgqLS8lOi0arV7L1NXVM4o2XdjE//X9P4sMLytZzZlitfbh0memAencvTfyXoYG1ByUCHGxLPJqb1X3xAD1oTfoeWjbQxRpi7i/x/2EuobiYO1AjjqHF/a+YFHXrSbHc4/T1b2reWjqTWE3kafJ44OjH6CwVjA5dDKxubF8NOqjZunv1cT1xqlkvvgS+lwljiNGYNXOpok3XspWD3j3Hay9vKpvYNU8l3rlFy9y8d77sO3UCd9Fi7Dx90NmY0Np9C7yf/rJ3A+ZTEbQp5+gOX6ckh07Ue3ZQ+bzz5P/4w90/PNP5I4NnwFaExODXbdu5mCc67RpVCjzyHnvPeSOClymTEFz/DiBn37SLK9VEARBEFqStbU1gYGBBAYG4unpydq1azl16lStxfANhsbXKF+2bBkpl268AfTu3Ztbbrml2nZubm7069ePbt268cknn3DixAlzMG3FihWkpqYybNgw/Pz8sLW1xWg08uuvv9ZYM01Wy3dM07b5+fn89NNPeHl5MXHiRFxcXLCysiIhIYEDBw5Ua9Pauvq1TEPbqKtPjSGCabX4Oz4TO2s5Pz8w0GKGyhVHq38hlMtlDOvsxbDOXrwILNlxnve2nGV/Yh7Dw72Q0bCA2pqYDLycbHl1WvWAweb4LLaezKZMpzcP1bS1ljOuuy/juvtiMBh5YW08vx+8yP+NCaejV/WL1jNZxVxQqvjgtt7M7H+5hltDhopmFllGcB8aEYaytJzPd5xnzfF0IgNcmNDdt5a9hXbD3k16LKsytLewAYEPt2BpuKS2xDI7TXkptdi1ygwxeYnV28g7DzYKaUgmgK2zNOQzrBFDdkwflEXp4Hrp/PbuAnetgJ9uhm9GQlEa3Phxw9sWrmhbyjaCnIL4ePTHFn+wvjhuOWlEQz8Tm+Kfi/+g1Wt5cfCLuNm5WaxLLk7ms5jPiMmJoZ9v0zM4g5yk881abs2QgCFNbs8k2FnKVkooTKgWjDNJKEwguTiZN4a/wc1hl2tQ7cvYV69jyJCRpc6yWHZvj3vJK8tj6YmlbEraRFePrhYzkl4vnMeNI/PlxWhiYwn86MN672fl4YHM3p7y5JRq67TJSRbPbQICwGCg/GIqdp0uZ6OVJyVV3bUaUzablYdnnZllTVG6YwfG8nKCv1hiMWxVdbB6kV8Ahz59cOjTB/77OEXrN5Dx9NMUbdqE+223NfzgMhkVVYaReD5wPxV5eeR99TXF6zdg360bzmOvPJGJIAiCILQ3AZf+pppmyYTq2V6mLLOa5OXlWWRu5efnYzQazRMMTJw4EU2lbHJnZ+eqTVhwcHDA3d3dXJhfo9GQlJTEqFGjGDVqlMVxG+vs2bPo9Xpmz55t7idAcnJyq7bRVNdtzbS6WMlkyJBROQicmq9m60nLejeF6uozSnX3l+5al19Kp3SwlYJexXUMnwQo0+nZcjKLMV19mNLTv9rPPUM7UKqtYNspqR9VZyCVy2V083O+dPyaI9imbLnKMVij0cgPe5Pr7B/A8M5eJClV/HXMslbRokldCfdxIq1Aw7huvo0e5iq0Irdgqd5ZSpUv3Ie/rX8b4ROkTLZD31gu378EkEF4lRpLaYcg4/jl50VpcHYThI0BuZX00/1mqW5a5Rk+TVTKK/cndKT0GP0O6Cv9zgUNgBFPSbXUPMLAp3t9X6FQT6aMrsrZYnG5ccTmWta4M9X2KikvafE+bbiwgSCnIG6PuJ0JHSdY/NwbeS8KawUbL2ysu6F68HTwJMovihXnVpCrrn5zIr+scTPpDg0YiqONI9+d+A6tXmuxznQ3zZQ1V/numtFo5LfTv1Efg/0Hk1KcwvpEy9mfHu/3OGGuYaSXpjM6eHSt2XnXMrmjI34vv4zXggU4ja5/MFFmZYXj8GGUbN8uDeO8RJuYiGrPXottnUbcAEDBr79YLM//6ec6j+M4fDhyJyfyvv66xhplFflNmMG5MlNtv0rnmL6khKK//rLYTF9UVO0ur323rtKul2bhlDs4XNq/7mHaAI5DhlCekkLR2rUWy32efALbzmHo0tNxGjMGWUtnTguCIAhCIyUlJdWYBWWqbebl5YW9vT0KhcIikwykWStrU3WdaSbL8HCpPEhAQABhYWHmHx8fqRxUVlZWtSGbIAXucnNz8bqU7V5bRteBAwdq7VNd5DX8vS4rKyMmJqZV22iq6zYzbefZXBJzq9eQ6R/iQYingjFdffh2TxL3fH+Im/sEkFdazi8HkungqeBM1uUvgJ9sT+BQUj5juvoQ6OZAnqqcX/an4O9qz4CO0iyEHTwVuNhb89vBFJzsrHCwtaZvsBvBHopqx992KptSbQXjutWc1dU32B1PR1vWHk/npt4BLFoVR6FGx9AwT/xd7Ukv0PDjvmS6+7vQ2bvmOilh3k508FTw5qbTZBeX4WRnzd/xmRRp6g72ATw6ujNbT2Xz5IpY9iQo6dfBHXV5BetiM0gtUNM7yJXP/z1PvxB383BUoY2c/+dyhlhlwQPBIxTsXaXZOQ99LWV0uXeEc1uuXJOsqi6ToeMNsP01KVDl2wMSd8DZjTD4UcuZPEEKYv06Q5qwwMoWDn8nLR/1v8vbjFsMSbvh27HQ7x7wjgBNgTTxwIWd8Gz1TA8zvx5S2we/gqWjoMet0uu8uB/iV0HIUOnf6/8Pbvmq/q9TAGD1+dXsSd9Tbfmc7nMYETSCfy7+w8IdCxkRNIL0knSWn1tOmFsYat3l+o/21vaEuYaxOXkzHVw64GrnSme3zoS7X7kmWEPlqHM4nHWYO7vWPNunrZUtwwKHsTVlK88OehYbecPrVFT1/KDnufvvu5mxbgYzw2cS5BxEniaP2NxYstXZrLp5VYPbdLJ14pmoZ3h538vcseEOpnaaioutC2fzz1KmL+ON4W8Q6hpKsHMwHxz5gBx1Do42jvxz8Z961ZQDeLDng/x78V+e3/M8+zP208enD2qdmk1Jm0gvTaeHZw++ifuG3t69GRrYctlP7ZXbLdMbtZ/3Y4+h2r2H5DlzcJ89G/R68n/9DbvOnS1m6bTv1g2XqVMp+P0P9CWlOPTtg3r/AcovXrxC6xIrJyf8Xn6ZjEWLSJoxE5epU7By90CXmUFp9C4Uffvi99KLdbajPnoUY7m22nK7iAjsIyJwHDYMmY0NqY88itus2zGo1RSuWImVpycVuZf/ZhStWUPB73/gPH4cNsEhGFQqClesQO7khNNI6WaH3N4e285hFP/9N7YdO2Ll6opdeDj2XbrU2DfPhx+iZPt2Mp79H6p9+3Do2xeDSk3xxo3o0tKx79kT5Vdf4dCnD05VJncQBEEQhPZg06ZN6HQ6unXrhpeXF3q9ntTUVOLj43FzczMP8ezXrx979uxh7dq1BAQEkJKScsUssIKCAn7//Xc6d+5MWloacXFx9OzZ84ozeQIkJiayc+dOIiIiCAoKwtbWloKCAmJiYtDr9eYsNHt7ezp06MDevXvR6/W4uLiQmJjYpML9YWFhWFlZ8fvvvzNgwADKy8s5evQojo6OlJZeuc5vc7bRVNdtMO3DbedqXP7erb0I8VQwtLMX787sxZfRiby64RTB7g4smtSVtAKNRTBtfDdf0go0LD+SSoFKh7ujDYNCPfnv+C642EtfzGys5Hxwex/e3XyG51fHU2Ew8t6tvWoMpq09no6dtZwbwmsOQsnlMkZ39WHt8XQKVOXc0jeQ3w9d5NcDKRRrKvB2tuPG3gE8Pi681swwGys5390zgMXrTvHFjvPY2VgxMdKXu4d0ZPInu+t87zwcbVk7fxgf/3OObaeyWRebgbujLTeEe/HJHX3xdbFn2ud7mP/bMVY+MpQIvyunkgotaMcbNS+f9oUUTAOY/B7odXDkeym4FXkLTHgNvhhcv2PI5TD7T9jxJpz8C2J+A7cQGP8aDH2s+vYdhknBvJ1vS1lp3hEw/QspCGbi5ANz/5Wyy06vlzLlFB7g3RXGv1J3nya/IwX1Dn8LO9+SJhvw6wUzvoEeM2H7q7D7A3APhVGL6vc6BQCWnV1W4/JpnacxvfN08sryWHF2BfvS9xHmFsbbN7zNluQtHMk6YrH94qGLeevQW7x7+F10Bh2P9H6k2YNpfyf9jcFoYFTwqFq3GRk0km0p29iTtqdZhjCGuYXx541/8lXsV6xNXEuhthAPew+6eXRjXu95dTdQixnhM/Cw9+C7E9/xdezXWMutCXUN5T/dpdkfbeQ2fD7mc9469BbfnvgWOys7xoSMYXbUbG5df2ud7bvbu/PH1D/4IvYLdqTu4O+kv3Gzd2NowFDeGfEOPgofZm+czZPRT/Lz5J+b/f/qWmUfEUHIt0vJfvsdlJ9+hrWfH94LFlCRm2sRTAPwf/MNrDw8KF6/npLt23EcNIjgr7/ifD1mqHS96UasfXzIW7qUvO++x1hejrWvL4r+/XGdMaNefS345Rdquiz2mj8f+4gI7DqFEvjJJ+R+8gk5776HtZcX7rPvwMrdg8znnzdvr4iKQhN3gqJNm9Ar85A7O+PQsycB772HbdDl0hL+r71G9utvkPPW2xh1Ouk4tQTTrN3d6bh8GcrPl1Dy778UbdyElbsbTkOHEfD++1j7+JB8++2kP/44HX7/rdZ2BEEQBKGtTJgwgVOnTpGQkMDRo0fR6/W4uroSFRXFiBEjcLiUtT1y5EhUKhWnTp3i5MmThIeHM2fOHN57770a273tttvYsWMH//zzD3K5nIEDBzJ+/Pg6+9O9e3fKy8tJTEwkKSkJjUaDvb09gYGBDB06lNBKkyDNnDmTTZs2cfjwYYxGI2FhYcyZM4cPPvigUe+Fl5cXt99+O//++y9bt27FycmJAQMG4OjoyNoqWegt2UZTyYxNqbgmCILQEItdIWouTH2/rXsiCIIgCIIgCIIgCI0iiksIgiAIgiAIgiAIgiAIQj2JYJogCIIgCIIgCIIgCIIg1JMIpgmCIAiCIAiCIAiCIAhCPYmaaYIgCIIgCIIgCIIgCIJQTyIzTRAEQRAEQRAEQRAEQRDqSQTTBEEQBEEQBEEQBEEQBKGeRDDtKvfRtnN0fHajxbIKvYG3Np1myFvbCf3fRub+fASAjs9u5KNt59qim4JQfzG/wWJXKEi5Po4rtJmJKyfy/J7nzc/XnF9Dz596clJ5sl77zt8+vyW7Jwj1kvvZ55zu2o2KgoIWP5axooLs994jYdRoTnfrTur8BVfcvjwtndNdu1H41+oW75vQvuxb8RsfzLoRdXFRW3el1SxdcD+bv/iorbshtEOZbx9C+WPd1xatJfPtQ+QvP9vW3RDaodjYWD777DNeffVV3nrrrTq3/+ijj1i9+vr9G2/d1h24lqTmq7nh3R3m53IZ+LnY0yPQlYXjwokMcG2Vfiw/ksbXuy5w/7BQegS6EODm0CrHFVpZWTEc+AJOr4f8JDDqwT0UukyAQY+Ai3/LHXvX++DdFbrd2HLHaIitL8K+TyHyFrjtx7bujdBEqcWpfH/ye/Zn7CdXnYuNlQ3hbuFM7DiRW7vcir21fVt3UbiOFf61msznnkNma0vYtq3Y+PparE/5z93oCwvotH59sx5X+dXX2HUOw3ncuGZtt7K0x/9LyebNeD74AD5PPVVtfeGqv8j/7ns87rkb++7dsfZvwb8zQoPE7/yHLV9+jJWNDQ98uhRnDy+L9cteeRZNcTH3fvBFsx734OrleAQFEx41pFnbrWz9R29z7sAeom6eyYi77mux4wjXBl2WiuJ/UihPK0VfWo5cYYONjwKHbh44DQtsueNmq1DHKXHs74u1R8tcpxg0FWS8cQAqjPg+0R8bH0WLHEe4dh06dIhNmzYRGBjI3LlzLdbl5uayZs0aOnfuzPDhw7GxsWmjXl49RDCtBdzcO4DRXb3RG+B8Tim/HUhh57lcVj86tNkDao+N6cwjo8Islu1LVOLnYs9LN3W3WH7mtUlYy2XNenyhjeQnwc/ToCgNIqdD/3vBygayT8KxX+D0Bvi/Yy13/N0fQvdp7SOYZjRC/CpwC4Gzm0FbAnbODW+n9x3QYyZY2zV/H4V625W2iyd3PomNlQ03h91MZ7fO6Aw6YrJj+ODoB5wvPM/ioYub5Vjrb1mPTCY+E4XGMZaXk/fNUvxefKFVjqf85htcJkxosWCavrSU0h07sAkMpGjjJryffLLa74f64AGsfX3x/d//6tWmTWAAEbHHkVmLy83WotfpOLRmJWPvn9cqxzu4ejldBg9rsWCaVq3mwtFDuHj7cmbvLm648952+7l930dft9u+XS+0KcXkfhOHtZsdjlF+WDnbUlGkpfxiMSX7Mlo2mJajpmT7Rew6ubZYME19IheQIXe2Rh2Tg+vEjo1qx++pASBO1evSiRMncHNzIz09nby8PDw9Pc3rkpOTMRqNTJo0yWL5lTz22GPX9eeeuLppAT0CXbilb5D5+YAO7jz48xF+PXCRt2b0bNZjWVvJsbayXJZXWo6LQ/X/Wnsbq2rLhKuQvgKW/QdUuXDvRuhQ5QJ2zIuw9+M26VqNylVg69hy7SfvhuJ0uGc9/DJDytTrc2fD25FbST9Cm0krSePp6Kfxd/Lnuwnf4a3wNq+b3XU2F4svsittV5OOYTQa0eq12FvbY2tl29QuC9cxu27dKFyxAs+HHsLG16dFjmE0GjFqtcjtWz4bs2TLVowGA/5vvMHFe+9FffgwjgMHWmxTkZePlUvdNyuMFRVgMCCztUVmJ25QtCbvjp048e8WBk2/DSeP+n0Zaiij0UiFrhwb25b/v004uBeDwcDEeQtZ8dpzpJ2OJ7h7815LN0Xl98JaZHG0uZJ/LyK3t8ZnQV/kVb4L6UvL26hXzUcdk4NDhDtW7vaoY3MbHUyTWYtKT9ejgoICUlNTmTVrFuvXr+fEiROMGjXKvF6lUgFgX8c1h9FopKKiAhsbG6yv85tl1/erbyVDO0sXM2kFagC2nszij0MXOZlRTKFah5+rPbf2D2L+6M5YVckci7lYwCfbEziWUoBOb6SDp4LbBwRz//BQQKqZ9sn2BJLfnlptmKmpltofcwczJMyTjs9uZOHYcP47vot5m6yiMj7cdpadZ3MpVOvwcbFjZBdvXr4pElvxQds+nV4L2SekoFnVQBqAvQuMfclyWdoR2PEmpB0GvQ4C+0nbhAy+vM2OtyD6bXjsmDSM88xGwAjdboIp74PtpVTyxZeyK2N/l34Aet8Jt3x5uY1HD8Ku9+D8NiljbN4eyIqH/UsgZS+UZIG9K4RPgAmvgcKj8e9H3HJpyGnoCOg0SnpeUzDt4Ndw5HupJpq1rTQkdsgC6HWbtD7mN1j7KCyMA/cO0rIzG+Hoj5AZB5p8cAmAPnfBDU+KwFsL+CH+B9QVal4d+qpFIM0kxCWEOd3nALA6YTUbLmzgfOF5SspLCHYO5s6udzKr6yyLfSaunEhn987c2fVOPo35lPMF53m8/+P8p/t/mLhyIgP8BvDG8Dcs9tFUaHhl/ytsS9lGhaGCMcFjWDRwEa521TOL96Xv48OjH5JUlESQcxCP9X2McR0sM4eKy4v58viXbEvZRn5ZPn6OfswMn8l9Pe5DLrv8Oftj/I/8c/EfkouTKasoo5NrJx7s+SATOk6waK/nTz25I+IOBgcM5vOYz0kpTiHEOYSnop5ieODwhr3pQqN5PfwQ6U89Td7Spfi98PwVtzVWVKD85huKVq+hIisLa29vXG68Ea8F85HbXg7qnh8zFrvwcNznzCH344/RJiTg8+QTZL/1NgBFa9ZQtGYNAK7TpxPw9uV6JobiYjLeeZeS7dvBaMR5/Hj8XnoRuUP9Sj0UbViP49AhOA4ehG1YGMXrN5iDaeVp6SRWyog73bUbACE//YRNYCCJ48bh8/TTyKytyP/1N3Tp6YSuWonc2YXEcePwf/NN3GbcYt5fe+ECuZ9+hvrgQQxqNTb+/jhPnIjPfx8HQJeejvLbb1HvP4AuMxO5vT2KwYPxefppbINaLrPkWjBo+u1s+uw9Dq1dyZj7Hr7itga9noNrlnMyejuleUoc3T3oOmwkQ2690yIwtHTB/XgFd6DvxBvZs+wXlKkp3DD7Xnb+vBSAk9HbORm9HYDIkWOZ9Oh/zftq1Sp2/fo95w8fwGg0Ej5wKGMfmIeNXf0CxKf37KRDrz6E9OiFR2Awp/fsrBZMMw1xnfXKO5zbv4cze6Mx6PVEDLmBMfc/jE6rZccPX5N47BAAPcdMZMRd91lkUxgNBo79vZ4T/26hMDsTO4UjnQcM5oY778XeyanO96L/1GksXXA/wd17Wrz+MlUp+1f+wfnD+1EV5OPg4kpIZC9G3v0gChdX9BU6Dvy1jAvHDlOYlYnBoMc3NIyht80hpEever1HwmUV+WXY+CqqBdIArJwsb6AZ9UZKdqaiOpqNvkiLlbMtij4+uIwLsQg2pT27G+exIbiO72Cxf+bbh7Dr5IrH7RGojmRTsFKqS61cesK8jdfcntiHuZmfa5OLKNxwAV2WCisXO1zGhuDY37JUQK2vrbCM8uRiPGZ3xdrdntI96WhTirHr4GKxnU6pofjvJLQpxRjKKrBS2GDb0QX3GeHI7a2r9R3AoNZRvCOVsnMF6AvKQCbDtoMLrpM6YhvgVK0vwtUpLi4Oe3t7wsPD6d69O3FxceZg2kcffURRkVTj8r333gNg5MiRjB49mo8++ggfHx8GDRrE9u3bycnJYdy4cQwZMoSPPvqIjh07csstl//GazQaoqOjOX36NKWlpSgUCkJDQ5k4cSKOjo5UVFSwa9cuEhISyM/Px2Aw4O/vz+jRowkNDW3196UpRDCtFaTkSUE0N4X0Ib7yaBoKO2sevCEUha01+xPz+HDbOUq1FTw3pZt5v90JuTzw4xG8ne24b1go3s52nM8p5d8zOeZgWmWeTrZ8NKs3n/97HnW5nmcmSR+QnX1q/hDMLi5j2pI9FGsqmD0whDAfR7KLytgUn4VGpxfBtPbq7N/SY+876rf9hWj47Vbw7wMjF4FMDsd/g59ugvs2Q1B/y+1X3CsFk8a9BJmxcOxncPSC8a9K62/5BtY9BoH9peGlAB5VzscV94BHmBSwMxov9WMHFCRD3zng5AM5Z6RAVe5peHA7NCZFuEILp9fBkMek5z1vhTWPQkk2OFe6ODn6I/z9jDQ0ddA8ab/seEg/cjmYVpPjv0tZdUPmS49Ju2DHG6AthgmvN7y/whXtTNtJkFMQfXz61Lnt8rPLCXMLY1TwKKxkVkSnRfP6wdcxYGB219kW2yYXJfPMrme4rcttzAyfSajrlf9Qv3noTZxtnHmk9yMkFyWz/NxyMlQZ/DDxB4svXxeLL/LUrqe4vcvt3Bx2M2sS1/Bk9JN8Oe5LhgYMBaTA3H2b7yNHncNtXW7Dz9GP2NxYPjn2CUqNkkUDF5nb+/X0r4wKHsXUTlPR6XVsTt7Mk9FPssR6CSOCRlj0MSYnhu0XtzMrYhaONo78dvo3ntj5BFtnbsXN3q3O909oOpvAIFyn3Sxlp82de8XstMwXXqRozRqcJ05Ecd+9lMXGkffNN2gvJBL8+ecW22qTk0h/6incb78dt9tuwzY0lIB33yHzhRex79UT99tvl44fHGyxX9p//4ttYBA+T/yXslOnKFyxEmtPjxprn1Wly85BffCQOTjnMnUK+T/9jN+LLyCztcXaw52Ad99B+dXXGNRqfJ6QggV2YZ0wlGkBKFz9F0ZtOW6334bc1hYrV1eMBmO1Y5WdPUvKXXOQWVvjdvvt2AQGoku9SOmOHeZgmuZEPJqY47hMmYK1ny+69AwK/vyTi3ffTaeNG+odILweufr40n3EGE5s38LAabdeMTtt69efcjJ6O10GDWPA1FvIPH+WQ2tWkJ+eyrSnLIcv52eksfHT9+g1bhI9x0zEIyCQyQueZOvXn+IX1oVe4yYB4ObrZ7Hfho/ewdXHl+Gz7yEn6Twn/t2KwtW1XrXPSvPzSD15gknzpfOt67ARHNu4lrH3z8PKunoW2L8/fI2jmztDb7uLzIQzxG3fjJ2jIxnnTuPs6c3wO+4hKeYwR9b/hVdwByJHjjXvu23p55yM3k7kqHH0nXQTRbnZHN+8gZzkRO549T2sKmVf1PRe1KS8TMOylxeRl55Kj9Hj8Q0NQ1NcTOLRg5Tm56FwcUWrVnPi3610HTqCXmMnUq7RcGLHNla9+RJ3vfkhPh071fk+CZdZudlRfrEEXZYKG78rj4ooWHUO9bEcHHp6YXdDIOWpJZTsTEWXo8br7u5X3Lcqu1AXnIYGULovA+fRwVhfqmVWuaZZRZ6GvF9P4xjlh2N/X3MAzjbICRvfukdwqI/nIrOxwqGbBzIbK6w87VHH5FgE04wVBpTfx2OsMOA0NAArZ1v0RVo0Z/IxaCrMwbSqKvLL0JzKQ9HTCyt3ewylOlQHM8n9Jg6/J/pj5SIyjK8FJ06coFu3blhbW9OzZ0+OHDlCeno6gYGBTJo0idjYWM6cOcPUqVOxtbXFt1JN2Ly8PFauXMmAAQPo379/rcNAtVotP/zwA7m5ufTt2xd/f3/UajVnz56luLgYR0dHtFotx44do2fPnvTr14/y8nKOHTvGL7/8wty5c/G/iuqximBaC9CUG8hXlaM3GEnMLeW1DacAmNpTusD4dHZfiyGXcwZ3wHX1CX7Zn8KTE7pgZ22F3mDkudUn8Ha2Y9PCG3B1uHzRYDRWvzgFUNhac0vfIP48lEqButxiqGlN3tl8htwSLWvmD6NXkJt5+RMTImo9htAO5J4FO1dwvfL/LyAFsjb8FzreAHNWXQ5YDbgPlgyCf1+Du9dY7uPfC6YtufxcnS/VYTMF03rPktp07yj9uya+PeDW7yyXRT0IQx+zXBY0AFY9ABf3Q4ehdb+eqs5thrIi6DFDet51qlQ7Ln4VDHm00nZbwbsb3P5zw9qf+S3YVPrSFvUArH8cDn8nZQaK+mrNprS8lBx1DqODR9dr+x8m/WAxEcGd3e5k3rZ5/Hzy52rBtIslF/lq3FcMCxxWr7Zt5DZ8O/FbbOTS526AUwAfHv2Qnak7GR1yuX/Jxcl8NOojcybajPAZ3LzmZj4++rE5mPbzyZ9JLUllxU0r6OAi3dW+PeJ2vB28+fHkj9wTeQ9+jtLfhg23bLB4TbO7zeb29bfz88mfqwXTLhRdYO20tQS7SAGVKL8obl1/K5uSNnFnt0YMcxYaxWvePIrWriPv22/xe/65GrcpO3OGojVrcLvtVvxfe01aeOedWHl6kv/996gOHMRx8CDz9rqUiwQvXYrTDZZZhpmLX8E2KBjXm2+u8Tj23boR8MblLEt9YSGFK1fVK5hWvHEjMltbnMZIwQXXKVNQfvoZpbt24TxuHHKFAtebb6ZwxUr0VnKLPpSnpQNQkZVN2NYtWHt4VFtXWfZrr4PRSOhfq7AJCDAv937ySfO/nUaNxGXSRIv9nEePIvmO2ZRs3YrrtGl1vqbr2aBbZnFq178cWreSMffWnJ2Wk3yBk9Hb6TlmAhMe/j8A+kycisLVjSPr/+JifJxFZlRhViYz//cKHftY3oD7Z+kS3Hz96H5DzZ/dPqGdmDhvofm5pqSEEzu21SuYdmZvNFY2NnQeIP1+dB06gn3Lf+NCzJEaa7Q5urox49nFyGQy+kycSkF2JofX/0XvcZMY96A0+3KvcRNZuuAB4nduMwfT0s6c5MS/W5ny2FN0Gz7K3F5I956seutlzh3YY7G8tveiqsPr/kKZmsLNTz5H+MDL1ziDZ95hvs62d3Ji7uffWQQHe46dyA//nUfM5vUW751QN+cRQSh/iCf702PYBjljG+qKfZgbdmGuyKwuJwmUZ5SiPpaDY5Qf7jPDpYVDQO5kQ+mudMoSCy0yyupi7emAbagL7MvArrNbjftW5GrwfrgXdqFSlrtDTy8y3z6E6kg2blPrDppqjufg0F0KpAEoenmjOpSJ201hyKyk63tdjhp9fhked3VF0fNyhr/LuA41tmli4+eI35MDkFUaIaXo60PWh0dQHc7GZWxInf0T2reMjAyUSiWTJ08GICQkBBcXF+Li4ggMDKRbt25kZWVx5swZunfvjqOjZYA3Pz+fOXPm0Llz5yseZ9++feTk5DBr1iy6dbucJDRy5Ejz556DgwOPP/64xRDRfv368fnnn3Po0CGmXUV/40XqUQv46J9z9HttG1Fv/MMd3xzgYp6aZyd3ZVIPKcpaOZBWqq0gX1XOwI4eaHR6EnOksconM4pIzddw//BQi0Aa0CxF/gwGI9tOZjO2m69FIK05jyG0EG0J2NUz5TorDvIToedtUlBMlSf9lKuh00hI2QcGg+U+A+63fN5hqDTEsay4/n2s2gZYBqV0ZVI/gqKk55mx9W+7srjlENAXPC9NwmHnLA0dPbHccjt7VyjOgPSjDWu/cp+1JVKfOwwFnRqU5xrXZ6FGpbpSABxt6ldfr3LQqaS8hIKyAgb4DSCtNI2S8hKLbQOdAusdSAO4tcut5kAawKyIWVjLrNmdvttiOx8HH8aGXM5scLJ14qawmzidfxqlRgnA1pSt9PPth4utCwVlBeafwQGD0Rv1HMk+UuNrKtIWUVpeSn/f/pzKP1Wtj4P9B5sDaQARHhE42TiRVppW79cpNJ1tsBTcKly+HF1OTo3blEZLdf487r3XYrnnffdeWh9tsdwmKKhaIK0+3O+wzFZ26N8ffWEh+tLSOvct2rAep5EjsXKSfv9sO3bEPjKSovUb6n185wkTLAJpNanIz0d95AiuM2dYBNLA8rqjco04o05HRUEBNh06IHdxoexU9d8HwZKbrx/dbhjNiX+2UFqQX+M2STHSZ0//qbdYLB9wo/T8Qsxhi+WuPr51Bo9q0nvcZIvnQd0iKSspRqtW17nv6T3RdOo7AFsHKbvH3T8Q306dObN7Z43b9xg9weI88u8cAUYjPUZfHiovl1vh16kzRdnZ5mXnDuzBTuFIh159URcXmX98OnXGxt6B1JNxFsep73uRcHAv3h1CLQJpJqZ+yuVW5kCa0WBAU1qCQa/HLyyc7KTEOo8hWLIPd8fnkT7Yd/NEl6miNDoN5ffxZL55CM2pPPN2ZWcLAHC6wTKr0PkG6UZ12Zmaf2+awtpHYQ6kgTTs1MZLQUV+WZ37lmeq0GWpcehzOQNa0dsbg6qCsoQC8zJT5pn2XCGGcn29+yazlpsDaUaDEb1Kh8zOChsvBeXpdf8NEdq/uLg4HB0dzcMoZTIZkZGRxMfHY6j6XbAGbm5udQbSAE6dOoWvr69FIM3k8uee3BxIMxgMqNVqDAYDAQEBZGZmNuRltTmRmdYCZg8MYWpPf+QycHGwIdzXCbtKswScyy7h/S1n2Z+YR4m2wmLfkjIdcHloaIRvI2YlrIc8VTkl2ooWa19oQXbOUt2v+si7dCG25gqzemmLwMH98nNXy6FDmIaMlRVK9djqw72GO2DqfIh+R8oaU+VarmtIoM5EUwgJ22Dg3MuvE6Q6cFvWgfI8eF360B/+OFzYCUvHgEcnCBsjBRgr14yrSc5p+Pd1aXintkofG9NnoVZONlKAWKVT1Wv7mJwYlhxfQlxuHJoKjcW60vJSnG0vf7YFOdUji7OSDs6W56/CRoGXwouM0gyL5cEuwdVuPHR06QhAemk6Xg5eXCy+yLmCc4xYZplZZpKvuXzBHp0azTdx33Am/wzlhsuFkmU1TLnl71g9Bd7F1oXiquep0OK8HplH0bp15C2tOTtNl5EBcjm2IZZ39q29vZG7uEjrK7EJatj5at6vyrAIKxfpS5uhqAgrp9pvwGgTE9GeOo3btGmUp1z+26IYOJCC339HX1p6xf0v97vuWma61FQA7MLDr7idoayMvG++ofCv1VRkZ18uFwDoS8QXu/oYPOMOTu/ewaG1K2rMTitW5iCTyXHzszxvHN3csXN0pCTXMjjs6lO/uk5VOXtZ1r+0c5TOJa2qFDuFoqZdAMhLSyUnOZHuI8ZQkHX5dySoe09it2xEq1ZX29+l6rEurXf29Kqy3JEy1eXzqDAzA61axZdz76qxL+riIovn9X0virKzCB9Ud9b9yejtHNmwmvz0NAz6y98LGvueX+9sg53x+k93jBUGdJkqNCfzKNmTTt5vp/H9v77Y+DqiLywDGVh7Wtbus3K2RWZvjb5Q2+z9snKrPppB5mCNUVNRw9aW1DE5yGzlWHvYU6GUrnlk1nKs3O2kSQm6SjcyrD3scRoeSOmedNTHc7Dt6IJDd08UfX1qHeIJUgCtdG8GqgMZVBSUQaXYilwhwgVXO4PBQHx8PKGhoRQUXA6+BgUFsX//fi5cuFBnoMzd3f2K600KCgpqDKRVdfz4cfbt24dSqbQI5rm5udXrOO2F+O1oAaFeCoaHe9W4rkijY9bX+3Gyt+a/47vQwVOBnbUV8RlFvP33GWooLyIIlry6SBlnRWl1D/U0XvpwGv8a+NUy+5VtlS9JsloK6zdk6K91DfVsVtwLqYdg2P9JfbF1lPr368zL/WyIU2tAr4X9n0s/VZ1YDqMvfbH1joDHjkjDQs9vh1Pr4PC3Ug250TUPzUJTCD9MkYKXo5+TJiywtpOy6P55uXF9FmrlZOuEj4MP5wvP17ltanEqD255kFDXUJ4a8BR+jn7YyG3Ynb6bX079ggHL/xu7NhyOazAaGOI/hPt61DykyRR8O5p9lMf+fYz+vv15YfALeDl4YS23Zs35NWxK2lRtv8oTF1RmRPwRaW22wcG43nQThcuX4zn3wdo3rGfGt7yxs19a1fzZXddHd9G69QBkv/W2eaKDykq2bMVt5ow6Dy+vZ0H5+sh6/XWK/lqNx91349CnD3JnJ2QyGelPPFk9m1qokZuvH92GS9lpA6fVXhu0viMRrBs5c6dMXstnVR0n5uk90oRaO39eap7ooLKEg3vpMXp8vY5V4/JKxzcajShc3ZiyoOYh0Q4uljcSG/te1OTU7h1s/uIjOkcNJuqmGShcXJHJrTi0djmF2VnNdpzrkcxajm2wM7bBzlh7OVCw8hyaE8oq9cmaMBKngSVxZPKaj1VXM0ajEU1sDsZyA9kfVh9hUVaah0GrR24n/Q1wu7ETjgN80ZzMoyyhgMJ1iZTsSMV7fh+sXWs+d0t2pFK8LQXFAF9cJnRA7mADMijccKGhL1Noh5KSkigtLSU+Pp74+Phq60+cOFFnMK05Z+2MjY1lzZo1dO3alWHDhuHo6IhMJmPPnj3k5zd/VmhLEsG0VnbgQh4Fah1fzenPoE6XC/elFlimu3fwlO6mnc0uqTUw1xSejrY421lzNruk7o2F9iViMsSvhLhl0qySV2KaGMDOGcLqV4uqXho6DFhTAEnRMOo5GHW54LpFRllDxa0An+5SQKyqoz/AiRWWgTJbR+gxU/qpKIdlc6RZS4c/ATY1fAlM3iMNb531K3SsNESwsJ5ZgUKDjQgewcpzKzmec/yKkxDsTNtJuaGcz8Z8hr/T5ayKw1mHa92nIVJKUhjoP9D8XK1To1QruSHwBovtUotTMRqNFl9Gk4uTAWloKUCwczDqCjVDAmqYebeSf1L+wc7Kjq/Hf42t1eUZx9acX9PEVyO0Bq9H5lG0fj15335bbZ1NQAAYDJSnpGAXFmZeXqFUYigurjbcsTYtUXzBaDRSvGEDikGDcJ89u9p65ZdfUrRhfb2CafVhmjRBm5Bwxe1KtmzFdfp0fJ+9/Plu0GrRl4hrloYYPGMWp/fs4PDaldXWuXj5YDQaKMjMwDPocka6qrAArUqFs3ftE2pYaIGyIEajkdN7ogmO7EWfCVOqrT+w6k9O79lZLZjWWK6+/qScOE5A127YNGOgzNXXD2Xqla8Zzh3Yi6uvHzc/+bzF35J9K35rtn4IYBsk3TjWl0hZ31Zu9mCUJgWoPEmAvqQcY1mFRRaZzMEaY5ll9pixwmBu67KWKZGjvVCEvqgcl/EdsPaxvFlt0FRQ+Nd5NKfycOx7+XfWxs8RGz9HXMaGoE0pJvfLWFQHMnGd2LHGY2jildLsnrd2sVhu1FSAovpkH8LVxTTEc8qU6p+np0+f5vTp09x4443Ncix3d3dyail7YXLq1Cnc3d2ZNWuWxefezp07m6UPrUnUTGtlVpdOmMpB/vIKA7/st/xj2yPAlWAPB77fk0SRRmexrjkmB5DLZYyP9GX76Wzi0gqrrRcTELRj3aeBTyTs+kDK9KpKWwLbL00W4N9Xyqja9xloaxgao1I2rg82Cqnwf32Zs92qnFcHvmjc8YvSIGUvRN4CkdOr//SZA/kXIO1SPSp1lbsc1rZSthpGMFj+fpnJa+hzRbmU0Sa0iPsj78fB2oHF+xaba45Vllqcyq+nfjVnZVXOwiopL2m2wNPKcyvRVTovlp1dRoWxguGBlnWscjQ5bL+43fy8tLyU9Ynr6erRFS8H6SbIxI4Tic2NZW/63mrHKS4vpsIgXaDLZXJkMhl64+UaJ+ml6exI3dEsr0loWbYhIVJ22rLlVCgtz12nkdIQ3/yfLCdAyf/xx0vrR9brGDKFotmDSZpjx9Clp+M24xZcJk2s/jN5MuqDh9BlX/nCuL6sPTxQDBhA0aq/qg1vrXzdIZPLq6VrFPz6K+jrXwNIADc/f7oNH03cP5tRFRZarAvtOwCAY5vWWiw/unENAJ36RtXrGDZ2dpSp6jc8v77Sz56iODebHqPG0WXw8Go/EUNHkHryBKX5eXU3Vg8RQ4ZjNBg4sOrPausMer3FkNCGCB80jNyUJBIO7au2znS+y01Zc5XO98yEs2QknGnUMa93ZYmFNX6HKTsrXQdae0mBM/sIacha6R7LSVJKLj2373q5/qO1pz3aJMtrXtWhLKokwSO3vXRtUlb3sM2GMA3xdB4RhKKnt8WP00B/rL0cUMdIn9GGsgqMesvXb+OnABkY9VfI6q0ha04dl4u+uGrAULja6HQ6Tp8+TZcuXYiMjKz2M3DgQMrLyzl79myzHK979+5kZ2dz+vTpauuqfu5V/l1NS0sj9VIpiKuJyExrZf07uOPqYMOTy2O5b1hHAFbHpFcbmCOXy3h9ek8e/OkwUz7ZzW0DgvBxticxt5Rz2SX88sCgam031DMTu7I7Qcmsrw8we2AInX2cyCkpY9OJTFbMG1pt4gOhnbCygVm/wM/T4YfJUkApeJC0POeMlJHl4AZjXwK5HG7+DH67Fb4YDH3uAhd/KM6E5N1Sxtqdyxreh4A+Ug2yfZ+Ds580s2fQgNq3t3eBDsNg7yeg10l9SNxR/9pvVZ1YARilLL2ahI8HubU0QUHQAPhlOjj5Su+Tk480I+qhpRA+UXoPahI8SKoXt/oRGPSwdPc99s9q8UCh+QS7BPPODe/w9K6nmbZmGjeH3Uxnt87oDDqO5x5na/JWpnWext3d78ZGbsOCfxdwW5fbUOvUrEpYhYe9B7ma3LoPVAedQceDWx5kYseJJBcns+zsMvr59Ks202hHl468tO8l4pXxeDp4svr8avLK8nht2Gvmbe7tcS87UnewYPsCpnWeRnfP7mgqNJwrOMe2lG1smbkFd3t3RgSN4OdTPzNv2zymdppKXlkef575k2DnYM4ViMkurgZe8x6maN06ypOSsAu/PFzCvmtXXKdPp3D5cvQlxSiioiiLO0HRmjU4jRtrMZPnldhHdke1fz95P/yItY83tkFBOPTu3aQ+F61fD1ZWtQb0nMaMJvfjjynetMk8YUJT+b7wPCl33kXSjJm43X47NkGB6NIzKI2OptOa1dJxR42iaN065M5O2IV1RnP8OKr9+7G6ymqptAeDZtzOqd3/UpCRhmfQ5bp9Ph07ETlyLHHbN1OmVhHcrQdZiec4Gb2dzlGDLWbyvBLfTp25eOI4RzasxsndA1cfP/zDI5rU5zN7diKTywntV3NAL6z/QPb8+TNn9u0yT5jQFMHde9Jr3CQOrVlBbvIFOvTqh9zaisLMDM4d2MPoex+iy+CGTwoSdfMMEg7uZf1Hb9Nj9Hh8QztTVlpC4tGDjHtwPj4dO9GpXxQJh/ax9oM36NQ3iqKcLGL/+RvPwGB02roL0wuWCtclYtQZcOjuKWVx6Y1oU4rRxOVi5W6H4wCpDp1tgBOKfj6oDmVhKKvALtSV8tQS1MdysO/uaTEbp2OUH4Wrz5P3yynswt3RZZZSllCI3NHya7RNgBPIoSQ6DUOZHpm1DLswN6ycbGksY4UBTXwedp3dkdnUnANj382D0r0Z6EvLKU8ppnBtIg49vbD2ll6/KiYH5DIcetQ+0sm+qwcl2y+Sv+Icth2cqchSoz6eg5VH8w3fF9rG2bNnKS8vJyKi5s/loKAgFAoFcXFx+PtXr8fbUEOHDuXUqVMsX76cvn37EhAQgEaj4ezZs9x44434+fnRpUsXTp8+zbJlywgPD6ewsJAjR47g7e1NefnVFcAVwbRW5u5oy/f3DuD1jad5f+tZXB1smN43kGFhXtz9vWWW0cgu3vwxdzCfbE/g291JGIxGQjwUzB7YPNMT+7nas2b+MD7Yepa1x9Mp0Vbg52LPqAhvHGxqqZsltA+eYTBvt5TZdXoDnNko1fDy6AT97oZBlSYcCL0BHtgGu96FQ99AuUoKLAX1h/51T01fo4lvwvqFUnH+Cg30vvPKwTSAmd/Cpqfh8FIpIBU2GuashA8acdEdt0KaKKG2OnAObhAyBE7+JfW1/31SAG7/Eun1uwRIAbIRT9d+DIUH3Lkctj4vvU4HN+h1O4SOhF+bZ8iTUN3okNGsunkVP8T/wI7UHSw7uwxbK1u6uHfhqQFPcWuXW7G1suXDUR/yWcxnfHDkA7wcvLg94nbc7dx5ad9LTe7DcwOfY2PSRpYcX0KFoYLJoZP538D/VastFOISwv8G/o8Pjn5AclEygc6BvDfiPYuZQx2sHfhx0o8sPbGUrclbWZe4DicbJzq4dGB+n/k4XapZOMh/EK8OfZXv4r/jnUPvEOgcyH/7/5eM0gwRTLtK2HbogOtNN1G0Zk21df6vv4ZNcBBFq9dQ8s92rL288HzoIbwWzK93+76LniXrpZfI/eQTjGVluE6f3qRgmlGno2TzFhz69qk1SGXfpQs2QUEUrV/XbME0+65d6bjsT3I//ZSCP//EqNViExCAy+RJ5m18n38OrKwoXr8Bo1aLQ79+hHz/PakPXqEmnVAjd78Aut8wmpPR26utm/Dw/+Hq48fJ6H84f2g/jm7uDJx+G0NuvbPe7Y+6+0G2ffM5e5f9SkW5lsiRY5sUTNNXVHD2wF4CunTDwanmm11eIR1x9fHl9O6dzRJMAxg/dwG+nToT989m9vz5M3IrOS7evnS7YTQBEd0b1aatvQOzXnmHfct/4/zh/ZyK3o6DqxsdevQ2T4oQOWocqsIC4rZvJjn2GJ6BIUxZ8BTnDuwh9dSJZnlt1xO3KaGoTygpO5uP/lA5Rr0Bazc7nAYH4DwmGLnD5a++7jO7YO1hj+pYDpqTeVg52eI8KhiXcZbfsxyj/NDnl6E6kkXZuQJsQ13xfqAHuUst/3+snG1xnx5O8c5UCladAwN4ze3ZpGBa2Zl8jGUVOHSrfaZkh24elO5ORx2bi0M3T+y6uKM5k4/+YDlyWzk2fo543ReJXUjtk4i5jA7GWK5HfTwXTVwuNgFOeN4bSdHfyY3uu9A+xMXFYW1tTadOnWpcL5fL6dKlC3Fxcc1S/N/Ozo777ruPnTt3cvr0aWJjY82ziLpcqj/Zp08fSktLOXLkCOfPn8fb25sZM2Zw8uRJkpOTm9yH1iQzivF8giAIgiAIgiAIgiAIglAvomaaIAiCIAiCIAiCIAiCINSTCKYJgiAIgiAIgiAIgiAIQj2JYJogCIIgCIIgCIIgCIIg1JMIpgmCIAiCIAiCIAiCIAhCPYlgmiAIgiAIgiAIgiAIgiDUk3Xdm1zdDAYDGRkZODs7I5PJ2ro71y2j0UhJSQkBAQHI5SKG2xDiHG4/xHnceOI8bh/EOdx44hxuH8Q53HjiHG4/xHnceOI8bh/EOdx44hxuH5rjHL7mg2kZGRkEBwe3dTeES1JTUwkKCmrrblxVxDnc/ojzuOHEedy+iHO44cQ53L6Ic7jhxDnc/ojzuOHEedy+iHO44cQ53L405Ry+5oNpzs7OACQlJeHh4dHGvWl+F5SlbI3PZkIPXzp5OdW6nU6nY+vWrUyYMAEbG5tW7KGkuLiY4OBg8/+HUH/X+jlcX219DoM4j5tCnMdtfw5nZWWRlZXFyJEjxTncCOIclrT1eSw+hxtPnMOStj6HQZzHTSHOY8tzmCIdmvg8HHp4YuOlaLU+iHO48VriHN6zZw9xcXH06tWL4cOHN0ubLa2tP4ub4xy+5oNpptRJZ2dnXFxc2rg3zW/34WzWnS7AwdGJPp0Cat1Op9OhUChwcXFpswsHQKSyNsK1fg7XV3s5h0Gcx40hzuO2PYdLSkoAcHKSbrqIc7jhxDksaS+fxeIcbjhxDkvayzkM4jxuDHEeW57DmuOZlJ9WYePojEsnv1bviziHG64lzuGBAwfi6OhIZGTkVfN70V4+i5tyDl/zwbRr3ZRe/haPgiAIQvNIKkpia/JWJnScQKhraFt3p9EqKirIyclp624IgiAIgtDMHHp5WTwK1ycvLy9GjhzZ7O0qlUpOnjxJZGQkXl61n2P13e5aI6oFXuXCvJ14bGw4Yd61D/EUBEEQGm5r8lZWn1/N1uStbd2VJsnOzkav17d1NwRBEARBaGY23gpcxoZg4916QzwBdEp1qx5PaBsnT54kJiaGkydPNst21xqRmSYIQvumTICTayDiprbuidDGWjtTbELHCRaPV6OioiJUKlVbd0MQBEEQhCbS5arRxCmx7u7W1l1BE5/X1l0QWkFkZKTFY1O3u9aIYJogCO3byTUQ8wsY5UDntu6N0IZMmWIAD/d+uMWPF+oa2irHaSk6nY7c3Fzz86NHj+Lr69uGPRIEQRAEobE0cUpUR7KwM7Z9trlDD8+27oLQClpq+Oi1QgTTBEFoO6ass8jp4BVe8zaR06XHiKlw8GwrdYz69U1oUVUz0a6FTLHWlJWVhcFgMP/7kUceYezYsW3cK0EQBEEQGsNUF826uxscatu+tObMoUL7ZxrmCVxXwTdRM+0alZhbymfbE0jMLW3rrghC7UxZZyfX1L6NVziMfBo8w1qrV5L69E1oUVVrlpkyxa7myQBaS0FBARqNBgC9Xs/TTz+Ng4MD8+fPb+OeCYIgCILQGOb6aF4Obd0V4TqlVCqJjo5GqVRaLI+MjKRv375imKdwbdgUl8myI6kAPDa27bNqCgoK2roLQntkyjozPbYn7blv1wmRidY45eXlFhc5S5cu5fDhw/z888+4ubm1XccEQRCuI3q9Hisrq7buhiAIQo0aMwNnbRlo9R0OWvmYrq6ujet4M9FqtU1uQwTTrnKJuaVsistkSi9/ixk9p/Tyt3hsS2VlZaSmprZ1N4T2yJR11h7V0DfTkDmhdVztNcvagtFoJDMzE6PRCEBubi5Llizh4YcfZuDAgZSWimxlQRCEllZeXk5xcXG9v6AK1xbTRAEOvbxafZZNQaivxgzNDAgIIDk5mYCAgCYfc+jQoY1qozkYDAYyMzOb3I4Ipl2lTEG0fFU5205nA5YZaGHeTu0iI810on7wwQdt3RVBuLI6aqTp9XqLYu5C62vt2TyvRnl5eRZ32ry9vfnjjz+IiIhow14JgiBcP4xGIykpKcjlchFMu06ZJgoAsBkb0qS2RGBOaCmRkZGo1WrUajVKpdLi86q2rLWMjAwKCgrIyMggPLzhsYb2MutnVlYWFRUVTW5H1Ey7SpmHccpg1oDgdpGBVpPs7Gx0Oh0LFixo664IgiVlAkS/Jz3CFWukGY1GMjIy2L17d6t2UbBUtYaaYKmsrIz8/Hzz8y1btlBRUUGPHj2wsbEBwMFB1FkRBEFoSfn5+bz99ttMnjyZ8vLytu6O0AYcennhOMDPPGFAU5gCc5o4Zd0bC0IDeHl5oVAoOHv2LIcPH7aohWbKIDt58qTFPk2tjWYaDtqWNxoKCgooLS3ls88+a3JbIjPtKlV5GGfl4Z3tSVFREQcPHsTLywt3d/e27o4gWDIFz0AaznmFGmm5ubloNBqioqJaq3dCDUQNtdoZjUaysrLMz9euXcszzzzDN998Y07dt7a2xtvbu626KAiCcM0rKytjzZo1fP/997zyyivY2tq2dZeENmDjrWhyRpqJKSDXHIE5QajKFBTLy8sjNjYWtVrN5MmTa80gq29ttPZKo9GQm5vLpk2b+PHHH5vcnshMa0caMgOnaRhnew2klZeXc+bMGebNm8frr7+OTCZr6y4JgqXI6dD3P5eDZ6YaaVWGeObn5zNv3jwOHjyInZ1dq3dTuEzM5lm73NxccwbExYsXWbx4MdOmTTNf8MhkMvz9/UUxbEEQhBZiKm2Sl5fHuHHjePhhUfNTaDrzDJ7tbIhn1jlRD/taYAqOmUYuaDQaoqOjAdo8g6y5VVRUkJGRwblz53j++eeZMKHpN+dFMK0dMQ3d3BTX9GJ4bcloNJKWlsZTTz1FeXk5zz//PD4+Pm3dLUGwVEvwrLKysjKeffZZ1q5di16vF+ex0C6p1WoKCwsB0Ol0PPnkk3h6evLSSy+Zt/H09BRDPAVBEFpQbm4uOp2O6dOn89VXX11TX0IFoTKVSkXWkeS27obQjKKiohgyZAgODg41Du+82pkm6NLr9SgUCsaOHcuLL77Y5HZFMK0dmdLLv13XP6uvnJwcPv30U/bu3csHH3xA165dcXZ2butuCULtqtZPQ5pw4Msvv2Tp0qUsWrSIu+66C7lcfGQK7YvBYLAY3rlx40ZOnTrFhx9+iJOTlLns6OiIh4dHW3VREAThmqdSqfj888959dVXMRqNIhNYuGZVVFSQlZWFXbhbW3dFaEZeXl7mIZ0RERG11kRTKpUWtdWuFkqlEpVKRWlpKUFBQbz//vv4+vo2uV3xzbAdac2hmw0ZUtoQJSUlnD9/nq+//ppHH32UcePGiTtzQvtXZfIBo9HIxo0befbZZ5kxYwYvvPCCuYC7ILQnOTk5FrMRTZs2jZUrV9KrVy8AbGxs8PPza6vuCYIgXPP0ej07d+7knXfeQS6X4+npiULRvobkCUJzME3IpdfrsXEX2e7XClOA7PDhw5w9exaFQlHr9/faJiZoz0pLSykoKOCzzz7j1ltvRavVYm9v3ywjjkQw7TrVEkNKdTod2dnZeHt7s3LlShYuXIi/v7+ol3YtqyGjq92pTx+r1E/Lzc0FYNy4cXz99dfiolhol0pLSykuLgakmYl27NiBTCajW7dugKiTJgiC0BqSk5N5/PHH6dSpEy+++CKenp5t3SVBaBFKpZKysjIAi9nDhauXUqlk48aNHDlyBMA8U2dtGWhNnc2zOTQkO668vJysrCy2b9/OF198wfTp03F0dCQgIKBZYhRiNs/rVOXZQJuD0WgkNTWVX375hdtuu40uXboQFBSEtbU4xa5pVWfEbI/q00dT/TQgOzubnJwcunbtys8//ywuioV2Sa/Xk52dDUifv88//zxHjx5l+/bt5uGd3t7e2Nvbt2U3BUEQrmlFRUW8+OKLpKamsmbNGkJDQ8VNZOGaZMruAUhMTOS2225r4x4JzeHkyZMolUq8vLyIiooyZ6RFR0cTExMDYDF7Z3uYzdOUHQdcsS+mOmnnz5/nmWeeYfz48cybN4+AgIBmi1GISMd1yjSktLkolUree+89vvnmG3r27MnYsWNFsevrgWkmTNNje9SAPmo0Gh544AHy8vJYtWqVCKQJ7VZ2djZ6vR6AP/74g+3bt7NkyRJzIM3Z2Rk3N7c27KEgCMK1zTQiw2Aw8Oyzz3LDDTeIm8jCNUmn05nrs5aWljJ//nx8fHxISkpq454JTWXKMIuMjLQY2ll5eU2USiUnT56stl9rqKtvJtnZ2ahUKhYuXIivry9vv/02fn5+zXqjWXziC02mUqlYu3YtX331FU888QTDhg3D3d29rbsltIZKGV3tVj37qNfreeGFF9i4cSNffPEF/v5X90QgwrWruLiY0lKp3mVCQgJvv/02s2fPZty4cQDY2to2S1FVQRCEa1FBVob50Se4Q6PbycyUSqW8+uqreHh44Ojo2Cz9E64tulw1mjglNkFO6NJKcejlhY331VM+xFQnzWAwAPDCCy+Qm5vLTz/9xMyZM9u4d0JVDQ1y1ZZpVlcGWn2zw1pCfbLjioqKKC4uxtramqeffpqgoCCCg4NxcXFp1r6ImmlCk1RUVBATE8PTTz/NiBEjmD9/vvgSJ1x1jEYj33//PR9++CELFy7koYceEsM0rnNJRUl8Hfs1SUXt665rRUUFOTk55udLliwhJCSEZ599FrhcJ03MPCsIglCz84f2Wzw2hlKp5L777mPjxo04ODiITHahVpo4JaojWZTuSkN1JAtN3NU1C2JOTg5ardb8/O677+bDDz+kY8eObdcpoVbNNUFAXXXJ6lM7ra1m/iwrKyMnJ4ejR49iMBgYMWIEPXr0wNvbu9mPJa62hSbJzMxk7dq12Nvb8/777xMUFCS+xAlXnfj4eB5//HEmTZrEW2+9JQq2t5H2FMDamryV1edXszV5a1t3xUJWVpb57jDAW2+9xVdffWVOWffx8cHOzq6tuicILa7y7LWC0BidBw6xeGworVbLO++8w44dO/D29haTbQlX5NDLC8cBfjiNCMJxgB8OvVp3SFxTFBcXU1RUBEiZ8BUVFfTr16/Na2Zdr+oTnGrKBAGV268rKGfKDrtS9ltbzPyp1+vJzMwkOjqau+66iw0bNmBjY9NiI45E1ENotLy8PDQaDXPnzmX16tV07doVW1vbtu6WcLW40iybrThLaFFREXZ2drz11lv89NNPotZfG2pPAawJHSdwS+dbmNBxQlt3xaywsBC1Wg3AwYMHSUxMxMHBgaCgIABcXFxwdXVtyy4KQosyDTcShKZw9wuweGwIo9HI5s2b+fjjj5k7dy7Tp08XddKEK7LxVuAyNgSHCA9cxoZcNUM8y8vLzZnwFy9e5M4772TJkiXm9eLGXeurT3CqPkGuuto/fPgwarWaiIiIGoNytQX1qi5vaGCvOTLZsrKySExM5Mknn2TEiBHcfPPNBAYGtliihAimCY2iVqtZsWIFGzZsACAsLAxnZ+c27pVw1VAmwMYn4cj30mybVZlm4KxpXTMqLi7mt99+A6S0dR8fnxY9nnBl7SmAFeoaysO9HybUNbStuwJIF7W5ubmANORi4cKFfPrpp+b1dnZ2Yoi9cM3LysqivLy8rbshXMeSkpJYuHAhXbt25cUXXzRP+iII15LKddLUajXz58/H3d2d++67DwBra2tRW7gNNFfWWV3tA5w9exaFQlFjUK62oF7V5Q0N7DU1ky0/P5/c3FwWLFiAm5sb7733HoGBgS2a7CNupQgNptfrOXz4MIsWLWLQoEHceuutrT6Lh3CVO7lGCqh5hdc8y2YrzBKq0+nMWZV79+6lS5cuLXYsoX5MASyhuqysLIxGIwaDgUWLFmFtbc3LL78MgFwuF8OMhGtefn4+JSUl7Nixo627Ilyn1Go16enpBAUF8frrrxMYGNjWXRKEFpGdnU15eTlGo5EXXniBtLQ0li1bhouLCzKZjICAAHFjow3Up/B+beozYYCpfaVSiUKhqDVoV9tsmvWdZbM2TdlfrVajVCpZvnw5Fy9eZPny5YSFhbX4xDAimCY0WEpKCgsWLMDFxYV33nmHgIAA8SVOaJjKwTKv8OrrW3iWUKPRyJtvvsny5cv54IMPiIqKarFjCUJT5efnU1ZWBsD333/Pvn37+OGHH/Dw8ADA19dXDLEXrmmlpaUolUqOHTvG//73v7bujnAVyc9I49z+PXQZMhyPgKBGt2Oqw+Pr68uPP/5Ihw4dxLWvcE0yzYIIsGvXLjZu3MhHH31kvuns5+eHvb29CKZdZa4UqKo6A2hjg3ZNCfY1Zf+Kigrz7Mp33303w4YNo1+/fubr5JYkhnkKDVJQUMBLL73E2bNn+fTTT+natauoFSE0nClYVlMgrRWsWLGCV199lQceeIDHH3+8TfogNEx7mpygJdT2+rRaLXl5eYAUUPj222954IEHGDp0KABubm5iiL1wTdNqtWRlZZGamsr8+fPp0aNHW3dJuIqc27+HEzu2cW7/nia1c/ToUaZNm0ZiYiK+vr7Y2Ng0Uw8Fof3QarUWM4aPGDGC33//nSlTpgDg4eEhrjmuUlcaclnb8MrahoY2ZThmc8/waTQayczMZN++fezZswe5XE6PHj1arfSJCKYJ9VZWVkZqairHjx/nueeeY9SoUaJYu1BdK04e0BiFhYV88cUXDB8+nM8//1zMPnuVaKvJCZojiGdqI6U4pdZtanp9RqPRPLwTwMnJiVWrVpkDwPb29i0yzbcgtBd6vZ6MjAyKioqYN28eTk5OvPfee23dLeEq0mXIcMIGDEJdXER+Rlqj2sjPz2fevHkUFhaKGsHCNctgMJCZmWkOTmzduhWZTEb//v0B6RpElPW5NtVWi622oFnl7RsaHGvuGT6VSiWJiYksXLiQH374AblcTmBgYKt9vxMpRdeYxNxSNsVlMqWXP2HezVcU1fQBa29vz59//om7uzvu7u7N1r5wDTFNHgAtOlSzRsoE6fi1DB/VaDTk5uayZMkSvL29sbe3b93+CY1mmpSgtScnMAW5gEbXczO1ITPI8KXmO2U1vb68vDy0Wi0gZVNOnjzZXKNH1EkTrnWmL3Q6nY4LFy6g0WhYunSpCCALDeIREITC2YUTO7ahcHFl8Mw7GrS/Tqdj8eLFxMbGsmzZMsLD2yajXhBamqlOmlarZcGCBRQUFDBixAjs7e2xs7PDz8+vrbsotJDKwysrD/msbWho5e2jo6PrrMVWmamtgIAA9u7d26R+l5SUkJWVxWOPPYZCoeD9998nMDCwVUfNiWDaVaQ+gbJNcZksO5IKwJRe/ubtQ9yaNn1xcnIyjz76KPPnz6dnz55iBhehdvWZPKCOoFejXSGQV1ZWxt13381dd93FmDFjcHFxab7jCi2urSYnaI4gnmnfMUFjOHmx5jtxVV+fRqMhPz8fgE2bNvHCCy/g4ODAjTfeCEg1S8QwI+Falpubi0qlAqB3795s3rwZBwcHXF1d27hnwtWmy5DhFo8NsX79epYsWcL8+fO56aabxA0MoUXpctVo4pQ49PLCxlvRasctLCykpKQEo9HIK6+8QkJCAn/88Qf29vZYWVkREBAgRnJcJ6pOVFBXgKyhkwaYAnHR0dHExsbSsWPHRvWzvLycrKwsXn75ZfP5GhER0eqj5sRvxVXEFCjbFJdZ4/rE3FLyVeWM7+7LlF7+/HoghaW7L/DrgdqHFtVHYWEhzz77LDt37jTP4CI+UIVa1aceminodXJNw9vf+2ntQ0gjp0Pf/1QL5BmNRhYsWMDq1avR6/UikCbUmynIFeoa2uQ2Orh0qNf2BoOBrKwsANLT03nppZeYOnUqU6dOBcDd3R0np+bLPBaE9qaoqIjCwkJ++eUXFi5ciF6vx87OjoCAADHZhnBF+RlpHFj1p8WQTo+AIAbPvKPBExAUFBSgUqmYMGECL7/8MnZ2TbsxLVy/dLlqirdfRJervuJ2mjglqiNZaOKap55UfZSVlZGbmwvAn3/+yapVq3j11VeJjIw0f+8TN++uH7UN+TRp6LDO2raPjIykd+/ejeqjwWAgIyOD/Px8jh07xquvvsrQoUNxc3NrVHtNISIiDZSYW8pn2xNIzC1t9WNP6eXPrAHBTOlVc1bYprhMtp3OxkNhK2WuGS+tMF7e5uvoxFr7XtNr02q1LF26lBUrVvDSSy8xcuRIiwvZtnw/hHaiMTXSTEGvgD4N3zf2z9qDcLUE8j755BO+++47Fi9ezMyZM+t/LEFoA0qlEp1OR0VFBU8++SQuLi4sXrwYmUyGvb29qFkiXNM0Gg05OTlER0fz1ltvERgYiJWVFX5+fqJOq1Cn5ppwoKysjJycHAYNGsT333+Pp6dnM/VQuB7VN0jm0MsLxwF+OPRqnb/zpllqjUYjer2elStXctdddzF9+nQAfHx8xOfudeZKExVA9ZpnJ0+e5MiRI2zcuJGEhIRqgbPaaqR5eXkxbNiwRvXRNCTZ3d2ddevWMXv2bHx8fBrVVlOJYFoD1ZUd1twqB6vCvJ14bGx4rUM8KwfbTMGtmf2DmDPkcjbEXzHptfa96mszGAxER0fz8ssvM2PGDObOnVut6Gprvx9CO9SYLDNT0CvjeMP37X3HlYeQVrF582aeeeYZ7rzzTp577rn6H0e47lWdfKC+kxE0ZdICtVpNYWEhAIcOHSI+Pp733nsPFxcX81ALMcxIuFbpdDoyMjI4c+YMjz/+OKNGjeKpp57Cy8tLFH0X6pSfkYa6uIiwAYMaNaTTxGg08tlnn/Hggw9iNBpbbVY44dpVV5DMlLkG4DI2pNWGeGZlZaHT6QCwsrLi119/5dlnnwWkLPgrDavXKa+cZSdcHRqSaZaQkMC5c+cICQmxGN7p5eVlbmf//v0cPnzYvE9kZCQRERGo1WrzMUzbmmar37t3b70z3QoKCjh//jwPP/wwmZmZODk5tem1saiZ1kCmrLDassOaW+UaaI+NvXJtKVOwDeCz7QlsO53NrAHBhHk7mT8oZ/QNZHItfa/62nJycsjKyqJnz5689dZbNUaoW/v9ENqh+tRIa4l9K6upBpsyAc2xFRSkODB27FiWLl0qhicLJBUlsTV5KxM6Tqhz6KZp4oCCsgLc7d0pKCtgZ9pO4MqTETR20oLKwzsBhg4dytatWwkICACkOmmtWVRVEFqTadhGXl4e8+bNIyQkhPfffx8PDw88PDzaunvCVeDc/j0kHj1Ez9HjzUM68zPSOLd/D12GDMcjIIj8jDTO7N8D1rVn2xw6dIjFixczZcoUOnbsKK4dhFrVt8aZjbcCm7Ehta43Za4BV9yuOZmGMZeXl/PSSy8xd+5cwsLCAHB0dKxzshdNfF5rdFNoBpUnFaj6fd6UWZacnGwuJ1J5W6VSaQ6Opaenk5GRga2trbkdLy8vpk6dysmTJ8nLy6sWFPPy8kKhUBATE4NCoWDkyJEWx3RzcyM2NhaZTFZnfTaNRkNGRgYLFy4098OUvd5WxFV5A1UOWDVUY2barG+wqmrbte338MiwWse9V35thYWFFBUVMXjwYIYNG0aHDh1qjPg25f0QrhGmLLOm7lvfSQli/wSZwfKYlSceiJwOJ9dQoswg4+hGoiJvYcaaNaLWyXXOFESrb0AMLk8cUKAtYPX51YwKHsUtnW+pcTKCykG6xk5akJOTQ0VFBUVFRWzYsIHZs2ebA2keHh44Ojo2qD1BuJpkZWWh1WpxcXHhjjvu4Oabb8bHx0dkBQn1VtNEA6ZhnwCDZ97Buf17OLVrB95jptTYRmFhIQ888AA+Pj589NFH4tpBuKLmCoKZMtZqylxriUkJNBqNOejx9ttvs2HDBmbNmgWAra1tvSaac+ghhj5fLapOKlBZZGQkycnJ5oAbYLHtyZMniY2NBaBLly7Y2NgwdOhQ8/6VA3UFBQWUlJTQuXPnaseo+picnExeXh5ubm707t27zgkMTEOSX3vtNeLj4/ntt9/o0aNHm39Gi2BaK2pIlplJfYNVVduuvF9ibil/x6YRXM9+lpeX8/nnn7Njxw4+++wzgoODRTaE0LxqCpwd/hZifoOELTD9S2nZyTVSXbWM4xBxk7TMLURaVlnlDLfD36E/9iuzVskxWDuw8qHZbf5BK7Q9U7bYlQJiVZkmDkgqSsLdzr3WbLakoiTeOPAGycXJgBSka+jMo6WlpRQXF2M0GnnxxRfZv38/48ePN9crEXXShGuZUqmkuLiYM2fO0L17dx5++GHs7OzEzOFCvVXOQAM4sOpPugwZXi3A1mXIcAxAbg1t6PV6Fi1axLlz51i/fj1BQQ2bsEC4/lwpCNYQV8pca+6stcp10lavXs1vv/3G4sWL6du3b4Nm7rTxar3ZRoWmudKMm5UzywICAjh//jwREREW+6jV0pDeqKioGjPbTME3kDIeMzIyCA8Pt8hqq7yv6Zjx8fEUFRUxbNiwOie5yMzM5I8//mDZsmW8/vrrjB49Gq1Wy7Fjx2rMuGstIkLSilpySGTltqtmqW2Ky2R1TDoLu9TdjtFo5J9//uG1117jlltuwd/fHwcHh0Zl1QlCrQ5/C7F/gFoJk9+RlmkKoUINmbHw660QMhgu7ofk3VCQDEY50BkKL0rBtfDxl9urnOGmKeCZTflsPq7hl19+xaljn1Z9aUL7VDlbrKEzc5qCarXZmryVpOIkQl1CG5yNBtKFbXZ2NgCrVq1iy5YtfPzxx/j4+GBlZSUCCsI1raSkhPz8fD777DO++eYbtmzZQseOHQkMDBTD64R6M2WgqUuKyUtNQZmaQuqpE4x94BEGz7zDvJ1HQBBRN89k06ZN1drIycnBw8ODZ555hvHjx1dbL1zfasoQq2v4ZnNoroCdSWZmJhUVFcTHx/PSSy8x7YbJzJwwDZlMhr+/v5gx+Rrk5eVFZGSkOYMMLIdymiYdiI6O5uzZs/Tt29c8xPPkyZM1BtFMagrUBQQEEB0djVqtNme1mYZ4Vu7TsGHDavwsrkqpVKJWq1EoFNx9993ce++9eHl5ER0dXWvGXWsRwbRW1JJDIqvWS1t2JJV8dTkeClt6BrkiMwaC6myd7Zw/f55HH32Uzp0789Zbb+Hu7g40LqtOEIBahm9eGjKsKZRm8wzoA/mJYGUPcjkUXYRkHXS7CTqPu5SZNhUOnq05M62SH3an8eE+Df+7fTB33XVXS74y4SpSV0CsKZoSqAPpC5xer+fChQu8/vrr3HrrrUyePBkAf39/kRksXLO0Wi1ZWVmsW7eOL774gieffJKQkBCCgoLEeS80iCnzTF1cRF56GjZ29uReTGH7d18y9oFHzDXUAAqyMsyPPsHSJF1FRUWUlJRw//33ExwcLAK5QjVtUdcMmjdgl5eXZ84yKioqom94Lx7rN4fyc4UEdeuIQiGyza5VlTPITEEutVrN5MmTzUEzU2mRygG3qsGqK9VfMzl//jxnz54lIiKC3r17W7RpolQqiY+Pr7PfpaWlZGRkYGdnx9SpU83JPpXbrGuIaEsSVyrXmMTcUvJV5Yzv7gtGzAGweSPD2LTpysG04uJiHnj4UbJycvn+jy/p0OHyLKBiogGh0UxZaHnnwbPzpUCYEXrfCQUpsOtdsHcDQwVY24FRLz3X60DhJWWghY8HnQ44W3Nm2iWnTp3i0S+3M21Yd17/7MfWfJXCNe5KExfUFKgzbd/dszt/X/iblNIUHo6sHswrKSmhpKQEgGXLluHr68vzzz8PgKenp7iwFeqkvZBEyZbNOE+chF2nhgdz24peryc9PZ2jR4/y3HPPMWPGDB566CECAgJEZoTQYB4BQQyeeQf5GWkAaNWlFGRmoEy9HFADKYNNVVwMHr6cP7Qfn+AO6HQ6brvtNjqHdmTakIF4TpiEfYAY4ilYau4MsdamVqvJy8tDr9cjl8sZNmwYUV37Un6uEJ8BHXBzc2vrLgotqHLgqfJsmwCHDx8mJiYGHx8fc520yMjIGoNVVQNsVYd5xsTEEBERQd++fa8YcDPVYuvYsWOtfdbpdKSmpjJ37lx69+7NokWLLLLWTRl1bUkE064ilYdagpQt1jPIlehzuWCEOUM6sCkuk22nsxnfzRdkML6bb70CYDqdjqysLKzcAwkY/wDZdiEWd+XERANCo2kKoaIM0o/Bub/BKwJKs6HvfyD9COjLQVMALoFQlCoF01wCoeMNUv20gD6WgbPed0DkzdUOo9PpsLW15bXXX2fevHnIncRwZKH51GeGzsoBN9P2h7MOE5Mbg06v4/fTvzOZyebtKyoqyMnJMT9ftGgRDz74IAqFAoVCgaenKO4r1K1ky2YKV64CwO6RR9q4N/VjNBrJyMhAp9Px7rvv0qdPH1555RX8/PxEAFloEo+AIBQuriQePURgRHeKcrNJOx3PgVXL8AgI5MSObXQaMBiAzgOHkJ+RxnNPPcm2bdsY+OjDXDyyHxsMKJxdzDOACgI0PUOsPhMJtMRkAyBdb2RmZgLw/vvvk5WVxYcffoitpwK3sV4EBgY227GE9qly4CkqKgqFQkFkZCRKpZL09HTzObJz505UKhUgBctqmrAALg/lrJrNplar0Wg0AKSkpLBx40aGDh1qrqFmCtQFBASQnJwMwN69e+nRo4dF4M10nfD2229z7NgxFi5ciL+/f5211VqbCKZdRTbFZfLbwYscuJBHFz9ntp3K5sCFPE6kFwHg4WhrDpwlKVX8czqbmf2DCPN2QqfT1dqu0WjkwoULyGQynn96ITG5cHP/DrVuLwgN4uAG1vZS1hlI/0YGTt7Qdw4UZ4BHGNg6QUU5lBWAsz8k/guqXIh+B9w7wqEfgEHQdWq12T7LyspYtWoVgwcP5v/+7/9EVoPQ7OozQ2flgJtpu+6e3fG54ENKaQp3druTguMF5u2zs7PR6/Xs378fg8HAsGHD8Pb2xtraWtRJE+rNeeIki8erQU5ODhqNBplMxpdfShPO+Pv74+Li0sY9E65WlScgMA/5LClGW1qKQa+nMDuTwTOl2Qo7DRzC/mPHcfcL4MvFz/PdspWMHTKIhc/+j8RD+8nPSOdU9HbUxUWMua9lygMI15/6DBNtqaGkmZmZ6PV6Nm3axPfff88z//ckqgOZOEX64B/mj0wma3CbOqW62fontK7KgbXo6GiKiopwcnKirKwMT09PunTpYg60VR3SWbm+2pEjR8yTCZjWKxQKc500e3t7ioqkOEV4eLg5i02tVpOeno5SqcTNzY3Y2FhkMplFXTe9Xs/y5cv5+eefeemll5gyZUq7vNkmgmlXkZ5BrtgelXEmq5guvs7MGhBskZlmmhzgsbHhvLJOmtoWo/SQpFSZH7v4u1m0m5CQwPjx43n00Ud54IEHGDfYuxVflXDNi3pQGq7p5A3xf4E6T8pAi/9LCpqV5oBKCXotIAOZFWTESBlqAOpCqeZa/EqIGARnNoJfV3MtNqOjF3c/+jzr4/I4uedvbNP+ulyfrcZ6bYLQMFca4ll5fXfP7sDl2mmmDLYbgm4ApOzJTcelQqtFRUWoVCriUuJY8PgCunfvztChQ5HJZPj5+WFlZdVKr0642tl1Cr1qMtJAmukrLy+Pd955hwceeAA/Pz9cXFxEJqbQJOf27yH2n78tJh3Iz0hDmZpM5rkzFOZkseHjd7jhznvM+/z04tO8892vuDsquG1wP6ysrBg88w7+/fEbqbRrIwIMglCb+gwTre9QUp1SY3608b9ypo5SqUSj0XDu3Dmee+45brzxRm7vO5Wy+DxCfIMafb2hic9r1H5C+1I50ywjI8MicGYKmCUnJ1sEzEz7JSQkkJ6ezuHDh821fivP/unj40N8fDw9evSwyGJTq9UWIzN69+5tDqTFxMRQWlqKTCbjxRdfZPjw4dx+++3tdhhyi1bXTExM5IUXXmD27NnmN+zvv//m5MmTLXnYa0pibimfbU8gMbeUE2lFqLV6HO2sGRnhzWNjwwn2UOChsGXOECmT7LPtCew8mwMymNkviDlDOpCYW8obG08BsPVklkX7JSUlzJs3j5KSEsJ6RfFHbAGJuaWt/jqFa5hpps3SXGlWTt8eENAPbB2l7DOD7lIgDcAIVjaYo8AABRekQJxnmPTcr6c0acHhbyHmF1578VlWHM7k09ld6aQ6CjG/SAE0kB4rPxeERjBlnG1N3lrj+mVnl/HDyR/4Kvarek1CoNPpyM3NxWg08tz/nkNboWXkwyORyWR4eXm1yztvwvVFeyEJ5Zdfor2Q1Kztmi6gX3/9dX7//XeSk5NRKBT4+vo263HaI3FN3LJMQzLz0qUMNVOmWoVWS0V5OZqiQnJTktj9+0+seec1AM7Fx+Pv7sqC26aDRsW5/XsACO3TD9/QzoT26deGr0ho73S5aoq3X0SXW78MLRtvBS5jQ644fLM+2wCUncyzeKyNSqUiPz+fkpIS5s+fT4cOHXj99dex7+pB6MhIXPsH1KvvNfY10LHR+wrth2mmz6qBNJACY66uruaAWdX9app128vLyzyMtEOHDtxzzz2UlpYSExNDRkYGI0eOpHPnzvj4+NC1a1cAhg0bZu6HqQ8uLi6MGTOGYcOGkZubC0iB4ejoaBISEoiOjkapVLbwu1O3FgumRUdH07NnTw4ePMhff/1FaakUoImNjeXll1+udzu7du3ipptuIiAgAJlMxpo1a1qox+2LKYj26/4Ulh1JNddKC/ZQkK8qJ/pcLom5pby0Jp5fD6awKS6TTXGZ/HowhZfWxrP+eAbnsqWi1pviMkm6lIo7IdLPfIyKigreeOMNduzYwfvvv0+6dQDLj6axKS6zTV7ztep6PYfNlAnw97PSBAQRk6HnrdLy8/+AtgTkpjtqMrBRgNxa+rfcGmRykFvBhv9CupQyzJ6PYO8noCnkr+I+LN6Sy/+NC2Xugv9KWW8Rk6VMNJAe+/7n8nOh0a7n83hCxwnc0vmW2od4GkGn15FYlFhrwK2ynJwcDAYDP//8MwlHE7j9v7czMXIijo6OeHh4NHPvBZPr+RxuKFMdtpItm5utzfLycjIzM/nll1/4448/WLx4MSNHjjT/f1zLxDVxy8nPSOPAqj8BGPvAI/QZP5kuQ4ZzfMtGjmxYjbWdHQpXN+ydnbGysSE/I43SAqkIu621Nf83504WvPYWvcdNNg8PzU48T2F2FtmJ59vypV2zrpXz2DQkUxPX+l/o7SM9LR4rMwX5NJnFZGVJSRSOjo7MmDGDzz//HAcHB/y7BON/Y9cm1WXTpasave/V7mo+h00BqcqBKFNGWNWbO1UDZlX3jYqKYsiQIURFRVnsV7m9hIQETp06hZ2dnTkzLSMjg9LSUuzt7QFpllkAd3d3QkNDyc3NJTk5mT59+hAREUGPHj0s2t23b1+N/W0LLRZMe/bZZ3n99dfZtm2bRf2iMWPGcODAgXq3o1Kp6N27N0uWLGmJbrZbm+IypZk4ZTBrQDBezra8tCYeLydb5DIZGKVtEnNVeDra8u+ZHLycbens7YRaq0dhZ0Virso8SUGol/RhGeol3UU4n1PCnBeX8O5773Hj7f+h0H8gvm4KOngo6BnkatGXytlxQsNd9eewMkHKBFMmNG7/w9/Bke+kYZrpx+D8dsg9A0YjKDykrDVbZ6SIhBrKS6QhnoYKKZCmLwejAbg07DPrBOjUaOPX88Yfuxg3YggfPfcw5JyBs5ukIaWmIZ2mrDgxxLPJrvrzuAlMQzYrZ5wlFSXxdezXJBUlMavrLG6LuI3pYdOvWFPNRKPRoNPpWLZsGXfffTcvzXmJUPdQ/Pz86txXaLzr+RxuKOeJk3C7dWaz1GHTXkgiZ8kSkg4c5N9//+Wtt97i3ttuY6LBgJe2vNpd7WuRuCZuOef27+HEjm0c37LRXDMNICUuBq1GTW5yEjK5Fda2duh1OvQ6HcXaChYsWECeQcaQKVOrtdllyHB6jh5PlyHDzcE60yyhQtNd7eexKVhlE+SE4wA/iyGZV8pWq08mW+Vtqm5f+bmNlwOA+bEyTZyS0sOZXNhx0jxrslwu55FHHiE4OBgXF5dmuXHn0OP6HZrfXs/hmgJlVdUUOIuMjDTPvllV5YDZ4cOH2b9/P4cPH66xnpqpD3l5eTg6OhIQEMC+ffvIzs4mNzeX8+elGxQBAQG4u7tTWFgIwLFjxwDIysri3Xff5fbbb8fT05PRo0dz0003mds39XPo0KG19re1tVjNtBMnTvD7779XW+7j49OglLzJkyebx+DWh1arRavVmp8XFxcD0rCaKxXhb28mdvemUFVGsVpLqVrLyiP55JSU0TPAlYeGdyAywIVNJ7IIcbMlT1VOYk4xr64rYHZUCENC3fB0smV1TDrbTqTz9c5zOFjBDG8Y9sYWinQgKyumrBDc+k7mdMAkEvamYH3pevaRX5Q42VqDEVwcbVBrK8hX6/h651luCPfm9gHBnMwoxtPJls3xWUzq4cf5HBUYYdbAYHPArrLzWYWt+v61J1f9ORy/DmKXg1EOw/6v4fsb5SC3B4MelEng0UX6KckETSkc+xPcwyH3VA37IgXUAJ1cunuhwwoD1qQVVfDDuHICnM+i3/2hKdQG0e9LP1XZOoFfb2l4aXE6uAZK7eeeBW0RWCvAVgH2LlCSBcMXQp+7pH3zEuHMRnRppxv++q8RV/153AApxSn8e/FfxoSMoYOLNIR+f8Z+fj/9O3d2u5MhAUPYdmEba86vYV/qPiK9Irk1/FbztufzzvPXub9ABoP9B3Mm/wxjQsbgbS3Vo9Tr9WRpsrjjtTvo7NmZ5aeXM6jrIFYeWkmJrgRnW2cG+w/mQMYB6bmNMzO6zACo1q+GWnNmTdPfoKvU9XQON5U8OAjXBx8EpNdbnpxCyfZ/cB47DlmgdGc5+/vvsXX3oHjdWqzcPbAJDMB9ppR5nPfDD5QlnMM+vAtyZ2cu/P035du2ka5SMyo8nLvdPbDeuJH02Djsu3RBX1KCPj8fz4cewjYgwHws247SeV75+BcvTVhwNRHXxM0r5UQMMX+vp+/km+g0cAgGQFNSQvyuHeRlZpB+9hSl+XnIrKzRarXYyuVUqLXIrG3QG438ums/ZVodPrZWrP/oHalRuZz9a1ZgNEql0uRWVuxfuxIZMmQyuBAbw7i5j1Kcm82hNStx9fUn6uYZuPvVPkyuICuD84f203ngkGrbXc3vf1Nd7edxSWw26phsFEZfnEcGmftSeV2FUW9eV3W/mtbVtA2AOiYbraoMK4UNerWOslNKVEn5OE4KsThuZTJ/e/Lt1Gh0Rra//BMvLH+HH97/ms6yAKyK9LhEhFLYsQJVTA7WHvbYdXBBE6/EaWgA9uHuAKiOZlO6Jw2n4UE49rcchq9Taig7mUfO8ZQmvItXt/Z6DsfHxxMbG4vRaGTYsGE1bhMREYFKpUKlUpGVlYWnpycVFRWoVCoOHTpEv37S8PYzZ86Yh2Ga1pWVlQFSZtmuXbs4d+4cR44cQaPRoFAo6Nq1K3FxcZSXlwPw559/YmVlhbW1FHJKTEzkjTfeAKRrYblcTs+ePTl27Bh79uwhPj6e9evXM2rUKA4cOIC1tTVnzpzBYDBQXFyM0Wi0eC27d+9GLpfj4eFhfk02NjZ4e3tTUVGBjY0NhYWFKBQKSkpK0Ol0GI1GFAoFWq2WkpKSJr/nMmPVXjWToKAgli9fztChQ3F2diY2NpZOnTqxevVqnnrqKRITExvcpkwmY/Xq1UyfPr3WbRYvXswrr7xSbfnvv/8u6tBcYjAYKCwsbNXhRGq1mjvvvJOioqLrerYucQ43XUVFBUuXLmX69OmtPuOhOI8l4jxumnXr1jFo0KA2qRMlzmGJOIdbV1lZGXZ2ds0ynPNqPIfFNXH7sWbNGn788UcWL15Mnz592qwfV+N53BLEedxy0tPTeeqpp+jduzeLFi1q9uH04hyWiHO4eaSkpLBo0SKioqJ44oknWqX8Q3Ocwy2WmXbHHXewaNEiVqxYgUwmw2AwsHfvXp566inuvvvuljos//vf/3jiiSfMz4uLiwkODmb06NFXxUxRSUoVb2w8xQWligndpSE/GQVq8tTlPDIyjOHh3iQpVSzddYF9iUpKtRW42NtQqC4HGdzWPxgPR1siA1z4+J8EzmWXIJNBB3d75nVW8foxSNz8E8Vx2/l/9s47rKl7/+OvAGGEGQhTFFmioKJWrFurVat2aOv9dde2trXL7uGtrbf7dt/b67239Xbdbr2tVWvr1latExcqKLIRmYEwQgKZvz+OiUlIGAo4OK/n6RM4Oed7TvKkeHjzfn/eCXe/TUJif3KqBfuwhwTCA32oqNcik551pvl6uFNYo8FDIiEh3Jcmg5mkcH/UTXp25lUzJj6EKLmsVWfa0QJxDlt7udQ/w+z8B2Qsg9RbWjrZNr0MB78USgdsCYyBxgowNLlcVu/mzaZB/2DNX+9myyE1j4ft4eoEr/Zfl6MzzdgMdafB48wa7XCm1Tf0XGdaR7mUPsdfHPuCNflruC7uOu4ZeE+7nGmWbZ8d/Yw+AX2YmzLXbt/Pjn5Gs7GZmqYa4gLjmBc/D59mH7799ls+//xzAiMCqQyvJCUyhSppFcFewazJX0OwdzCRfpFd5kz7/tD3nfCO9Qwupc9we6j+7DPqVq8m8IYbCJk3r8X3reHoTNu0aRNXlJe36UzT94mhcdJV3P3EEww2w31Dh9LryhFEXDWJxt27MNXVg0TSIWdawSXoTBPvic8PR4eXrTOtsiCfQxvWYDaZCY6KRhYYSL1SGFZdW1aGwaAXxkoABVXVfLX5D0YnxTNkyBDyf/oWs0G4H3GXemI2mzAZDEjc3HBzd8dkMuEh9SQsNh5FdB9iBqeSvesPqk8XExIdc17ONIszRaRtLvTn2OLE8k4JcRqr7CwatpWgOVSBu9wbo6oJ2VDB+WZ7fhBKBzz6B/LbgR1MmTIFqfRsm6deryc/I4fqjBKefPMdwnxDeO2GZwj1jiRY6Y2kWo80QoZXTMB5O9MqcnquM62jXOjPsC3V1dXWWOWwYcMICQlpsQ3snWnOnouIiCA/P5+ioiKqq6utzrQTJ04QEBBAfX09Wq0WNzc3q1NMr9dTW1uLm5ubMLfS05MBAwawY8cOvv/+e/z8/Bg2bBjHjh3DZDIB4OXlhcFgwGg04oibm1sLZxqAn58fMpmsW5xpXSamvfnmmzzyyCP07t0bo9FIcnIyRqOR2267jRdffLGrTouXlxdeXi1/wZZKpXY/bC5G8qrUvPLLCbIrGkkK9+e2UcJ8nsWrjlGkauZYWSNXJUexIauKDcerMJrMyKRSSuoEK+Xo+BDkfj4s23+KmyXuxIcHklXeiNTdjbpm4QP5VH8Nd7y+huHTb6FR0Qeptxd+3gZ8vTwYHhPMvsIaHpyYxILJzmdM3f7JHg6UVOPv48WrswaSfKYYIT7Ur9XXlhAR1Hlv1GXOpfwZBmDg9SAxQdRg2PV3iBoCpYeFx6JtYDgze88rEDw8QdcI/SbC8V+gvtZ+LTcpyGOhthBMTWzYsIEvD6j5+zQvpseZwawX5qtZygsA9GcGorp7goePcN6Z77ecm6bMEVo+U2a1PVMtoj9E9EdaXw98dm7vSw/jQn+OC+oK2Fi4sV3tmlPipmB2MzOlr3BTmhCSQEJIgt0+42PGMz5mvN2247XHqWiuYHTgaLv9Ldsn9p6I3EvOhIgJuNW5caDwAP/85z8ZM3EM8++aj6enJzExMbi5ubE0Y6mwVu/RzE+dbz2nI47X1VFm9Z91Xsf3JC70Z7izkU+dhofZjP/UaUil0hbfO6M5v4CGDevxn3YNEQ8+SHN+AaqvvoLISMLvvRfTqRLcqpX4T7sGr7iz/5/5vvkGTU1NFBUV8fKTT1KgUvH0jTcRGduXuLvm4hUXi3xCy8+39fhE+8+5NDHBuq3Py3+Bv33QCe9I9yHeE58f+ft2k/nbJtyAkTfdQsKwESQMGwFAcEQUdeWnKT52lKrCfNw93Bk+czb9Ro1l/b//RnleDmaTCQ8fGQkjxzK8pJI7rxY+e2ajgaCwMDyknih698Xb35+8/XsZdNUURt50S4vr2LNiGaUnMl0+70hY7xjCejv/w8el9P5faC7051ibVUbzgSo8JO7IJnedA8s/NRwPiTvSaD/0JWphFlutHkNWLf6p4UhDZeirNBgk7ni4C7/C274HZrOZ0tJSPEN8+HTnMiprlfzwww/0iY8nMjISf39/u/MFjYx2+rXle8dtFqSRUmSRAXiMCIFnO/MduHy50J9hW7Kzszl58iRDhw61zuqNiIhgxowZ1n2USiUSiQQPDw8UCoXdc5b9Afr3799idtqIESNazFLbtm0bu3fvBqBPnz6oVCqGDh1qjW+Gh4ezdOlS6uvraW5uZvDgwajVajQaDRkZGUgkEmJiYpg5c6Z15tvQoUOZMGGC3XW5muPmivr6ev7617+e+5tJF4ppnp6efPLJJyxevJijR4+iVqsZOnQoiYniIHBnWJo5T5TX0z8igFdnDSQ+1O/M4P9GEkL9mDFYiLTNGBxJTaPgRNubX01Vow4/Lw/uHx9nbfus0QgCmwnQ6IxEBUipqanh2WefZeTIkYy77VHWZNfRpDNyfWov7hgl/GMfuKeImkYdeVVqpwLZ/ePjrI/xZ65pbTsFNZHLCGdClO22Cc8KpQWHvobCHaAqPPsokQh/JTY2C0KYvhEOfnNWBANBBLO411T5YDKypQD+8+1/uPcKbx4feWaAs9nyVwozuLmBbwTUnClKMOrA3evsdU1w+BffUk4gclmysXAjK3NXAljFKVdYCgac0ZooZykbsC0dKKgrQNWkYmLvidycdDN9A/pSVFSE1qjlhYUv4OXlxfh543FzcyMyMhI3Nze7Y9pTYCAici54xcXi9dBDLr93hqXVE8DroYeE739aCY8+gq6wCO3mTXbPWzAYDJSWlvLhhx+ybt06lixZwpVqNV6bNtMQHd3meS83xHvitqkpLbEWCARH2f8SbykVsDw6HmM2S9BpG5FHRBKdPMi6xjUPP8nelctRlZUS1H8gVSUl/OWxR4hKSKCoUSi/iIhPIjgyiqO/bSL+ihHW4gFnuLoOkcsbS8GAbdHA+aCv0qA9orSuZ/laGipDOlmYheaTJIziqd9STON+oZFTOrmPtUHUy9zSpVNZWWmdy7VgwQKmT59OfHw8ISEhLYQ0kUuHjgpEbR1vGdpvO7zfcR+LYAVYBStX12G7b0pKCqtWraKiooKcnBxmzZplPadGIyThEhISKC0tJSUlhYqKCn7++WemTp1Kv379KCwstP4bOWHCBLuZomlpaS6v34JCoWghsHU1XSamWejduze9e/fu6tNc8liaOW2FNMBOQLNsiw/14y/XCx+g37Mr+WR7PvePj2NiUhgAwb6eLN9/iinJ4UxKCuXY6XruTIvkH089h5ubG5988gleoX041XiMvKpGgn09rdeAGTYdryDY19OpO21iUpj1PJZjlu8/BeDSzSZyGZK5ShDK4Kwg5bgtZZbwta0z7eiPkLMJtCqQuJ2NddoKaUiE50L7Q7Maaosx4s6pOgPDhw9nybR8oBk7JB6g04DhlP12rwBIvu7stVhozZVm+5zldbXHvSZyUeFM6DoXWhPlnIlwGws3srl4M30D+gJQVVWFTqfj5MmTVBZW8sKfX+DKpCsJDQ21VoJvLNzI7yW/MzthdpsuOuiY605ExBnN+QWovv8eJCC/5VY7V5ktljZP28f6M3GPhi2bkTs835xfQP36ddQOHsy2Eyf46KOPePrpp7nhhhsI1empVqlo+H0bXikD8R8/rqtf5kWHeE/sGksrJ9DC9RUcFe3UCXZy9x8c3rQOiZswWyc6eRBDps7g8IZfqVdWoqmrZdScW9l2+BgPPLOQe8cMoyHAn6DQUPDwQerlhbevr51I5ijktec6RC4fbIUuaaiQeLAVuToDiyBmwVYsc8RRyLM8eiQHwb6z11yxu4C6MAMZ+Zn06tWLyMhIhg8fjr+//yUV6RZpiTNh63yOdyY4Oe4TFRVFYWEhUVFRLvexYCtuZWZmUllZidFopLKykvT0dGQyGSkpKUyfPt1OkPPy8uL333/n73//O97e3kyYMIHAwEA8PDxISUmx7msR0Sy0Jpi1JTzaPg+wb9++Dr+fjnSZmHbTTTcxYsQInn/+ebvt77zzDunp6fzwww/tWketVltrVAEKCgo4fPgwwcHB9OnTeT/YLjTORDMQhLPWRKrewTJGxoXQO1hGXpWatUfKGBQdCMCg6EA+2Z6P0WSgsLiUuXPnEh0dzYABA5BIJLw6a6DVVWYRxaYkh3Pz8N7W6+nIdYs457L8DEcNEZxmUUNcb7N1fiVOEUSqhjLQa0BiBrNJELu01WcWkCDUa5rBoIWafDDqaTIYqWrUMyVBRtg9f0aa8YBgubTFyw8U/aDqJBibzq7VWAEyRUv3nEYJWT8L1+sYAbUVBaGlaNhDudQ+x625zTpCR0W5qX2nkl6eTkF9Ab8c/4VkaTI7T+9kTPQYtmzeQkVFBf0j+xMUFHTO5+iI607kLJfaZ7gradiwnrrVq8FsxkMud+kUs7jXmvMLUH70Ef7TriH8uec5mpWJ4UylvcLm2IYN68n97nvcKisZ9ac/8cZzzzHNz4+Qpma8ExMwVFbSdOwYNV98bhXTbKOkrkQ9W5oLCs/79Xc34j1x25yL66vfqLGcyjqK8lQREfH9GDJ1Bid3/0HW9q3omrSYTSZ+/NeHvPLtCkYMH8bQK0dSWZCPLDAQGnUMveY6+osus27nYv4c2wpdnSmg2eLM6ebK9dYeIa/uQCnFO05QHa7j4dcfZsKECbz77rt4eXlZ43jOcBQOnQmJIs7pzs9wa06scz3elVstKiqKbdu2odFoUKlUlJaWIpfLyczMtAprtkKX5XiLuBUVFUVYWBgymQy5XJi/ZyvAWQQ5y+yyhQsXcuWVV/LEE08gk8mQyWTWtbZt29YuEdH2WjIzM9m/fz+FhYXMnDmzhaBmKwhqNBr27NlzTu+pLV0mpm3fvp2XX365xfbp06fz/vvvt3ud/fv3c9VVV1m/twzvmzt3Lv/973/P9zIvGpyJZhZxzCKw5VWp+WZ3EUjgjpFCLHPxKsFdBlCj0fHD/lP0CZZxZWwIPx8uJaOkloDq40QPSkUREMP2xkiOrsnijlExdue0iGGDogM5WlJ3XtctYs9l+RkuPSxENksPC0KZq20gONF2LQH/SKg8M8DfbBaG/fuEnBXT3NzBZBC+9hAGvJqMOmYv0yD3kfD5TTIy7C7CIr4BTbXCuSMHC2UBgVHCdfjIz4p7yhz49WnhMfkGQUBzFgG1FQXlfYVtjs62Hshl+Tl2gqPrq6OiXGxgLItGLmJ9/nqS3ZLZcHwDX3/+Nbr7dNw+6HYqKioIDQ1tcUxHztFZrrueRk/5DLcH/2nXYKhRgeSsq6xh+w5qvvic4HvubeEas417+lwt/HxXb96Cd2CgnRDX2LsP+b4yDBI3rigvZ2xuLj4VlWgUCmSJCQTfcy+A9dFx7fbEP9VbNp/HK78wiPfEbdNR11fB4f3s/vF7ZIFBRCQkoa2vpa6ynH6jxqKpr6PoyCGqy0r5+JeNeEjg2bvvQn26CLWqmgO/rEZx1XQSRozi5O4/0NTXkXdAcCiIzrOu52L+HHd2pNMZ0lAZDFZYhauADoh2jjFPk8mEKlSPOdGXZ997AX8/f56cdh/mOj29hsa12ojoKBx2h5B4udCdn+HzjS62x4lm2cciYCUlJTF06FCrQOUoarkSunJzc1EqlaSmplqdaBZnGghCnMlkQqPRMH/+fIKCgnj88ccxnymJsaU1EdFRQLONmRYWFlqfd3zdtmump6dbSw7Ohy4T09RqNZ6eni22S6XSDjXYTJw40ekbfLljO0NtT3611UW24mAJAMEyT2o0Og6fqiUmRJiTll1eT6POyImyBnIq1QR5S2mqKCTvm5f5JGcyf354LptOKMFNZY1x5lWpeWvtcY6druexqxM4WlInxjY7mcvyM2wRl2xFJtttyhxI/xS0tYIwVV8KAVEQFAOnDwj7aWsh4YzoVlskzFCzcCb2+eymZjbkGVl5iw/ubo43BA7vaWMlNNfBFfdA2n2w6mGozILcLYK4l7lKuC5FIqSdaa6zjXNacBQFbYW26ry235vLlMvyc+yEznB9xQbGMjtyNvX19ez7ah9Vf1TR/9H+1ptaNzc3p8e1N77ZWa67nkZP+Qy3B6+4WCIWvWC3reaLz9HsSwdoIabZxjxVGzdAZCSesX3t4p3lP6/m+MmTvLBjB9LDh/naZCS4sgrfxISzx48f1+ra7cFv8tUdfLUXHvGeuPPZ/eMyynKycfOQ4h8cQr2yki2ffczkeQ8iCwhk4tz7WPzKaxRWKnn/hee58poZ1FWWU1dZQXOTcI+RvnoFBQf2EnfFla3OShPpXC7k57gt91VnRzpdndtRuHKco6beI4ze8RsVaXedjjHPqqoqTH5uvLXmXxSfKuY/897GI7cJeawUD4/Wf813FSHtSiHxcuFS/FlsK0C5Eqpst1tcXSkpKVRXV5OTk0NUVBSJiYltuuW0Wi3btm0jJSXFTtBSKBT079+fV199lerqah588EFkMpm1HdSW1kRERwHN9potJQVtzVRLS0uzznE7H7pMTBs0aBDLly9n8eLFdtuXLVtGcnJyV532ssEyQ83Xy4Ps8gYWrzrG/ePjuGlYNEgEB9k760+gMwqK6qbjFRiNZsxm8HCXgBnqGxqoWfs3/P1kPPrUs9BUyZiEECKC/BgUHciSLTnUNOrYmi00g/5jSw7XDIxkyoBwMbYp0jq2EU5lDqR/Bpgh4eozMcpqyPj+zEw0N/DwEuaf+TQJ89DMJqFtc9AcIfqpym9xiv8e1vHBbh1vTPLihiQp+rauSeIhtH9qa4VrCI4DZTZW0c1W7LPEOp1FN50JhRYOftnWVYhc4nSG60utVlNfX8/q1avZsm4L7777LiP6jyAkJITs7GyXx4nxTZELiTPXmAXbsgL/yVdDVibhzz1vjWVW//oLJ75fxuLyMlQmE0unzyB29Bg8IiJcxjdt452KDhQSeMX2PYdXd2ER74nbprUCAmcEhUdSnp+Dt68vKRMnk/n7Fpo1jWz57GOMBj1JzZMYPfUa4lOH8oSNKzBuWBolJwWXfPXpYpCAt5+f6EjrIVxI95Xl3EaNHszg2TcQo0ZvFdJs56hpDlRYv3b3lZ4tKDgj9un1wl1xQ0MDhYWFbNq0ib/c8xwxnpFE9e2FfHjb/w85CoddKSSKdA+tzQxzdJg5E6osYpNSqbSKYQqFgoaGBk6fPs2uXbtITEx0uV9aWhoymQyNRuPUuVZbW0tDQwO9evVi7ty5JCQILd39+/fv0Ot0FNAcBbv2OPkUCgVTpkxpc7+26DIx7aWXXuLGG28kLy+PSZMmAbBlyxa+//77ds+GuNhwjF12Jbaxy0+255NX1cjRkjpr8cCSLTkU12hwk0joFeSDXGckLMCLtUfLcZdAgJcH6q2fUF+az8qVP1HkLsefSjQ6I3eMirGbkWYpKRjYK4BNWRXcPLy32Mwp0n4yV0HGd8LXlccFV1fSdEi9FVTFUJ4Beq0wH015EsxnopxxVwnur8rjQuumJeIJHK00Mf+XJm4Z6MGfx7b8a74V33AIS4LCndB3NPQdL8xDO/Q1JM2AUQs6HtFsteXTtV1e5PLgfF1fRqORiooKiouLefnll7nhhhu4/vrr8ff3JyAgoNVjxfimSGfibBaZq/lkzfkFNGceI+KlxW3OLfPsGwNZmQAoP/oI2dVTqBs0mKXGLzl0+jQf3n47Sfn5eOTntSqSdTTeeSlzOd4TdzatFRA4Y+RNN1NbUUp1STHahgZu/PPLbPnsI5SnivAPj8S/bzyjPTzQFBdQU1pCcFQ0J3f/Qd6BffgGCwPZQ3r1od/wkaIjrQdxId1XlnPqlVqajlfjEeqDSa3HXSZtcV0WwQ2J84ICnU5n/To+Pp5NmzYRLA1AVmomelw/ceZZD6W1soL2zE5ztc7o0aMBrI+u9rMV2UCYS6ZUKlEoFDQ1NfHTTz+xfft2hg0bxuDBg5k0aRLZ2dntLsmwvd7ubu10RZeJaddddx2rVq3izTff5Mcff8THx4fBgwezefPmi+bFd5TubK6MD/WzFgPcPz6OoyV1dm6xGYMjqdHorKabTccrOKXSoDea8Pb2oDb/ENm/reLFF19k5syZ5FbUc3xfNkdL6vhmTxET+oWyJ7+aCf1Cre2ctmKhiEi7SZklONEszrTSw2fdX9vehbLDEBwPIfGQtfrMQW6QNE340qgT3GpSX9BrMLtJ8fcx8fIET54c5WUz78GJkCX1sd5sWFOfCTYRIMt12M5Lg9bLBFpr+hx2F/D3drwpIpcb7Y1gVlRUYDQa+e2331AoFCxevBhPT0/Cw8MxGltW2YuIdBXOxCpXApZlu0GlwkMut4ptrc5R27IZ9Y8rKFWpUE+cyB/FxSx+4gnGe3qhSErCK2WgtbTAmUDX3nhnRwsKLkYux3vizuZcCggAzCYz5bnZMHUGw6+bza4fvmPJyl/xXLeFRfPnUZxxEIlEwsibbrGurYiNI/NUGWk33ERY75hOfy0iFy8X0n1lObdqjTAyxEMhQ9rf56zrzOa65NfFA0I01FZsA2FOWnl5OUqlktWrV/PUU08RHh6Or68vvUb26t4XJXJR0Vr8sj2z01ytk5iYSGJiYgsnWmsCHUB2djYymYyxY8eyZ88ennrqKfr27Uu/fv0YM2YM8fHxrSY2HDmXZtO2Gj7Ply4T0wBmzpzJzJkzu/IU3cr5Nld21NnmKN7lValZsiXHWhJgKSH4ZncRI/oGU17fhN5oYlayHHXfIQSP+Ixp197Aa78ex81kYjCABA4X1wJQVKPhaEmdVUwTEWkTZ0KTIhGmv3V2H9vygZRZUJ0rzE2rLQK/MOERE+z8p1AU0FQP3gHQ1IBWb2ZrQSOpEe4sHOsopFnUMrez39cWCeUDJiMU74aqEzDwJsHtpswBWYggnNnOS2vLqWbb5ukouoXEd+jtErm0aE0wa08Es76+HrVaDQhDaG+66Sb8/f2JjIzEzc2N/DNx5qL6IhJCElocL8Y8RToTZ2KV7TZbkcqy3VCjshPbWp2jNvlqauvrcbviChQKBevWrcPjhx+Qbt4MN9xAc+axVp1nttHR1rhcHGyX2z1xZ9PRAoKTu/+gXqlEFhhEvVLJyd1/ALBm63b2Zh7nttHDkUqldrPQLOfQ6/VknipDHhHVJa9FRMQR25lofiMjcZdJkUb7oS9Rt3qcM/GvoqKChoYG3n77bRoaGnjggQeQa3zwyNGgneiDT1JwV74UkYuY1iKOzkQlWzHM8nxUVBSlpaXW/VwN+7c40SzbLftb9unTpw9yuZyoqCjy8vJ48MEHCQwMZOnSpTQ1NbXaTupKAIuKiqKwsJCoqKh2i2TnIsB1hC4V00CwoVZWVrZoS7jQ1cfnwvk2V3bU2eYo3lmO33qikpxKNVtPVDKkdxBrj5XhhgSluhlTs4bff93C35++mybPQbyxLoeMklq83GDwEEgI9aO4tokhZrh5eG87YfCbPUWsOFBCjUbHX647t/pdkcuc1oQmRyzCW00e1JdBUB/hv9oi4XlVHiQKcRf6jsG89U3uXKllY56Bwif8zgppbh4gj4UG5ZmFTWfmrhkBM+gaz2zWC3FSraqlcJYyS4h/tiem2drMNJHLmtbErLYimAaDgcrKSvbs2UNeXh633XYbfn5+hIeH4+XlBcDW4q2EE87W4q24e7i3EO46EvNsr1NOpOfiTKyy3ab86CPBjVajwiNYbhXUPILlZ11l02cAzueoNYcEc7J/fz548UUWjR9P7HXX4+vvT73ZbNcS2t5iAVd01joXA5fTPfGFwjJbLTw+gSFMJzw+gYq8XPqNGsvJnBxWHzzK2KGDuf3WW2lqaLjQlysiAtjPaguY3MfqUNMcqMCo0VudaK6wiHHNMR7UGxt4/fXXKSws5NtvvyXIzQ+fvfXo642ot5d0m5imV57/8HaRrqU1IQzsxTdLQ2dOTg5KpRKNRsP06dNdDvu3YHleo9Egk8mIihL+SFFdXU1ZWRkHDhzg22+/pbi4mNWrV3PllVdaj7XM/quurraeIy0tzaUAVlpaikqlorS0lNLS0naJZG2VJZwvXSam5eTkcO+997Jr1y677WazGYlE0iPjLu11ttk62GxFN8txBcpGssrqOVFeDxKICvQhu7wBg8lI1YZ/U3hiB/X338j3+Vr2FdbQJ1iGr4cEaCYmxJdxSRHO3XHms4/dOR9O5BKiI0KTRXjrMwqkMhi9ANbbtMeZTXDkR3Bzh9IMXt3WzIrjBr6b40+wn7fgKgtJAINWiInm/GZzrNEaC8VkqSaQCHPXqvMg+Xqh0ROEqGnKLJAphOuxuNVc0erMNJHLlYK6AlTNKiZGT3QqZrU1S62iooLq6mqeffZZYmNjufXWWwkMDLSbkzapzyQyizOZ1GeSU+GuI/PaRBebSEewdaGB4PbyShlIEGBQnXWjKR56CK+HHqL8jTepW72awBtuIOaLL+zW0hUKfxDJ2LyFB594HH+zGYPJjH+fPgTdepvwh5Az9xMdKRZwRXsdbBcz4j1x51BTWsKWzz6iprSEVKZbnWyxQ4aj1+t5aOZ1hEVE8Mtv2zm+eR37f1kJEpD5B4gFAyJdSlstoU5ntdn83tXW8dojSqp3F1FbYuKX4u2sWLGCBQsWMGjQIOT5bhiNbkjkHviNb7t4oLPQHqvutnOJnBttCWG2WLZXV1dbZ545HufM+WZ7XEZGBqmpqUyfPp1169ah0+lQqVQAvP322wwePNgaEwU4duwYACdOnCAjIwMAmUzWrrZRx22uaG8hwbnSZWLa3XffjYeHB7/88guRkZE2ca2eizNnW16Vmm/2FIEZ7hgVQ3yon0sHm+X4vCo1gTIpe/KryaloYGpyBEN6B/HDN59TmPkbV93xGMOHD+fN9F0YjGYCfKQMiw4Acy0BPlK7yKitWHbHqBiCfT2ts9q6az6cyCWExe2VuQqihtjPR4OWzZ4AmISY585/gLpS2OThDRJ3aG4Ak46fjut4eVszCyf4ceuIcBjxgLD+r89Ac71wjNT37GNQIoy4D7a+CY0VglMtLBk8fKD+NMimnZ3ZZnHSiY6zHkdH3FsbCzfy+6nfmZ0wu8NOr7q6OtRqNYsWLUKn0/HkX57kp4KfuGWU/S9vMQExZCLMkWhNuGvP9YtlBSIdoWHDelTLltO4bx9eCYmot24lCEHsas4vsM5JsyIBzjjMHGeWqTZuoDk0lIcffxxDYyNL/voWg8wmgqbPEGaamaFutTAfM2LRC84up8ch3hOfHxY3mqa+jurTJYT0ikYWFMQPry1i+HWziR0yHJVKxfjx4/nTn/5EYGAg/UaNRVNfBxKJyzlsqvJS8vftbneDqIiIKzraEqqv0ghC77Bw/EZFtnm8Z4qchrJiPBOCyN2ayy233MLkyZMJDQ0lIMQHrZe3SyGuvbQl6DniM7B9Q+NFuhdbN1pbQpgttuUBISEh1mNVKpU1WuksTmk5bt26dXbX0HDGGRwfH8/f/vY3+vTpw+7du63iHsDBgweJj48nIiKC1NTUNq/VMVZ6Mcwc7TIx7fDhwxw4cKDDVac9jbVHyvhh/yn0RuGm9S/XpbTpYIsP9eMv16Xw1PLD5FcJEbfropt5+9ePSRl5Ff9++2UkEgmPT07kk+353D8+jjKVGiogSObBki051Gh0rDtazp78al6dNZD4UD87se9858OJdCOtDczvCiyOs8IdQnMnCE4uZQ6sfEgoHLD8ojD9bXg/GRpOQ32pENlEIsw4k5jApMdgNPHCFh3XJ/vyxvRwCBsgvJZfnxYioRIJVJ2EpOuENa9eDJoqiBkD8VdB5k+g6Ad/+q/wfPpnQqRTmWMvoImOsx5HR9xb5ypO6fV6qqqqWLZsGVu2bOFf//oXJw0n2dG4g5CiEOYHtTzv1uKt7RLuWrv+820dFelZ+E+7hsZ9+9Dl5eOVmEjQnJus4pkz55f8llutApvtzDLPBx+kYeBAPnzhBQqVSj4YMIBko4HIxx47e7CNECciIN4TdwyLeGYRuSxNn/HDr2TIlOn0GzWWLZ99xKmsowAE9omjrq6Oe+fM5uRv6yjw8yZ2yHAm3dP6z8jcfbvJ7ECDqIiIK5w5zyzilDTaD/X2EvRVWkAQy7RHlDRlVeM7PEIQrs4cJ432o35LcQtBq9pYj1daKBKJhEWLFqHX68nNzSUgIACpVAqDFWiPKMGFENYeoayjgqBUITaGXow4RiTbIzg5zh+zPWbXrl0UFhYCQhGBs/0tTrZ+/foBsG/fPn7//Xe+++47Hn30UcaMGYOnpycpKSloNBo0Gg0JCQnWdcvLy5k+ffo5vb7zobr6/N2VXSamJScn21kERZwzY3AkW09UcqK8nsPFteRVqVs42FxFLgNlUqTuErJKqrlzybsoFGF89umnbDqupLxBz9GSOqtQNvfTXG4MhdWHS1HrIDLQm8ggb3LPrO3oPrNtExWjnhc5HZlj1hlYBCpbZ5rlOqpOCPFN3KBwJ6xbKJQMNJSCbyj4hQNmqCkAT19orEKphZV3BNMnMgK3gEAhDgrgHwnuUqHt09gMwX2hDjiVDsU7hH3GPyNEQW2FRFnImTinQng/RAGtx9IRgexcxKmCugKW7VlGWkgamzdv5tZbb+Xqq6+myaeJsJowl+ed1GcSZjczU/tOPSf3mTgvTaSjeMXFEvHS4jZbMW1daNaIps3MsvLycggLIzk5mRmKUKYOSSX02uvsjscMgbNnIb/l1i5/XZcK4j1xx7CIZ4BdC6dlPhrA8OtmAxA3diKDBw/mz3/+M2E1pVaBLXbI8DbPkzBiFG50vEFURMQRZ0UBFnHKI99baOUM9MKo0aPNrsGo0eM9IMROPAuY3If6LcWo95bRnF9L0KwEpKEyampqUKlUPPjgg8yZM4cZM2bgpXMHQK/UIo2UtimEtUcocxpFFbnksB3SD+1rs3QmUOXk5LBr1y769u0LwOjRo13un56eTkZGBoGBgahUKnQ6HatXr8bd3Z3rrrsOX18hXaRQKJDJZBw6dAiZTMa0adPYu3ev3R+anF2vK7fd+XL8+PHzXqPLxLS3336b5557jjfffJNBgwYJqrkNtnNkejpD+gQBUFbX5FTYchW5vGNkDIeKVRw+novbwFkkTJDx1u9llNU1EZ/vS1GNxnrM3aP7Up9TxbyxsfxytJLcKjVj4hVgFmawWUS89pxX5CKju+OLtg4vx+ZOTbVQAFCdJwhrqkKQ+giimNRH2GYyAGZ0TU0sWKth/hVShkXpQFsMOilsexv0TVCTD/5RwpruUsj4AfougqJd0H+GIOY5c+SJcU6RM5yPe6s9gtXKIytZe3It+hg9//nPfzAajUK8KLwfg3sPpqCugKUZS61rFNULs6ZK1aXWNSzuM1WzCrmX3O58rq5fnJfWc3CMWJ4P7Zk95qw50ysuFqZdQ/FPK8iPjKTPsGFce+219FryTwIjIvCKi7VeZ3NhEerffiPwhhvafb2d+RovVsR74o5hEbccWzi3frGUrO1b0dTXMeme+fRNvYJrr72WxsZGrr/+egzVFcBZoa0t5BFRoiNNpEO0x+Fl60jzJcLa2mnU6GnKqsZQ3oihpgnf4RHoS9R2IpfPYAXN+bXoqzSo95ShczdSHdLEO/96j7179/LII4/g6emJX6EwZ7EpsxpZZIBVAHPlbGuPUOZMEBS5eHElktkO6U9MTGyXk8uZAPfrr79SV1cHCA31trQmaDU2NrJy5UoqKip4+eWX7QoHHI8NDAwEICTkbGTYIsxZChDg3Nx2rrB93wYMGHDO61joMjHt6quFeUmTJ0+2297Th606uszWHiljU1YFU5LDmSTztItV/p5dySfb87kyLphQP68Wold8qB+mE1sxlDcRnjiYCvcgysrrCfX34trUSJQNOut6YxNDWZsDc67ozYj4MNYeKaOmUUdelZq8KjWxCt8WgpkY9bxE6Kr4YlvxUcfnFYkw/S3I2QTb3oFeQ0GZB9oaYaZZs9paFmA2m3nwFzXfHNFzZ+qZXypkIYJ4VnlCcKKZjYKQNvR2QAKVJ4X9DFph39LDzh15YpxTpBNwJljZCmy9fHoxxHcIv+79lQBZAO793ZHJZISFhVn3fWPPGxTWF1rXsLR5fnf8Owobhe0W15mqSdXlkVSRSw+LuGVQqayxy64UnFw1Z5b/vJpfvvgvz2ef4N3Fi+mbmkrE5Ml2hQa1P67APVTRasTTmXDmTMC73BDviTuGRTxrgUQifLYkEmpKS1j87NOsXbuWzz76N71794bevdvlSBMROVfa4/Cy7ONLBAFn9vFJChbcaTKpVVyzFbasYliojKBZCWiPKNHVN1GwI5NNtel8/fXXLF68mLS0NKKiojB4NcE+8E4JsR4nPeNsc3Z9olB2+eFKJHMUuloTvpRKJenp6RQWFqJSqcjNzbUKcHq9nsDAQEaPHm11qY0ePdoa9bRdAyA1NZU+ffrw1ltvcfz4caZPn86wYcNanNN27ll4eDggxC0jIiJcvtbOdKPZvm9Dhw497/W6TEz77bff2t6pB+Lo9rIVrBydYZ9sz2dPQTWnVBpqNfoWold6ejobP/kryaMm8e5rj7Ejt5rDxbWcqtHwS0aZNeJpy9JteUxPjbaWEAAgcS6YOStMEOlBtBYfVeYIM82UOS2f37UETh8QGjxNBvDwEsoG3Nytu3y4V8cXh/V8cq03Y/t4CM/L42Di85C7GbS1NieTAGaoOAZBQFiKvetMdKCJdAHOBKuNhRv54eQP7Cvbxz3R95C7P5et325lTNwY3Ca42Q0W31i4kYL6AmIDYq1rWNo8bxtwG8drj1tdaPNT51NQV4DcW97uSOrUvlPFqGcPwCJWGWpUnSI4OWv1tBW2nLnXdDodxxUKXinIZ8jAgYx1d6cE8JAHWY/zn3YNBpUKY20dPoMGu4x4OhMHXQl4lxPiPXHnMGTqDGT+AciCgljy9GMs/WE1Vyb0JTlUfqEvTaSH0B6Hl6t9bAUtn6Tgs9sdRC7LfgUZOeQfVfLGhx9w44038qdrZuOXbUQSaECq8BH2PfPYkesTuTxwJTA5Dul39r2FzMxMMjIy0Ol0AGi12hZrKxQKvvzyS7u5aZmZmezfv5/CwkLCwsLIzs4mNTUVX19f7rjjDnx8fBg5ciSJiYlOHXQWQUsulxMUFMSJEyesYlpaWppdo6flNXVW2UBnCnPQhWLaxdCucDHSEbfX/ePjALg2NZL0AhUF1Y0MihbskLW1tdx6663ExPRhy0/fIJfLmTQggrwqNYtXHSOvqtHqgFt7pIxpyaEA/HToNGaJOwsmJwpFBtd3zgdJ5DKktbhk5ipBSLO0e9oyegGoikBdASYdNOsEl9kZNubpeWZjMwtG+XFfmqew0d0LKjPh6I/gEwQ+ckiYLAhzBdsh+QYYOAf0wLQ3zjrlRAeaSCfgLNLpLGI5te9Utpds53DRYb4u/pofFv7AVVddxe23347WW8sXx7+wrmErxlnWtLR5jooaxfiY8XZrdzSSKkY9ewYWcas5vwCPYPk5C04WEc1Qo0K9dat1e1sCnclk4sSJEzzyl78gDw/n06++Is7bh5LjWbgFh1B0zz0E33Mv/uPH4SGXo96ylaA5N7l0z3mlDES6bx/G2jrUW4TrUDz00GXrSLMg3hN3DsFR0fQbNZaf/voyalU1afF9uXX8KGRBQRf60kRErHSGC6y6uhq9j5noiUlcf+x6XnzxRQIKJJhP1KH19sFnvPPfI0UHWs+hNYHJ0bXmzMWmVCqprq4mMDAQg8FAQ0MDPj4+Tte2zEuzPKakpFBYWIhSqSQsLIykpCTr/LG4uDjmzJlDVlYWpaWl5ObmtohtWoSs8PBwsrOz7WamdaZw5gzb9evr6897vS4T0wB27NjB0qVLyc/P54cffqBXr158/fXXxMbGMnZszxz26ej2am0u2cSkMCYmCZEhZYOOfYU1HC2pY3yignvuuYeysjK2b9+OXC4nr0rNN7uLQCKIcEdL6qxC2n93FbD6UDELEkHh5+lyRpqrogORHkprcUnbEoLt70FNnjA/rXAnDLwRkq456y5rKIWSA6DXAiaylSamxnvwwdVSwa3m4SM8ZzZC6UGoLRacatnrQK8R2j3T5kFgX1i7FkLi23f93d1yKnLJ0h5hyiK49fLuRWZDJuu/Wo+HhwdvvvkmcrmclWUr+d/J/5Fens6ikYu6vG1TjHr2LNoz7wxczx+zOML8Jk+ya/KE1h1hpaWlvPfee1RXV7NixQpSUlIwmUxwPAv1po0070sX1hg/rl0Os+bMY+iLT+GVkNjiOi53xHvi86emtIQtn31EWUUlgSEKbo/uRVNDHdm7djB4cs/5LIlcODraeHkuaDQaKioqqC2pxq/MxF+eWoQiPJzgSH+0fsouc521Zx6cyKVBe6KemZmZnDwpjNBJTU21usFsnWSW/aKioujbty9yueACVigUzJw507rfjh07ePPNNwkODmbHjh3I5XK8vLxISUkhPT29xfVZ3HLHjh0D7GemXWp0mZi2YsUK7rzzTm6//XYOHjxIc3MzAHV1dbz55pusXbu2q059SdFep9qMwZHUaHQUKBu5+/2f2Lh1GwtffpMrrrgCEES5FQdLhJ3NEOwrOH4GRQfSbDBzSiXYNvMq1WScVhPoI23hSuvKwoF8pbpT1xPpJlwJUhahbdu7kLUSDM1QliE0b1bnCjNzFIkQ1h+yVoGbFJ0sgnrlaW4ZKOXREZ5IJEYwGMGoF5o7m+rAzRPcpOAVcFZIm/m+sJZe37Fr7+6WU5Eup6taLNsjTG0s3MhPOT8xRDqESUGT+LbqW9555x0MfgZ+Kv2JFEUKsQGxFNYXsrFwY5e7xbparBO5NHAUzxo2rEe1bDmN+/YR8dJiuxim5dFWZGtNoKuqqkKj0fDUU09xw7jxJB8/jiE2Drfe0QD4TZmKqbAQ/+kz2l0i4Ow6ekIBgXhP3Dmc3P0Hv+/azZfbdvPhC8/RVHgSL5kv0ckD2bNiGf1GjSU4KtrpsTWlJZzc/Qf9Ro3FPzS8m69c5HLBVYyyM4QofZWGhkPlVAZp+NsnH7JhzTq+uOUdwozueKuDINXfOoNN7+Ke+HyuozuEQpHuwdHdZfu9RSyLiooiNTUVEKKVCoXCWjxgmYOm0WjIyMhAoVCgVgu/y1vWsQhiBw8e5PPPP6eiooL33nvPWipg2c9ZbBPORkwtbaG212aJhLanifRC02Vi2uuvv87HH3/MXXfdxbJly6zbx4wZw+uvv95Vp73kaO9csvhQP4JlnizbmYNapSLy9r8SOPQq6/MzBkdSoGzkRHk9ewuqqWxoZk9+Nf0i/DGZzbi7CXN84sP8yCxrdDocuCsLBzYeq+j0NUW6GMe5aCmzzgprIHyNCbwCwdMITWessmazUBBQkg6FO8BswmhuZub3BgZERfCPsSpBdEMiDBMOToBr3oTcLUITaOw4IeJZevjsuba9C0nXdez6xVbPy46uija2ZwbZ1L5TaahpYGjAUHoP6M29m+7Fx8eHDaoN/Fz0MxKJhEUjF1nXOFe6SjAUuTxxHN7vP+0aGvftQ5eXj2rZ93alBR2JUtbX1/PJJ58wdOhQEhISuFKroXH1z0jd3Qm87z4A1Js2YtbpMVUr210i4Ow6ekIBgXhP7BxbgcuZCOb4fGB8P77duZ8rrhjOrHvuY+vnH1N9uoSSrGPUVggigKt2zpO7/+Dob5sAuOL6m7ruRYlc1riKUbZXiHIUu2y/12RUkf9bJlsbDvLpp5/y+I0PEJISRbhPCOo/TmPSGvAbGYl6TxkGkzA+pXZdAR644zcqEmmo7LwEMXHe2qWBK4GpNeHJ9jlL5FOj0SCTyYiKirJ7TqlUWoUyi6ssODiYxMTEFoLYkSNH+Mc//sGvv/7KW2+9xc0339ziOlzFNlNSUjCbzdbGUGjZ5NmeJtILTZeJadnZ2YwfP77F9sDAQGpra7vqtBctriKUlu2DogOt0cz4UD+n+4+K9uStDf9AOuQ6UoYNY2ZqlHWd+FA/YhW+bD5egdFkJsBbyuFTtcg83ekbIsMDM1DLQxPi+XRnMRP6hTq9rq4qHJg6MJznu2RlkU7F1onmOBfN1ukFZ76WCI2bUcOEOGf9adAoBTHN2Gzd9akNGn7LrOOZGf3B2wyNleDhDXFXgbwPyPsKx2SvhaF3CpHRxCnCwdveFc5ldgMS2v9axFbPy47WHGTnK0K1JdRFeEYwOWgyb7zxBo8//jjh4eGEh4czyGsQB6sPkhyS3CluMXEWmkhHcIxWesXFEnzPvdR88TnGunrrXLKOiFR1x0/wyWuv8uKyZTz00EO8/fbbSK+9jgap1C6WqSsoxCcutt2R0fa+hssR8Z7YObYClzMRzPb5hCtHc9edd+EhlbL8hx+QmAz4BgWjb24mafQ4NLW1hMcnuHSo9Rs11u5RRKQzaa8Q5Sh22X6viZZQ4K/k5Q/fZuqIq/hT7BR6RffCQ++GHsAsHK/ZX4HBbIArQHu4EneTG+6+UqST+5yXICbOW7s0cCUwudru6DazCGIajYZDhw5Zmzxtn7MIYWlpaWi1WmpqaoiJibE62kpLS60i3MaNGxk/fjx33303EomkUwWwzi4L6Aq6TEyLiIggNzfXzroH8McffxAXF9dVp71ocRWhtGzfk19NUY2GGo2OYJknNY06Nh2vsO5vNpv5y1MPU5uTzsTr5/Hk1AEt5ppZoqCYoU6rZ/PxCpSNOgqrNcI8qr7wR041R0/XsS27iolJYV0a7bQlTiHOYLsksBXMbJ1dikRhPlrhDuERhK/7jhHmpI1eIMw727kEeg0F/yhQFYA8ls+2FfGPvfV8MNWLabIj0CQFiRsYtFCZJRQPaGuhJh/6jGrpJLN8nzQT9mZ37esXuahpTayyFaHOpemyNaHOZDJRXl7O66+/zvr163nggQeQy+X4+fmRlZdFibqErOosxkWPO8dX1r7rEBFxxJnTyzqXLLFjc8ma8wtQrf2Vzfv28dLy5YxPSuLVV1/Fz88P/Pys57HEi4Lm3IR86rSzTaBnihKUH33UocimV1wsTLuGhg3r4TKNeor3xAKOTrO2BC7b5xcvXMj+Y5m8t/BZIiIi2LNiGfkH9wl/06utZeRNt7BnxTKX4lxwVLR1m6uInIhIR3B0mTkKUc4il45il+XRFO+DSlPFws9ep3fv3rz+1pv0agwkaHgvANx9pdZ9tSdqMFQ1CMcPCcMDd+tzoiB2eaNUKtFoNCQlJbUQmFwJTxa3WWBgIBqNBhBELqVSaXWm2Ypjts42hUJBQ0MDp0+fpr6+Hp1OZ418Hjt2jLKyMu666y4SEhI4ceIE4eHh1vNHRUWxbds2lxFNZzFPx0hoV5cRdAZdJqbdf//9PP7443z++edIJBJKS0vZvXs3zzzzDC+99FJXnfaixRKdHBQdyJItOVYnmO32oyV11DTq+HZvMZGB3ozoG0yNRkdelZr/fbqEtWvXcsdzb1Mgi+RoSZ21nMCWYJkng6ID+flwKdFyHxS+npR4ulOvNQg7WOKdEvvr6opop8gliKOAZuvsKj0MqkLhEYSv+46DuT8L3+9aIsw5Kz8G5ZngH8WBiFt5+McF3D1EyhMjPQVR12QWoqDeQTDuSVBXwckNghgn9WlZFmC5Dr0eEMU0EefYilDn4u5qTahTKpWsXr2an376ib/+9a8MGDDAemPQ2eKXOAtN5HyxNGb6jh2H/3h7gbe1+WT169ex+8uvePp4Fr0DAvjny6+0OhQ4ZN48pFKp3ZrnGtm83KOe4j2xgKMTzVbgcobleZPJxLgpUzAY9Nx48/+xZ8UywuMTSB4/CSSSFqKc6D4T6UosIpmxUU/T8WpAcJk5imcW15lRo8ddJnUtuhn0VFXW4xHkyeLFi+nVqxfxqf0IDg627mN7TPD/9aMhowIaawiaHotUKu2eFy5ywcnMzCQ7O5uhQ4e2EKhcCU9RUVEoFAr8/f3Jzs62ilW2wlliYiLbtm1z6iizNHhKpVIKCwvR6XT06tWLgwcPEhsbS0pKCsHBwS0EMFfrWXAW87wUxDNHukxMW7hwISaTicmTJ6PRaBg/fjxeXl4888wzLFiwoKtOe9FiiVAu2ZJj5wSzjVZOTAojr0rNyYoGcquEIX85lWo2b/mdPf9azH333cfCZx7mmz1FFCgbeWVNJneMjAEEh5vFzbb1RCVZZfWYTCbyqhoZn6hAp9cDVdyc1psgX2+reNaV0U6RSxBX0UhljhDfTJph7xyz/Xr0AlDmCnFPzKCtRlH3OYtmpbAw+TQSD3dhP7MZZMEQfxXEjDnretu1RFhDROQcsBWhXAlcrqKgttsBu300Gg3Hjh1j8eLFzJgxgzlz5hAZGYlEImlx3oK6ApafWA4SuDnpZnHmmcgFweJMa8481kJMcyZaWcSwusgoqgYNRJafxztx8UTUVLfrfLZrnmtk83KPeor3xALnInZptVqyjxzGr1nLm++9bxXkNPV1yAICCY9PsHO7tSbOiYh0BhaRzDs5BN/hEWcdYw4RTst2Y6Pe5RwzTUYV+b9nctCcx/i51zBq1CgCAgLshDRHpKEy/CdEw9ojXfHyRC5i2hN7dJxZVlpaikqlIiwsjKSkJKqrq/nf//5HbW2tdTaZ7ZqOjrLExEQSExOtcdGKigrWrFnD5s2b+dvf/oZGoyE6WojVr1u3Dq1Wi4+PDwkJCa1eq0KhYMyYMS0KeC6F0gFbukRMMxqN7Ny5k0ceeYRnn32W3Nxc1Go1ycnJQlzgMsHVHLTWaM0JZlnv2tRI/pdeQn2TniadjpOZB+mVkMySJUvw9vYmWObJigNCc2ewTGjtXL7/FFOSw7l5eG9rEYGbuxsGoxl/bylv3zaEtWvXEqvwZcHkoM55A0R6DpmrIHudMM/M8r1jw2fiFIhKhexSGnVmDpYZSQrNZ/G8B6AiC8oOgSIJqrLBzQMKtkNIgiDe2c5IA9ctoiIi7cCVu8uVY812O2D9+v5B91NeXk5mZiYKhYJXXnmFyMhIPDyc/9O5sXAjP+f/DGaQe8lFh5nIBaE1YcriWvNKGWjd1rBhPQXffY9h0lVMXLiQ8XPnEpKZ2W5hy7Gh81ycZed63KVAT7knbg8dFbtqSkuYe8cd5BQW8sQ1VxEiD7IKcZqGeo7+tolTWUfbLB8QEelMbCOato2ZjtFNiwtNX6Wxi2naoo4ys7Mpkyf//gLvKoz83//9H+Hh4Z3SDipy+dEe51ZmZib79++nsLCQmTNn2olku3bt4vTp0xiNRusfhcG+4XPXrl1289XS09OtAtmoUaNYsmQJ69ev59VXX+WWW26xKy/IyMjAYDDg4eGBTCY7J5fZpVA6YEuXiGnu7u5MnTqV48ePExQURHJyclec5oLTnnljjoKbMyeYZZ8jJbVsO6kk0Mcdjd6EBEjwN9Jvzhzmz3gbb29v4MxstEYdSM6KcjWNOutzAAXKRo6drgWJhEAf0f4rcp7Yxj9t56pNeNZe+FLmYjKbuP0nLX8UGyl6IRzS7oNv5kBzAzSUQa9hUHkcwga4btp0PIeISCfgyrHmbPvUvlOprKzEYDAwbdo0Jk2aRHh4OL6+vq2uX1RXRJG6iOSQy/PfPZGLn9aEKWeuNbdx4/nXd99R+ttvfDx3LjFjx+LegRvYy1kI6wx6yj3xueCqzdOyfd2Wrfzy2zbunjaJfiNG2bnPakpLkPkHEB6fQEVerhjtFOk2XM0l6+h2VUEl+9bs4KVP3mTy5MnMmjWLqKgoJBLJebVy2tJRUU4U8S59UlJSKCwstApkEyZMsMYulUolYWFhBAcH4+PjQ1paml1BgUKhsD5GRUWxcuVKysrKMJvNSKVSjh8/zqeffsqNN97IAw88YBXgLI+pqalotVpAKDiwrOWI5dqSkpKcXj+0PXPtYqHLYp4DBw4kPz+f2NjLN+bSnnlj7RHcLPsYTWZ0RhO1GjMDewVSu/M7gjw0vP7PDwkICADOCm93jIqxc8MF+3qyfP8pgmWeLJicyJDeQeRUqkkM8+OOUTGd9ZJFegqtOcOihkDORqjOPbufRfjy8GTxb82szjaw4t54fEPChdlqQ2+D3f+GAdcCboKQlnafa9eZrXgnItJJuHKsOW6fnzqfhoYG1mxdw8aNG3nmmWcIDAxs9R9zS1Q0wDuA6qrqTiskEBFpL63NQ7Ngbf1MGYjyo4/wumoSn61by5d//MHzzz9PdHQ07u7uXXb+nkpPuCc+F1y1eZ7c/Qfbfl7JBz+uYVi/BNJ6R1B9qsjpGoFhEcQOGd4t1yty+dEd4pG+SoN6TxmYwW9UJNJQGXq9nsyNB3nq3RcI8Zfz7rvvEh0dbXW+n08rpy0dFeU6sr9eqTmvaxPpGhQKBTNnziQ9Pd1O0LIVqUpLS60ilUVkUygUjB492vpcZmYmlZWVmEwmJBIJfn5+bN68md69e3P11Vezc+dOiouL7dpALZFRy7w0W3daTk4Ou3btYuDAgRw7dgylUonZbHZ6/e2ZuXax0GVi2uuvv84zzzzDa6+9xhVXXNHir/kWcehSpj3zxloT3H7PruST7flcGRdMTLCMK+OC+S27itgQX4Z6lHDP/5by8MMP271XrsQ5x/PcMSqGYF9PqyNObC4S6RCOzrDt70HWSkFAC0kAZbbgLmsog4E3grwvYOJ/uwp5Y4eOV6YEc2M/E1Qcg82vCDPSpDKoPHFGXLvTXkhzFO9czW4TETlHXM1Lc7bPpOhJNBQ18OTTT+Id7M2dzXfSP7J/q+tZoqIToycyO2G22MYp0u20NsTfVuhSPPQQyo8+ouaHH9lx4ACLvvqKOXPmsHjxYjw9Pbvk/D2dnnBP3FFqSkvQ1NcRP/zKFq6y0Ng4vvh9Fz4yGctX/MShlcuoPi241SyimyshTkSkI7QlHnWG2KY9okRzoAIQWjk9JvWmtLSUX45vobKxmu+/+JaEhARrAgk6r5XTUZRr6/V0RMTTHmvfXE2R7sfyx9+MjAzgrMgFkJubS3Z2NhqNxtrmOXz4cLsZaSA4xHJycigvL0cqlTJgwACmTJnCzz//TEVFBWq1moEDB5KQkGAV4MB14+iuXbuswpvRaEShUNC/f3/27t3r9DW0Zz7cxUCXiWkzZswA4Prrr7fL5JrNZiQSCUajsatOfcFwjHS2NlMtr0rN4tXHKFFpOaXSYDLDyLgQVj48hvLycgYNnkZ04kAeXviK3XGuxDlHYa8jxQLnMvtN5DInZRZoqoXSAWUO1OSBQQeFO2DQHEi9Tfj69EHQa0FdQXNlPs/8XMacAR68NEoP2hqQuAmFA8ocQSAbvQByNwtrW7Ypc+DXp4VHEEU0kS7B2bw0V4JYTXkN2/++nfqGevo82IedjTvJzcy1E+Ic17ONiorFAyIXgtZmpTkKXf7TriGjuJhn/v1vhg0bxscff4xMdn6ujMu9ROB86In3xG1xcvcf5B3Yx6CrpthFPAFO7t9HSoSCwampHFq5jOhkYcZfeHyCdZ/w+AROZR212yYi0lHaEo86I27pM1iBUaPHpDFg1Og5nVVIs1TPHTffzoiIQaQNuQJ/f3+7YzrLMecoyrX1ejoi4vkMdN32LHJxYRvlTE5OZujQoVRXV5ORkUFqaqqd2GZLr169MJlMfPfddxw9epR7772XgIAAmpqa0Ol0yGQya0GBBVeNo5ZW0IEDB6JWq0lJScFgMABQXV1NRESE3bkvlWbPLhPTfvvtt65a+qLF0TXWWsRz7ZEyNM1GouU+PDQxHmWDDoW/J7cu3UnWp8+ibdbR94aFbDqupH+U3HpcfKgfMwZH8s2eIjDDhKRQjpbUWcW1cxHF2hNFFelhKBJBFiK402QKmPA8/PoM6DVQehjS5sHp/YAZguMgcSqqkgJ+ua2IhGCJ8MuCmztEDYMJz0HuFtCqBCENCWSvFdaf8KzgSKs8LjjXooa0fW3VeZC9RiwnEOkQjnPRCuoKeGPPGxTWFwJnBTFtg5aSDSWsX7+exW8tJmBkAHovfQshznE9VxFSEZHuwisuFqZdQ8OG9eAQtXQUuur9/eg1dy4PSSTMmzePkJDz/6VInJ3mmp54T9wWrpo9lUolNbV1jOkXh687nMo6Sl1lBWazmYq8XGuksyIvl5rSEvavWUlgWEQLQU5EpD24Eo8sYpY02g9fIs4rbikNlSG/Lp76LcWU/5HL1j8OIYnzI807idiGEHxPA/bm906bmeZIZ8VHAaQKcabaxUxaWhoymcwa2bREOdPS0lAoFKxbt67V4y2iWH5+Ptu2bWP8+PHs27cPd3d3wsLCkEql+Pn5tZhr5spR5ii6Afz+++8AnDhxooWYdq50dxtol4lpl4KS2Nk4usYcH20dYJZtg6IDOVpSx6DoQBavPkZ+8Wm0GgmL3l6CX+IVTo9de6TM2uZ5sqKBopqzmfVzEcXaM/tNpAdiO7dMkQh3/CgIX36hQqFAkwq8A2luUPHM0k94eEA1g8Pdzh4fNRR6XSFEQGUhkPGdsD31ViHmabt+4Q7BmVZ62L7V0xknfoXDYjmBSMdwFLs2Fm4ktzYXHw8fa1lAtCyaayOu5ZXCV5gzZw73334/0dHR7CjZQW5tLskhyXZuNlE8E7nYcBa1dJxlVl1dzebNm7niiit4/PHHCQ8PF+eddTE98Z7YGY6FA5YigT0rltFv1Fg8/AIYPnw4MyZfxVX9+hOdPJCSrGMkjR6HprbWTnjrN2osp7KOojxVxJbPPmLyvIdEQU2k07CIWb5EENBJYpZ7/wByDlex8IPXSB2SyoTFHyJvCkIa3dIA0Zmily2dFR8VufixOLssscvk5GSrkGZp60xNTSUtLc3p8SkpKezfv5///Oc/jB07lhtuuAG9Xk9YWBj+/v6cPHmSgwcP0tjYCJz9d64tR5mt2GWJefbv39/l/h2lu9tAu0xMA9ixYwdLly4lPz+fH374gV69evH1118TGxvL2LGXX+uOq6hlXpWaJVtyqGnUsem4kJlfMDmRBZMTeWVNJisOlBAf5keDWo2fmx7FDU/hlzjYbi1b99ig6EDiw/yIDfHl+iFRVjFuW3YVU5LDOyyKdSQSKnKR01pxQEexzC1T5sC2d4U1JzwLn14NtYXg5Y9ZU8N9X67mh0wdd/WRQZDNjxRlDqgrz3xjhn7TwScIEq4WRDPb88x8/+x1t0X/mSAxieUEPZj2zD9r65ipfaeSXp5OQX2BtSygvLwck8nESy+9hEQioUnWxNKMpaiaVJSoS8iqziKrOouVuStRNamQe8vFWKfIBcNRAGvOL8BQo8Jv8iS7qKWtwGa6+24eeeQRVq1axe7du+nXr1+Lfdpyl+kKi6yP0kQxYtdeeto9sTMOb1xL1vYtaBrqmXT3A4D97LN3vv6eyooKRvWLo/ZUIb2TB/Gnl95osY5FlBt+3Wz2r1nZYp6aiMj50tlilslk4lRDOc99/ir+Af588MEHhFUH0FyrRF+ixicp2G5/UfQS6SwyMzPJysqyc2k5i2IqlUrS09MBwdWm1+t57733CAwM5Pnnn2fkyJFWESw9PR2TyYTBYGgxG60912MRuyzRz85wx1vo7llrXSamrVixgjvvvJPbb7+dgwcP0tzcDEBdXR1vvvkma9eu7apTX1CczR+zCGFTksO5eXhvO7fZ3vxqtHojPs21FP/nYe58/AWKApMoUDaSV6W2Hj8oOhDA6kyramhmUlIYE8/8t2RLDpuOV3Dz8N7i3LOejGNxQGeuqakWHGYePsIsNE9/3t1axTdHdPz3Bhlp0Z5gNgES8PSDyMEQlizEO0+uE8Q0mUKIemavs7/GjhQOhMSLjrQegivRzNn8s7ZwPCY2MJZFIxdZ11epVLz99tvExMQwa9YsoqOj+erkV0KpQO+WpQKqZlWHr6Gjr1NExIIz55hFADOoVHjI5RhUKtRbtxI05yanEU+fyVfz+uuvs3z5ct59911SU1Nb7GN5bM4vQLXsezCD/NZb7dZr2LIZIiNp2LIZX1FMaxc99Z64BWYzmM88nsHiNtuSvp+Vq3/mzvEj6RUejiwhsUUE1IKtADd53kNWtxu0dL+JiJwL7RWz2jvbrKKigoULF5Kfn8/y5ctJTk7GQ21G0mzG2KhHX6XpsjZRkZ6JxQEWFRVldaOlp6dbSwfAXnBKT0/nwIEDuLm54enpicFgwN/fnz//+c+MHDnSznGWlpZGZWUlSqUSmUzWoTilrdhVXS2UWDibmXaudPestS5t8/z444+56667WLZsmXX7mDFjeP3117vqtBcExwimxUFm+d5WCLMIXXlVahavOkZhtQaJ2cSO/7yIFAMekckcy6nj2Ok6An2kBPt6tohu2kZEl2zJsYuNilHNHo5tdLIz16zOhWMrQNcozEhz8+CXA6f487pGnh7lydwhHuDmAW5SIdoZECUIaGHJ4CMHkwkKdkDeVgiKgaTpbV9jZ7rsRC5JXIlmjvPK2kNrx+h0OlauWcm//vUvHnziQdaUrWF22GyXpQLzU+dTUFeA3EveKa2d5yIOivQsbJ1jlrloXikDCQIMNSpqf1yB36RJBM25qUUBgFdcLJ4PPsjnn3/OX//6V+bPn88TTzyBm5ub3T62jrSGDeupW7kKJBI8guV2z3kNSIZalfAo0i560j1xawyZNhNZQKCdSBYcFU3EFSN5/ba7GNw7kvGDU1D07sOx3zahKj/NlbNvbiGK2c5bs8RFLYgtnz2LzhrUf660Z7ZZXV0dp06d4ujRo7z++utMnDgRHx8f8AF3mZTG/eW4+0pbFe/aep0X+n0QufiwdYDNnDmTzMxMNBoNhw4dsjZ5WlAqlZw+fRqJREJoaCju7u6UlZWxdOlScnNz2b59O4MGDSI3NxcQxDTLmo4OMEeHm6PQZit2dcXMtO6my8S07Oxsxo8f32J7YGAgtbW1XXXaC4KjgGZ5dCasWQS1tUfKyC5vINBbinr71+SePMrsF/7NoWowmsxIgPWZ5dw6ojcxwTKrIGfLtpNVbMqqoEajI1jmKbZxinTM4dWRNWvyobESkIChGXNgDIfKMrkmwYO3r/YS9jPqhcdw2x+qEkiYLDjRmuvBKwDqT4NsWtsCmSuXnVhA0GNwJYCdy7B/Z8dsLNzITzk/UZRVxMfPfUz8kHgCJwaysWojvoW+zE+d77L5syPXYDl2cvTkDr1OERELts4xi7AWBCgeeojm/AI8guWtzjsrKyvjgw8+4Oqrr+bvf/87Hh6t3/75T7sGg0oF5pbtnM3HsyAyUnic0PI+T6QlPemeuDVs56Rt/e9/wGxmyLSZeHp6cs/ttzEs2J+omL4c+20zZbknqSjIQ11T02IemqOAZutGc1VsIHJ50lWD+tuLYxzUUdRqbm6msrKSoKAgfvxiGYFVHvg0n/35K432wyPf2+ncNFvaep0X+n0QOT+6Ymi+rQPMdn6aTCazimogzBXLzMykrq6O6OhoNBoN8+fPZ86cOSiVSmpra6moqKChoYGysjIAZDIZEyZMYMKECeTk5PDrr78yevRoEhMTyczMJCMjw24/V3TFzLTupsvEtIiICHJzc+nbt6/d9j/++IO4uLiuOu0FwZUrzNZBtnjVMXLPxDYXTE5kxuBI9uRXk759IzkbviNswu0cM/fBWN2I2QzubhLK65r48UAJJjMcLaljYlIYYBMbHSDERmsadRdNG6ezmKvIJYqtMyw4TmjvNIOxtoQqgz/zh0tZNF6Km0QCSEAi4Ux+A9LuEyKhKbOENYw6iBgEoxcI89La45xz5bITCwh6DJ3dkOlsblqDqoEfFv1Ak74Jn9k+EAiz5bNbCFvn4x6zHCsxSQgnvMXzYhOoSFvYOcccIpmW55rzC1B+9FELUU2lUqFWq/nvf/9L37598fb2BpxHR23PF/HCC06vxX/y1ZCVKTyKtIuedE9si6vI5cndf5C1fQuYoa5Jx9Dp1/HPTz9n38r/cfS3TfRKSgbMNDc2UpZ3ksMb11pnrDnD0Y0mOtJ6Dl01qN8RW5EMsBPMbMUr9Z4yNAcq0Cu1uAd7cVRfwJ/ffIlXX32VqCo/fAr1aIOU1mP0JWoMNU1O56bZnrOt19ld74NI12DrIrO0b56rsGYrzLkSshIShBENGo0GpVJpFd4MBgOzZs1i+PDhTJ48mcDAQPbu3YtEImHgwIGEhYVZr9HCrl27KCwsBITGzpSUFDQaTYv9nGGZldaZM9O6my4T0+6//34ef/xxPv/8cyQSCaWlpezevZtnnnmGl156qatOe0GwHeC/ZEuOnbC1YHIiS7bkkFfVSEKon1Vgiw/145UbUviwPof+hrkMveVpGpqMHC6ppUjZiJubhN5B3jw0MR5lg85OqHNsAp2QFEqwr+dFEfG0deNdaGFP5DzJXAX7PxeaNkcvAMBQeowpHx5lbLSaV6fIkejqATOEJAjxTh85pM2zd8g5toK21dZpwZXLTiwgEDlHHAWxSK9IxsvG87X6a655+BpKY0oJ8glyKmydj3vMcsyk6ElkFmeexysQEWkZyQRBGCt/7VV0efnCPmeer6qq4sEHH+Sxxx5j6NChBAQEWI/pSOmALZ59YyArU3gUaRc96Z7YFluRq9+osXbuMU1DPXsPHOTmx55ixbII+vbtS3h8AqeyjjJg3ARihwxn6xdLydq+1W7GmjNEN1rPpbsG9ds6vwDXLrAzMwGb82opTi/l4ZWLUGpUBAQEEJvSn+ZjNXaCl60I5uhqsz1nwOQ+rb5OsbDg0sbWRXa+bZStCXPp6elkZGSQmpqKTCaz7ieTyYiMjOSaa67B39+fd955B41GQ0BAAL6+viiVStRqNdOnT2/hohs9ejR6vR5/f3+USiUKhYLp06d30jtz8dNlYtrChQsxmUxMnjwZjUbD+PHj8fLy4plnnmHBggVdddoLjjOXmu22+FA/8qrU/HygiCEhJp77v4lEP3UHEokEgFfWZPK/uib6Rfjz3p9S7dxdtq4vi0h3sQlX4uy2ywCLIy1qCPgEQ/FukPqCRsmCrw7xR76WRaP9kciCQOolzFFLmAzT33Y+56yzo6diAUGPpKCugOUnloMEbk66+ZxaPG0FMbPZTHl5OUFBQbz36Xv8UfcHI/xHcHP/m52ucz7uMcuxer2eTEQxTaTzadiwHl1+AZ7xcVbHWlNTE3feeSfbt2/n0UcftRPSoGXpgEjX0VPviW1FrsMbfiVr+1Y09XVMumc+Q2/4Ezc/9TzRwUGUbFrD2rJTePv6UltRTkVeLrFDhjudseYMx9iniEhn48z5JY32o35Lsd2cMr9RkRgqGqksKOetbUvJPpXL8uXLSU1NRSqV4hVun9qxFcHqtxTbiXSi26znYDtH7HzbKNsS5kwmE6dPn2bo0KHI5XK0Wi1ZWVn873//o6ysjEceeYSsrCxUKhWFhYVWgcyyruOaiYmJlJaWcujQITIzM7t1+P/FQKeKaUeOHGHgwIG4ubkhkUhYtGgRzz77LLm5uajVapKTk/Hzu7yjf7YuNcdteVVqlmzJoUaj4+O/LsJUcpTC7GNWIQ3gjpExLuefObq+ZgyOpKZRR41GR16VulNilecb03T2+kUuIZQ58OvTwmPyDcKcNKMO8n/jX3sa+Dhdyz+ne3N1nDvUnQKJuyC6pd0nHN8VbaIiPYrWGjx/zv9ZaBc8M/i/PQ2Yjm40iyBWWFjIvHnzeOyxxzghO8He+r3MDp3d6lpi66bIxYRtTNNWGPOKi8VkMvH000+zceNGvvjiC6666qoWxztzuJ3PNbia19ZTEe+J7UWupsZG9LpmSo4fo/r0Ke59+FGaDUaevX4aGlUN2bu3Ex6bQK+kZDQN9dSUlogimchFgbPh/tLJfVqIXxYMcg++376B1fs38OabbzJt2jSkUqnLtSw4zk8T3WY9E1dtlI6OMNu2ztLSUuv21oS5hIQEjh8/TkVFBYcOHUKtVhMWFkZsbCyTJ0/m3nvvpX///kRFRZGbm4tWqyUsLIy0tDQAtm3b5rQJ9HwFQFfk5OSwa9cu6zy2i5FOFdOGDh1KWVkZYWFhxMXFkZ6eTkhICMnJPafxyZUYZWnvzK1SE1N3hPLdq3l+8WtCm4sN8aF+1hlr94+Ps85Jg5aur/hQP2vbZ7DMs1NELDGm2cPJXCUIaYpEwCy4zpCwI1/NE+s03D8igEfGyMDDB7QqMBshOP6sC60r2kRFehStNXiqmlQgwSqktWeGmbN4pkajYeHChezatYvnn3+eOcPnEFQc1GaEU2zdFDkfOlt4so1pKh56yE4Y+/DDD/n3v//NokWLuOuuu7rlGs5XmLvcEO+J7fH280MikVBXWc57r7/Gzz//zKtPPsa4MSM5smUDUi8vGqqrkHp5cTo7C5l/gCikiVwU2EU8ByvOimFOygPUhyoo2pdNYGAA99xzDw899JBda2JrRQGu5qeJTZ0igDWiqdFomD59utUhVlhYiEqlAlrGQh2FudLSUrRaLUajEZlMRq9evSgpKWHw4MGMGzeO0NBQu32zs7MZOnQoCoWCbdu22TnSlEol27Ztsys46Gwc57FdjHSqmBYUFERBQQFhYWEUFhZiMpk6c/lLAldi1NojZeRVNRJurmXdv1/muuuu468vL2pxfF6VmsWrj1Gi0qLRGzlaUmcV5py5vjo7VinGNHsQziKZLcQwCeaC7YTUZPP0BG9e++tbcDodcjYBZnDzAJ+gs2t2RZuoSI+itQbPhVcubHM/RyxFAxZHWYx/DF9++SXLly/n1VdfZfz48Xh7exMvj291nYK6AlRNKib2nii2boqcEx0VntoSvlzFNJVKJRKJhLvvvptXXnnFzv3e3mtor+gmRkVd05PuiV0VDdhuHzJ1BgCa+nrclUrmzpiKX0URhzdWI5G4ExHXj8baGpJGj0NTWyvOPxPpEs5FmLKNWzrOTnMUv8oCGpAmBzGj/yzuio0gKCjI5Vqtncf2emtX5aKv0gJtN3WKwlvPweICs3Wm2ZKTk8Pvv/9OSEgIgwYNorS0lKioKMLDw6msrEQul1NZWcljjz3G3Llz+fjjj52u7+rxfGe7tYfRo0fbPV6MdKqYdtNNNzFhwgQiIyORSCQMHz4cd3d3p/vm5+d35qkvGmYMjqRGo6Om0T56OWNwJEp1E0uffISAoCC+/vpruxtcC2uPlFHfZMDf2wPFGdcZuHaJdXasUoxp9iCcRTIdxLAG3xiOHj9NbHg0b83UCULayfXQVCtEPCOHnI14gnOBTkSkA7R3Npmz/VqLiFocZWnGNP785z8zZcoUFixYYG02dIVlTVWTit9Lfmd2QutRUBERV3RUeGpN+HIlduXs+IPqzZuYdtUkHn300Rb3YO29hvaKbp0RFb1c6Un3xI5tmq62D5gwme8/eBtDXS2jYiJRVytpqm/AXxEKEgm1FeVoamtFR5pIl+HMGaav0qDeXQYS8BsZ2TJ+aRu3dCJ4Wb6uqKjg7sfuY0B8Egu9H0Ue1zLG3Vp009lz2iNK9FUapKGyds1Oa835JnJpk5CQQGVlpbWJ09YNlpiYSE5ODr/++qs1Erlr1y5Onz5NRUUFNTU1VFZWEhYWxoQJEygtLaVPnz48/vjjBAQEcOWVV7Ju3TrS0tLa3SDaVdFOWxITEy9aR5qFThXT/vOf/3DjjTeSm5vLY489xv3334+/v39nnuKiJz7Uj2DZmeilr6d1VtraI2Xom5rwG3otsyaPJjAw0GkkdMbgSPbkV5NbpcbfW0pMsIxB0YEX+FWJXJY4i2TaiGGm4Hhunv88R06ryXtaD5ET4MSvoFODlz8kzYTxz5wVzWznrYHoUBPpElqbW7axcCM/nPyB9PJ0Fo1cZH3e4iQboxjDsR3HiI6O5sMPP7T7i3FbQtzE3hOZnTBbdKWJnDMdFZ5aE76ciV1lZWVMmT2LiT4+vBESgsfEln8pbu81iI6z86cn3RO7atO03V5TWsK8225h99FM3rjjTwyePI2CQ/sx6HRoG+rx9vNj0FVTREeaSJfizP2lPaJEc7ACAHeZ1KkIZev4CrB53rKvRqPhueee49ChQzw87W78C0w0Ha3Gc7Jvp11ve5xmYmnB5UtpaSkqlYrS0lKnApNjJHL06NHodDpCQkIAKC8vp7KyktzcXHx8fHjggQcoLi7mnXfeoaKigrKyMiorK5k5cyYKhaKF86y1ltCeTKe3eV5zjXDjdeDAAR5//PHL9sahtUH9g6ID2ZpdSYGy0brf579sZ9yAKB6+7x5uGB5jN0MNzjrP4kP9eHXWQNYeKaNGo2NfYQ1HS+rsZqeJiHQKziKZ6Z9CxvegUfLcL0rWZzew8rYgvNxNUJ4hzFDzDoSbPoXEKfbH2s5bE2emiXQRrc0tm9p3Kunl6RTUC8KY7fMmowlllZJhw4axZs0aYmJi2rWubZxUdKSJdCetCV+OYpdWq+Wmm26iVqfj7vnzUVx7XZedW6T99JR7YldFAZbtNaUlvPXUAtbt2c+skcNwAyRIuO31911GREVEugJn7i+fwQqMjXpMWgPGRr3VCWaLo+PLVlyTyD1ZunQpX331FYsXL+ZPD9yG8UR9pwhaHS0hEEsLLg8cywagbSeYbSRSqVRSWlrKxIkTrUUCycnJ1lnt//znP9m8eTO33XYbiYmJaLVaCgoKqKystJ5Xo9GQlJTkNObZHRHPS4VOF9MsfPHFFwDk5uaSl5fH+PHj8fHxwWw2O403XmpYZqMVKBspUDYSq/DlkUkJxIf6cbSkjpPlDWScqmVNRikR5mqO/vtR0hY8w1MPTAdgyZYc8qoaiQr0adHGGR/qx4zBkXyzu4gpyeHi/DKR9tPRmGWL/YX/N79cu5f3/72N169RcMOEVKg6DlJfCE+G8IEg79tyLVunmxjxFOkinM1Ks7jKkkOSCZOFoTVoSQ45O+R7Y+FGPl7+McqNSj7+8GOmjZyGm5tbm+tC+2OnIiLdia3YZTKZmDdvHvv372flypVMnDnzAl+diCOX+z2xLTWlJRze8CtIJAyZOoPgqGj2rP+Vj1atJSFcwbxbb0XRK9rqVhOFNJELjTRUht+oSGpX5dKcp8Ldt6U7zdHxZSuuHXTP54UXXmDWrFk8++yzeGrd0DqcozNnmemrNDRkVJzXGiIXN87EKsch/46CW2JiInK5nMzMTHJzc8nOzqawsJCysjJMJhOhoaFER0cTFRXFjBkzuOKKKxg9erRVHLPM+ExJSbGWHaSmplrFvNZaQnsyXSam1dTU8Kc//YnffvsNiURCTk4OcXFxzJs3D7lczvvvv99Vp+4WLALX1uxKDp+qJausnliFLwsmJ6Lw90QikWAyg0GnZe+Xi3D3C6bfxJtaHF+gbGTFgRIA/nLd2Q/k2iNlbDpewc3De7dwvomIuMTZHLSO7J8wmdqCwzz9xm/830AfXpg9GIbdATv+JsxJCxsAxbuF4xzXF8sHRLoBW3HLIqIV1RXx++nfiQ2IpaC+AMyws3QnWdVZTO07lYEeA8n7PA+Jr4R9TfvIPJRJva6eAK8Abk66mdjAWFE0E7lk+eSTT/j+++/5xz/+wdUDklF+9FGntXWKdA6X+z2xLSd3/0HW9q0gAZl/AOHxCbzw5lvg5s6CG6/D0KxFU19n3dfZrDURke5GmE2mbTGbTJtdg3p7CX7jo+3inZZ9GntBmCmMJ554gkcffRQ/Pz/q9xa3mFvWaotnB4U27RElmkMV0O/8XrPIxYttuYBtY6YtFsGrurqakJAQoqKi2LVrF0qlkuTkZJKSktBqtUilUmvE8+TJk/j6+jJo0CCuv/76Fq63qKgoMjMz0Wod5WB7uqq981Kky8S0J554AqlUSnFxMQMGDLBuv/nmm3nqqacu+RsHy6D+QdGBvL3uBBIJ1tlmv2SUoW424C6Bmo0fYayvYP57y5h9ZYLdGjWNOk6U12M0mcFsv77YqilyTjibg+YMZQ6kfwZaFSTNsO5vKjlI7ekcVt8RwhUhWiReMjj2k7Cf2QRms93+IiLnQ2vzz9qDJZoZ4hMCZogJiGGQYpBgsDTDytyVGA1GNry6AbPWzIK/L8A30Jef83+m2dCMl7sXci+5KKKJXHAshQJeKQNpzjzWQgxzVThQU1PD2LFj+fzzz7nnnntQfvRRhxpDRbqHy/2e2JZ+o8YKYplEQr9RY/n5w3dIDQvmyt6RoK6jMOMgHlJPZAGB1vlo4fEJ7FmxjPD4BCryckWnmki342o2mXp7Cc0FgvjrkxRsJ3yRFkT677/Tv39/Hn/8cSIiIlqs5Wx9R+waQs80hrYmrPkMVmAwG6FRdKddrljEqm3btrVwqOXk5LBr1y6kUikmk4mCggIKCgoICAigqqqK0NBQ0tLSyMzMJCsrC3d3d/R6Pe7u7vzwww/o9XqefPJJO0HM8vW6devIyMigX79+jBo1SnSetYMuE9M2btzIhg0biI62/8cwMTGRoqKirjpttzMxKYyjJXUs33/KOtvs/vFxHCuto/zoThqObeHTTz9l3rzZ1mMs89IOn6pFIoEhvYOYkBTKki051hlsYqumyDnRXndY5irI+E74etQCADQb3uCF/27j4VgPRoc3IcEEJQeEfdzchOKBkr0QO16McYp0Cq3NP2sPlkhmckiy1YVmEeUK6goAWPnlSjb/vJnFby3m5dteprC+EMDqTEsOSWZpxlJxJppIt+BKFLMUCkj37UNfLLR424phzgoHdu/eTVFREWPGjOHuu+8GxOKAi5Weck9swSKUqQ0m9F4ykqLC8HJ3R+LmTt9BQwhQhFkFs5E33cKeFcs4+tsmTmUdpbZCEBVEp5pIRznXKGVrx/mNj7Z7tAhfBqOBRSvf5YsvvmDHjh3WgfCu1mptlpmt0KbeU4bmQAVGjR75dfFO95eGyvCfEA1rj7T7NYpcmkRFRVFYWEhUVJR1m6VowN/fn9DQUGprawkLC8PT05OKigpCQkJQKBSkpKRQWFhIZWUlnp6efPXVV5SWlrJmzRq8vb1bCGVKpZLTp09jMpm6+2Ve0nSZmNbY2IhM1vIHWU1NDV5eXl112m7BsXzA1kWWV6Xm58OlhPh6Ik9OYf6YpcybN8/u+LVHysiraqRfuD9D+gRxx8gY6ww2QBTRRLqelFlQnQs1eeAXivmnB7nrw538erKZufcHIxkQL5QNaGvAbATfKHDzBFkIRA250Fcvcpngak5Ze4kNjGVq36nWeWm2LrfYwFi8dF4cLz5O8IhgTg08RWF9IbGBsSy8cqHVFbezdCe/n/odODdBT0SkIzRsWI/q+2U07ttHxEuLrYKaRfyydabZ4j/tGgwqFYYaFc35BZS5SZg9eza9e/dmzpw5SCQSl0KdyIXncr4ndsQS3Wxq1nH/4leICQ3h0RuvoyI/D5PRQEBoODL/ALtjbB1qFmeaiEhHaS1Kea7H+SQF45MUfPb7wQoMjTq+XPUdH3/8Mc8ueIoElQKDUojF1a7KRV+ldbpWu4Q2S1LJIbEk0jOxbfC0zEMbOHAgKpUKvV5PdHQ0/fr1s8458/AQpB1LNHTmzJlkZmayfv16Dh8+zAcffMAVV1xBeno66enppKWlAUJktKSkhNraWnr16oWPj49YMNBOukxMGzduHF999RWvvfYagDBDzGTinXfe4aqrruqq03YLjsKXrYtsyZYcVqfn0lB4lD79BzP3jtsAQYD7Zk8RmKFfhB/xob7cPz7O2tIpxjpFuhVFIoQkQMF2+P0dXl5TyIqsZr6Z7c3QcJPQ2JlwFRz8Bjy8oLFSENUaDVB6uGWT57nQ0bIEkcuO851TVlBXwBt73qCgvoAIWQQF9QWomlQsvHIhOp2OVN9Ubr7jZorNxRRriu0aPi2uuInRE5mdMNsq6J1v9FREpDX8p11D47596CyxzjMuM9tCAf/x46z72wpkHnI5tT+uQOPjzQ1nBtr/+OOP1ptnZ+41kYuDy/me2BFLzPOdpf+hqKiYm5Ljqa+spHfKYLx9fcFsbjEnzbYNNHbI8At27SKXNq1FKS04E7RcHedK/Nq1cyeLPn2DKWkTeeaa+TQdqsLd3d16jOPcNct2QWjTCBtcxDm9k+QYKhrxTpKf47sgcjnhrEFz6NCh3HHHHS3aPtPS0pDJZGg0GjshbPDgwfzf//0f999/P08++STbtm0jIyMDwPpHnoyMDEwmE7169WLmmRIjmUwmxjzbQZeJae+++y6TJk1i//796HQ6nnvuOTIzM6mpqWHnzp1dddouxeJIM2PGaDRzpKSW37MrOVpSZ3WpTR8UwetPPYDyxF4C+37F2iNlLJicyNojZfwv/RQGk5nkyADK6pr4cHMO205WccfIGDHWKdL9pMyCwh38b912Xtum5dmxMm5P9QZZMNQWQXkGGHWgd4OASIhIBXmfzpuX1tGyBBERB5afWM6x6mPEB8YTExAjRDslYDabeeaZZwB46aWXUHuqrQKZBVtXnK1odr7RUxGR1vCKiyXipcVWgawtGjasR7VsOY379hF8z70EmEzc9cMP5Ofns2XLFmJiYqz7ihHPi5fL8Z7YFcFR0ezNPMG67Tv506grCPP1pvp0MTVlJQyefA1Dps20m5cmItJZtBaltODMhebqOGf7Vu0t4uXv3yciKIx/PPpX/OMV6L28W8xHc4yLOhYcuHLD6UvUGGqa0Jeo7RxxIj0TVw2azgoALNHO7du34+fnh5+fH1u3biUwMJC1a9daywyioqLo168fNTU1REVFIZfL0WgEkTctLQ2FQoFSqezeF3oJ0yViml6v57HHHmPNmjVs2rQJf39/1Go1N954I4888giRkZem+8riSHOTQHl9EzUaHRqdkaIa4QO4YHIi337xCZVHfidq1rMMjI1kUHQgS7bkMCg6kH4R/uRUNBCr8EXm6c7BYhVZZfWAfZOniEin4ej+cvi++eq/snPlXGYMzOetqV6giIfwFCH+WVYHSMBHDkY96Bsh7b7Oc5G1tyxBRMQVEnDDjUGhg7g56WZiAmKY2ncqq1at4p///CfPPfccCoWCUEloC2HMlSvufKOnIiJtYetCawurky0vn+bMY5SMGkXG66/z+eefM3LkyHNaV4yDdi+X6z2xhZrSEk7u/sMqju1d/ytvf/IZqfGxjIyJAokEbz9/9E1ayvNOAjPFeWgiFwxnLjRXDjTHffV6PTWejbw852mkEncCSkDfS23X8mlxnNHKWtJQGbhww7XHXSdy+aNUKls4zxwFNMs+UVFRlJaWWts8T58+jZubG4cPH+aLL77g3nvv5Z577mH79u1Wx1pISAjFxcWUlpaSmJjI9OnT7c5vccGBGPNsiy4R06RSKUeOHEEul7No0aKuOEW3k1elpqZRx5TkcPqF+/G//SXEhvhy/ZAoqzPt4MGDvP7SnwkdPoOJM27k1VkDrQJcTaOOIb2DGBIdxB2jhL8kP/O/DLIrGjhcXEtelZr4UL8L/CpFLjsc3V+W7zXV6DwCOC2/kude+xsRW57Ara4AmurhxK/gFwGKfoKwNmgO7FpyVojrLBdZe8sSRHoslsils4IBgJuTbkbuJbdun586n91Zu5l731yGDB/CK6+8gkQi6dA524qeOsZAxVioSFdi62QzjhqFn0zGrp9W4n/4EA3bdzht/mwLMQ7avVyO98S2WGakAWga6jmwfg3XjhjG1DEjqck5QXCv3oy7bS67f/we5aliDm/4lUn3iK5fkQuDMxeaK5eY7b5ms5l//vOfpLjFECWRE+6ncBrnbK2Z09XabV2fSM+jPWJWZmYm+/fvx93dHaPRaHWUhYaGEhISwr/+9S/27NnDCy+8gEQiISUlBY1Gg0ajISEhAcBljNPWBSfSOm5dtfAdd9zBZ5991lXLdzvf7C5ixcESDhepeGvdCVKjAwmUSdmWXcWg6EDWHinj9vsewiesD0NvfpL7x8dZywluHt4bJLApq4JgX09rW+d7/5fK0N5BlNZpWXuk7EK/RJHLkZRZMPROoTRg27vC49A7adbpmTz/dVa8NZ/I3S/jXlcozESrLxFaO2tyoSITGkoFIW3gjTD8XtFFJtKtWCKXX2Z+ycrclWws3AgIgtbSjKWAEMW0iFgmk4l58+ahbdIy68VZLQZ7W46zNH2ezzVZrsXxexGRzsYrLpa9Ml+uvfFGdKdK8Nm6leov/kvl++9T/fkXqJZ936H1/KddQ9Ccm8Q4aDdyud0T29Jv1FgGXTWFfqPGkltUTFOzjmFhcuqKCjAaDNQrKwGISEjCzd0NOvgHDhGRrkRfpcGo0eM9IKRVN9i3337L008/zW+Fe+g7IRnZFeEEzUpAGipDm11D1SdH0GbX4DNYge/wCKTRftSuykW9t0xwqomIdICUlBSGDh3aqphlca3p9XoUCgWjR49m+PDhTJw4kdWrV7N161ZuueUWRowYAQjONplMRlZWFrt27bJzvTliccG5el7kLF02M81gMPD555+zefNmrrjiCnx9fe2e/+CDD7rq1F2DBExmM0dO12M0m/l+3ymk7hKaDSZWHT5NXUMDjJhHgJuUk9XN/Hy4lN7BMmvrJ0CwzNOuYCA+1M/qXhOLB0S6BIv7a9u7Voeaefwz3H/zbPYWN/HaVSrcKurAyxea6gRBzYoZTh8C/ZlhqXN/7v7rF+kRuHJ3WaKWFmdackgySzOWompS8XvJ74D9XLPTp08T7h/OwGcG4hnhyY6SHdbjsqqzUDWrzru50zEGKsZCRboKSxyzJC6e2x56kERPT0KOZ4EEMJsF16VE0uHWt47ETEU6h8vunvgMthHP7KJTPPL62zwwcwpxoWGoyk4D0NzYyI7vvuTaJ55H5h8gzkoTuahQ7y5Dc7AC2bBwu1imNrsG9fYS/MZHc+x0Ng898CATx07gxWdewHii3uo201dpUP2Ug6lOh0lvIvzhIUgn96F+S7HLMgIRkbZoK9JpEcJGjx7Nrl27GD16NImJiSQmJvKvf/2Lb7/9luHDhzN06FDS09Ot6yQkJFgdbJYYqWOc1PZ8rQluIgJdJqYdO3aMYcOGAXDy5Em75zoau7kYuGNkDCfLGzh8qhaDycytI3qTUVLH0ZI6Sg5swSMwHK+oRHzc3dEbzRQoG1l7pIxv9xazJ7+aV2cNdFowIBYPiHQLUUOgcAdEDeGdd97h6x9W8++XFzDRbzNolKDT2OwsEf7zVcCI+6BwJ4xecPZpsYVTpJNxNfTfNnI5LnocSzOWCg2cvScysfdEiuqKeGvfW4yJGsOhU4dI8Uzhq8++Ym3NWlbmriRXlUuJuoT08nQK6wsJl4UzsffEFsJXR6KajjHQ820kFemZtGduWcOG9eR/9z1/yjyG3MeHrx98iOAZQsuWh1yOV8pAa8xT5OLmcrsntmCJeDZqtNy76C/0CgkmOSwYbz8/3D2kGA16AAw6vV1jp4jIxYC+SoPuVIPwBwmH/w3V20toLqhDpa7jtg/mEuQdwH8eew/jiXq7SKj2iBKT1gBu4BHiYz2+xYw0EZHzwBL7LCwsRKVSAUL8s7S0FJVKRWlpKXK5nGPHjpGXl0dCQgL/+Mc/OHnyJFqt1vrvjkwmY+bMmXZCmrM4aVsxU1FsO0uXiWm//fZbVy3d7VhaPO8fH2edjwZQvzWXzIP7Uf7yPgFps/CJSqJ3sIxAbymPX51I72AZe/KryT1z/IzBkdZHcT6aSLdSehhUhfy64nsWvfgl86+7kodG+ECWGdw9Qdcg7OcmhaC+oC6HgTfBhOfB8Weo2MIp0sm0191l61T7OONjjtccx9Pdk+Nlx1n97GpuuP0GPlv0GVMDWjravsz8koL6AsZ7jW8hmIkNniLdhUVEM9SoUG/dCrieWya7egoL3nuPWq2WH1KHEBrdC6+4WJrzhZiyZ3Q0/uPHddu1i5w7l9M9sS0Wl9k7X31PZUUFz8+eTljvGJJGj2Nf3Y+oa6oxmYxEJPS7wFcqItIS7RElxromPKP98BtpnxDyGx+NocnAlhObqaqr5sfFnxPiFYQ02g9vTQjGRj36Kg0+gxUYNXowg9+os2uIs89EOpOoqChycnIwm83Wpk5LMycIkc99+/axc+dOUlNTefvtt9m8eTNlZWX4+/uTmppqXcdWBLOdo6ZUKq3CWFsz08SCgrN0mZh2qZPnIIAt338KEBo786rULF51jP3ZxeQvfw3PsDiCxt2B1MMNTbOR2UN60TtYxje7iwgP8CY8wJuaRh3f7CliU1aFdR0RkW5BmQPVuWiRoTDX8PCMIXwwoRGQQPINkLsFajSAGTxlkDgZZIqz89EcnWhiC6dIJ+PM3eXMLWbZb2nGUvLq8gCID4qn+qtqGgsbuWHMDXh4eLRwtAFE+0db13NEjGqKdBcNG9ajWrYcj8gI/CZNsnOVObrVtMFyZtx1F6/ExTNM3WDdVywQELlYCI6KJrNKxcqff+bNF1/gqiGDkAUFsXvFMpoa6gnuFU30gIEMmTbzQl+qiEgLHN1jtq2ePknBlBzJZ1BRHNv//St9I/vQuL8cd5kUd5lU+NpXSsDkPsivi7/Ar0Tkcqe0tBSlUolOp8NsNqPX62lubgYEMUupVPL++++j0+kYNWoUUqnUeqyPj4+1rXPbtm1WEcziTAPIzs5GJpNZhTHHmKkjYkHBWUQxDXvhzOIYsxXQLE60QdGBLNmSQ41Gx4nSOsp/fhcMzYTO/jMSdyle7m7Eh/paCwlWHCwRjusVyL7CGqYMCOfm4b3F+Wgi3YNFBNMoUR76hZPljfQKzOXDuTciaW6AYz+Bd6AQ8/TyB4kbhCQAEvsIp60TLWWWGPEU6RaWn1jOz/k/o2pSsfDKhRTUFbD8xHKQwJioMcxKmCX8Jfi4HwuWL+DNN9/kxqtvBGBHyQ6+zPySuSlzAaxfu3KdiVFNke7CK2UgSJbTnH0Sz5gYoTzADJ6JiVT/+98Y6+sx1KgomTaVwMBAnnvuOXx8hOhQc34Byo8+witlIEEgxjtFLjgGgwFvrZqbx17JxNSBjLzpFr578RnU1Uokbm5EDxjIpHvmU1Nawp4Vy+g3aizBUdEX+rJFRICW7jFLE6exUc/6w7+xLuM3nr/pUfpNEVw9Ro0eY6Me7yQ5vkSIs9BEuhylUkl6ejparZaYmBjy8/PR64X4fFJSEtXV1axbt47NmzezdetW5syZg06n46effgIgNTWVtLQ063q2IpjFXdanTx/kcrnV5ebsGhwjnW2JbT2JHiemtSWcWRxjFsHLst+CyYks2ZLDN3uLiAr0wb22iIaCI4TP/jOxMTEYjGYGRgdwvKzBGgWtadSBBCb0C7VuE+OdIt3GGRFMHzeNP612p6SsiaMP+QrzWcoyoLECGishIAqMeggbIPyXvRZkIWcjnLZONDHiKdJdSAAz1OvqWZqxlKK6IjYUb0AqkSL3krNwxEJOnTpF6vRURk8YjXy6nIK6AmIDY/ky80v2V+y3LmX52uJSExG5UDRnHsPUoAaTCV1hEbr8fJBIcA8MwFBeDu7urMk8xvyXXuSnn34iMfHsHy0sjrQgQCE60kQuMAaDgfWrV+FmMnLnn+ZQUZDLV88toFnbiJu7OyG9+lgdaZbZaoA4YvtatgAAZkhJREFUN03kosDWhQaCkCaN9sOXCLJzTvLQW0+RkjCAfn8abnX5WBxpAO6+Updri4h0FpmZmWRkZAAQGRmJp6cn3t7ehIeHA8IMzuLiYj755BPGjBnDPffcw5EjRzAYDHh4eDBq1ChAcKRZxDCLCGYR1jQaDcXFxZSWltrdc9hegxjpdE2PE9PaEs4sOCsGmDE4kj351WSW1VNnkhF1/3/wCFDQP8KfT+amtRDq/nL9WevjxKSwrn5pIiL2RA3BXLCdR7/LYnvmaVa+OAtvr71Qkw+KeGgoFfaLSIVew86KZrYRTzjbCApixFOk27g56WbkXnJUTSpW5q4kxCcEd4k7fp5+JIckA1BYWMjAgQOZ+eJMVuWtQiKRMD91PnNT5qI1agnzCWNYuDD02+JSExG5kPhPuwaDSgVm8B03jvpffkFXXITv+Ak0bt/GcU8vHv/hf1x77bVcf/31LY61fRQRuZA89dgC/vPpp7xw/TQS+idRWZCH0WDAzd2d6AEDmTzvIasLzTJbTWzyFOlqbEUy28H/jtu1R5So95ahza4BsxljnQ4fjYImiZ67P1iAr68vy75bhlQqtR5rEduMGr1dCYGISFegVCrRaDTExMSgVqvp27cvAFKplJMnT9KvXz9iY2N5++23CQ4O5tprryU8PJyQkBD8/PwICgoiJSWF9PR0MjIy0Gg01rgnnHWXKZVKZDKZy8imGOlsnR4nprVXOIOzLrZB0YFsO1lFnUaPpKmO4l8/wvfKW/AMlGMyw+FTteRVqVus48wFJyLSbZQeZsnPB/jPyjL+Oqc/119/HRyqh8osCO0P7lJAAvI+9i6z1hxntsKaiMh54jgXzfH7+anzKagrQO4ttysRyKrOYpDfIMLDw1m3bh0HVQfJycyximzjoseRVZ3FytyVBHgFkBaRRrS/GC0SuTiwbeJ0DwrEeECJmwQ833+fecOHk9S/P1/+9S1qli61a/v0iosVZ6SJXFAKDu9n/5qVNIf14p8fL2VySj8CvDxoamxE6u2DWdNISHQfOyENEJs8RboNS1QTcBrhtGyXRvshOSBBX6ZG4ibBI9yX5qI6Hlj6LHmF+fy27XciwsOp31KMsVFP0/FqfIkgYHIf9FUa3GVSMeYp0qVkZmaSnZ2Nn58f1dXV5OTkoFar8fLywmAwADBixAj69+/PlVdeiV6vZ9OmTbi7u9OvX792u8jaimyKkc7W6XFimivhzBnf7ClixYESouU+5FSqMRoMlC9/iebKQnzTbsLbww2t3kRdk57Fq47x6qyBdqKZMxeciEh3UeB3BYvWV3PbiHCeTykXZqQFx0H5EajMBKNOmJWWdt+FvlSRHopji6azVk3beWbR/tEsP7GcXXt2sXj2Yt5a+hY6rQ5Vs4rc2lxe2f0KycHJRPlHMSZqDACqZsHZpmpWIfeS2xUaiIh0N5aopnTfPnT5BXhEROA3WSgiePThhzE3NvLFtGk0r16FekvrbZ8iIt3N/jUrOXHwAH/b8g+GDB7MY/fcTklWBnUVZbh7eBCdPKiFkCYi0p3YlgrYFQqc2S6N9hMEMo0es8GMNNIPz2h/AE7tPYnBzcRb9y9mSHASNT+cRF/eiE+KAt/hZ2ekiU2dIt2BxQlWUFBAc3MzarWaPn36UFFRgZubG0qlkj179vD5559TWFhIVlYWarWawMBA67FKpRKwn53mbAaahdaeE3FOjxPTOkKdRo9Wb6SsTovZDKqdy9AWHaXf3W9hCghGZzQjdZcQIvMir6qRtUfK7EQzZy44EZHuQK1Wo/ePZvmPK5ncx4zkwFIYeCPs/KcwH80nBAw68I240Jcq0oNxbNFMDkkmvTzd6jBzpKShhC05W9j+0nbcvd1ZVr2M5ppmQrxDaDI20djUiFKrROYhQ+4lP+tss4mLAmLZgMgFwxLR9EoZSM0Xn6PLy8cYE0P2i4t4SBHK3Ji+eG/ajDYhwSqyiYhcLAy/bjYf/rAKndHIC/fdg6+fD3ptE2aTCam3D8Ovmy0KaSIXFFuhS7UmD82BCowaPfLr4pFO7kP9lmIa95fjPSAEn0EKTBoDSEAf5YGxn4wPn3kb/1JQby/BUKEBk9m6tqGmyS4q6ipSKiLSGVgcYVlZWZjNZurr66mpqaGmpoYTJ07w008/MX/+fGu7Z3JyMtnZ2YwbN84qhFncbUOHDrXb5moGmjgfreP0aDGttRhmXpWagupGJIC62UhjwSFqdy6j9+Q7MUcNpE+wjNToIAJlUruCAVs64oITEeksqqureeutt7jvvvuYOnUqHgW/gV4jCGmqPDCbwD8c5DFQdQLSP4Ppb13oyxbpgTi2aGZVZ1GiLiGrOotx0eNaxD4/zviY9H+lY6gzMH7xeBpMDehMOuqb6zFiJMgziKFhQ4nyj7IKdI5xUct2EZGupjm/gIYN662CmOVr/2nX0LBhPcH33Etz5jHe/ugjElW1jIuLJWDGDHRFhRjKyvGYOMEa8RQRuRgIionn4ccWsHvVCqqOpBM8ahyKPjFUFOShb26mIi+X2CHDL/RliogImB0esXeuaY8o0RyooLSugpu+f4w3XnmNayPHYfIUInTeyV64+Qi/KjfuL8cj3xtDTRMgREVdRUpFRDqTwMBAKisrCQgIQK/XU1payvLlyxk4cCChoaGcOnUKrVZLZWUlUqkUtVptPdbZvLPWZqCJ89E6To8W01qLYf5ray7HTtcREeBNRX0Tjbn78I4ZjGfan9AZzSgbmnlkUoJVhBMLBkQuKMocyFyFLnEGd973LNu2bePOO+/Ew8MDdi2BEkuzoRncvWDEfVB5HKpPYneXISJyAXF0qllin6pmFfVN9exfu5+6PXVE3x1NTEIMh5WHaTY2I3WTYjaZ6RPYh39M/ofTtR2FOxGRrkb1/ffUrV6NoUaFR7Ac1bLlNO7bh1diIuotW/GrUfF9VibvHT3KwsREJhqMePWNQTF/Pqrvv8egUtGcX+BUULMV6kTBTaQ7OHnyJA0NDdQcTKevrxdNajWKPjEMmTaTvSuXoyorJTw+4UJfpoiIFb9RkdZmcH2VRnCt2UY0BytoLK/jvhfuQ2fUcYVnPzQHK/AIlWFS6/AdbjMjzVeKNNoPfYnaTpCzfRQR6QrkcjleXl54eXlRWlrKsmXLCAsL48MPP+TEiRNUV1cDQjGBXC4nKirKeqyzeWetzUAT56N1nB4tplmcZIOiA1myJcdaNFBSo2FnXjV6o5kSlRajvonAMbfh5uGFwSwBoL7J4HROmojIBSFzFaYDX7HwX2tYt24HX331FYOjfGDbuxDWH0oPgqFZmJNmMoC6SpiV5tjcKSJyASioK2D5ieUgEVo8SxpKeHHni4R4hjCx90Qww7rCdag1aoLGBhE2KYysmiyajc14u3szb+A89lfsFxs7RS4uJIDZDBIh3tm4bx/N2ScxqmpxD1Ww/cgRnv3hf9w2ahR/+fobapcto7mgEMOy7wFoWL+B5pwcIl5a3EIws8xeA3GmmkjXU5qfy4wpVyMPDmbu0P4AmIwGsnftYPDka5BH9KLkeJboTBO5qJCGynCXSQX3mARraYBtRPOZL17h+OkcVjz1KeGyEJqoxkPhg7R/sNMZaT5JwXbri440kc7E2cyytLQ0tFoteXl5/PjjjzQ2NvLkk0+SnZ1NZWUlRqMRX19fvLy8UCqVlJaWkpjoOhknzkXrXHq0mGaJYS7ZksPy/afYk1/N0dN1NOqMGM9k5FU7vsXNx5+A4fYV9TJPdzJL67jni328esPANp1pYrOnSJeSMotP1+zlbz+s4Pnnn+fOO++Edc9Dxvfg6Qc6DXgHgpsUel0hCGhiM6fIRcLGwo38nP8zJrOJXFUuWoOWo8qjeLh5MMw4jDsH3MnWrK1oB2sJnhiM2Wym2dgMgK/UlweHPGiNhEb7R4sFAyIXBfJbbsVDLre6xyJeWkz5a6+izcigQN3IfQX5DFcoWPL6G3jHx+ERLKdu9WowmwmcPQvP+Dh0ZxxojoKZJToqzlQT6Q4ee+RhCktKmDtlIiZdIwBuHh5EJw8EoN+osXaPIiIXC9JoP2s8U3OgAmOjHu8kOaoVOXy98ye+27KCN/70PMN8BFel/7hoqwNNRKQ7sBW3HGeWKZVK0tPTKSgoQKVSceWVV3L11Vfj5uZGRUWFdQ1fX180Gg0KhaLNiKY4F61z6dFimgVbh9q2k1UcLlJxrLSeupx91O36nqAJc5EAEsnZOZQxITJUjXpO1Wj5cHNOm2Ka2Owp0pVUmYP4o1LGddddx5tvvilsVBVDcwNI3AWHhLYG+s2A276/oNcqIuLI1L5TUTWpOFp9lIL6Aq6MuJJmYzMVjRUcrDzI5qWbMZWa8H9AaNzSm/VIzBJ8PHx4dMijQMtmUBGRC41XXKydCGYR1Er//GcKdu8mxsODf0RGYco+AZOuwn/aNRhqVCARhDjAbuZaa2uLiHQVP//8Mz9t2My9c2Zzx6OPcWLnNnL27kbf3ETBof2MuulWgqOiGXnTLRf6UkV6GPpqLfWHi50WAFicZ3qlFt1pNe5B3sITEqFcQF+rJTaoF0/f+BDzJt6CvrwRN5kHATYlBSDOQhPpemzFLYsQFhUVxbZt29BoNBw8eJCCggK8vb1JSEggLi6OsrIyPD09qaurw2w2I5fLSUlJISoqqk3XmTgXrXPpsWKao1PMInD1Dpax/lg52toKqn95H++44YSMvglPd3c0eiMebhL8vTy4c1QM6QUqfj1aRqzCt83zic2eIp3OmTlptdGTUBn9+ctf/kKvXr1wq8mDzFVQd0ooG9CqsM5FK9ohHKcQBV2Ri4fYwFgWXrnQLu45PHw4q/JWUZtVS9GqIvrO7ounuycGhMHAZswkBiUyJ2kO0HLemojIxYher6c5IYEhlZUsDwjAOzYW/2nXWGegyW+91S7SKQpmIheS+vp67r//PpLj45g19kqO79iGsrgQg16HxM0NWWAQe1Yso9+osWKLp0i303S8BvOJs4UAtljKASTeHpj1JsxGE7IrwvEbGUl53mmKimpIHpHKeMaiL29EGuGL30jhdzRxFppId2Irbllmlq1bt45Dhw4hk8koLy/n66+/ZsiQIcyZM4fi4mKampoICgrCx8fH+vWECRPYtm1bm64zcS5a5+J2oS/gQmFxiq09UgYI4tqSLTm8te44pTUNVK16CzdPH0KvfRpwx4wZLw83jCYzap2BXzLKuH5IFI9elcAjk9oeuGoR7MSIp0inkbkK1fb/MPOaKWxa+S29evXC29tbENL2/BuUJ8HdE3xDIaAXSH2FmGfmqgt95SIiTokNjEXuLWdT0Sb2V+zHs8mTkqUlBCYE8tarbxEiCwFAgoRwWTgPpj5od+z81PlixFPkosVsNv9/e3ceHlV99///Ndk3khACWSTsEJBdNlEBRQS0N0pxRW9BRFBvoCCK4tdbEdtfsS5gsS61Kti7Val71QoqRXBhETDKJptBApIACUlIAtnm8/sjZWRIwJkw25l5Pq5rruacOXPyzpxXz/XxzTnno9vGj9P//Pl5pTVPVXhsrOL691N0u7aOZ6AdXbbU32UCkiS73a7CwkLdecN1urpHJ+1Y/YW2r/lchT/tU1hYmNLbd1JiagvlfPKRlr/0nIp+2ufvkhFiYrqkKL5veoNNr9geqYrvm67I9HjJJtlLKxUeF6mamhpde+tYzXzjEaW1aKGag+VSrVFUyyaOq9sim8c5ZvusPlTh6z8LIebk5tbKlSt1+PBhSVJtba0KCgr02muvKSEhQUOHDlV5ebmOH69rIB87dkyS1LJlS/Xr109SXUMuOztbFRUVjv3Au0L2yrRTrxQ70VwrP16j2mNHJVuYUq+aXXfZZGaiCo5WqryyRlU1diXHRWn3oXJt2lfCLZvwm8oOl2vSPQu0PrdYv7VvV8zap+uehZbZq+72Tnt13YblB6U2g6W0rnVXqVUc5uo0BKzhbYbr6/yvlXMwRzue3aHaY7XqPL2zPtn3ido0aaPC44VKikrSHT3u0NbCrTwjDQHvxFVnz/+QqyVr1+qxfv0Umdpc8b16qekNY1X5Q65qjhxRwtChTlepMVMn/OnTTz9VYnSUzsvuqOJom478tF8RMdGKa5KktHYddf7V10uSCvftVdFP+7Rj9Rfc6gmfimwWq8ROzRp+7z+TA1QfqlBYXIRk6p6fNu2m27V+e45eHTtftQUVskWEKaJFnBIGZjhuDT3RSONWT/jK4cOH9eGHH+rw4cMqLCxUUVGRkpKS9Le//U2lpaWaOnWqoqOjJUk2m03GGCUkJKhDB+cLek7c2vntt99Kki6//HLf/iEhKGSbaSeuFDtxRVr3lkn6bl+xPt2aX3fVw01/UFhYuI5W1uhYtV25h8tlN1JUuE1X9TpHKfFR3LIJv6mtrdUjz76mt9Yf0J+mj9bQXm2kb/6vrlF2cJtkr3X+QN4aqXBXXQNt7+q6dSdm8qSpBj/JLcnVku1LVHq8VIkxibo+u+4/zlrEtVBtda0ikyPV8paWqk6s1tr8tcpOzlafFn20p3SPlu5Zqj2le/R1/td64PwHaKghYJzaDDvy+mt648WX9FDuD5o6aLCuPH5cx77+WnHduym6XVsdfu45lS3/t5KvudqxzEyd8Kc1a9boylGjdOWFA3RJh1aKjktQWESEaiorVW4/opTMcxy3dV468U7tWP0Fkw8g4BzbXqTS5XsVFh+piKYxWjT/Bb204nU9OGKaLmzfV5EZCYrr3lyRLRNUtuaAqvaWqrakShK3esK3tmzZosOHDys1NVVFRUXav3+/fvzxR+3YsUP33HOPmjZtqqqqumwaYxQZGakLLrhAZWVljttBuXXTP0K2mXbCiSvSisqrtHL9Zu1f8ohS/+tuRSU0lSTFRISpbWq8Nu0vlt1ILVPi9N8DW3O7JvzGGKNXX31Vjz76qO68805NeerZuivN4ppJFYVS/ibJFlb3vDTZ6n4Oi6prml0wTfopp66x9u1rdc23y//g7z8JIerjPR/rn7v+qUp7pcJt4VqZt1K9W/TWij0rdLz0uNKvS1dYdJiq7HUDiOToZLWIa6FjNcc0ss1ILd2zVLmldbN4MukA/OXU5tnRZUt15LXXVb5undIffEh7Dhfq3j25ujQpSTMy0hXZLFXVP+1X5Z4fVflDbr2ZOZmpE/5UUlKiW265Rc1TUjSwVbpqqqpUUbpfMkYJKanqOOACp8YZkw8gUJWt2qfqvUclm3SgulSzFs3VlZ2H6o5hNysyKVpxvZorNjtFpcv3qmJDgWTqbvc8MaEBV6TBV7p27eq4Iu2cc85Rfn6+kpOTNWXKFA0dOlQHDx7U3r17ZbfbZYyR3W5XWVmZMjMztWfPHmVmZjr21a9fP8XFxTHBgI+EdDNt96EyFZVXqX+bFG3ILdCP//itTNUxRST9PDNnVa1Rv7ZNlVtYrp0FRzWkU3MaafCr/Px8ZWVlacKECXrqqaec3+xwqbT5LcnUSLLVPS/NXiNFJ9Y10jpeVvf6aPZ/PmDzcfXAz4a3Ga4jlUdUerxU6wrWaV/ZPh06ekg7f7tTSQOTlHRZkmNbm2zaV7ZPGw9tlIzUvXl3PXD+A/p4z8dMOgC/OvG8M0nSf2bkjMjMUNV/mmytbrpJ93+bo9FV1arN26eIuDjV7P9JZT8dUHSb1kq98856s35yRRr8wW63a/r06crNzdX8WTPUVDU69OMe2cLCFJ/cVMMnT1XbXn39XSbgkoTBLVVdUCF7WbUUbtOztz2qwR37KzozUVV7SlS9r0yx2SmK7ZGq2opqyUgJAzPqzQwK+MLevXtVUlKi77//Xlu2bNHIkSOVlZWlPXv26MiRI4qLi9PRo0cVHR2t7Oxsx4yfBw8e1K5du9SxY92dRkww4Fsh3Uz713cH9NHmfNls0rY3nlBV4T5l3PyEwqJ/np2zxm70wbcH9MS1PR2zfwL+snv3bse/WjzzzDOKioqSdn4ifXiPVFkqpXeXwk7839pILftKVeV1V679lFPXSJOkfhPrrmTrOtpPfwnwn1k8+9c1dj/f97mmr5iu3L/lqvTHUjUf19xpWyOjQ8cOyRgjm80mmZ8nHQD8qcmIkao5ckSVe37U0f93v6r2/KiwmGjpvPP0eUSkzrfZNL5VK1Xu2Kno7E5KmXCryr/4XDJcfYbA8tFHH+mVV17R7WOvU1TxYaX3HaD09p0km029hl/BjJ0IeCeeexbWJFJlXx1QdVW13vz2Qw1p11+XNuuj6IR4xfVqrsjUWMctnJHN49R0VHs/V45QdfjwYb3zzjsqKyuTMUb/93//p6qqKl1wwQXav3+/SkpKVFtbq7i4OKWlpSkpKUmxsbHatWuXDh48KLvdftr9btmyxTFLKLwjJJtpuw+V6W9rftT2A6UqPV6tg98sV8k3S5UyfIqi0n4+mUZH2NS+eYImDW7neMYa4C/FxcUaN26cKioqtHLlSseDKPXV01LxXik8Qtq75qTnpdnqrki77JG6GTxPbpyldpSGzPLxXwD87PN9n+uVLa+ofVJ7rdq/Sr2a91JRTpGKPi5S2nVpim0TW+8zdmPXuannqnuz7rq+8/V+qBqoL7pdW0U0baqSd9+Tqa2VLTxcVQfyNW3ji1p3/Lg+v+JXijtwQOGJTZQy4VY1GTxITQYP8nfZgJPS0lJ16NBBT8z7vdqoUof37lFqViv1uJSGL6zDMXGATaotqtRjK/+s59e+pvfH/VmZGZmqPnSs7oq0HqkqW31AskkJ53M1Gvzn66+/Vn5+vux2u9577z0dOXJEt956q2pra1VYWCipbtKB0tJShYeH69ChQ4qIiFDv3r3Vu3dvSXLM5nmyLVu26JtvvpEkrlTzopBspv3ruwN6Y32eyqtqZYxki4hSk/P+Swm9nAcMNbVS5/REXZzd4jR7AnzngQce0Lp167RkyRIlJibWrTy8U2qSIcWnSscKf26khUVK4VFSbDKNMwSkV7a8ovUF65VzKEeVtZXa89Me7fvLPsWfG6/UkfX/BS3CFqHL216uST0mMdkAAkrlD7mqzN2j8GbNZK+oUG1pqZ48fEgrjx7VwnPOUczuXVJ0jGqPlqlo0cuKatmSWToRUI4fP66PP/5YPXr0UNdmidr672Uydrs2r/iEZhoC1tEv9ivxglinRlhkywTZNkeoprhSH+1YqWfX/F33DpmkHunZUmSYwhMiFdkyQce+O6yKjQWSpPC4SJ6PBr8KDw/XV199pZycHI0ZM0YtW7ZUTU2N431jjONZaTabTc2bN1e/fv3OeMXZiWem8ew07wrJZtoVPTL07+0HtenHQ6qqrFRsm16Kz77AaZvIcJtqao1yC8v9VCXgbMmSJfrd736nMWPG1K04vFP68O6fZ+88eQbPxHOk7JFSv9v8UyzwC8Z3Ha9jtcd0vOq4dpfuVlV1leK7xCvjxgzZwpyf5RcbEat7+96ra7Kv8VO1wOkdXbZUR5cvl6mokIzRW8XFWlRUpPtapGloWrpUWSl7ba0imyY7nqPGM9EQKOx2u373u9/p97//vZb+810V/fiDJMkWFqbk9HP8XB1wese+O6QyW3zd43+NFJkep5KPcmWO1Wrn4T2a8cH/pxEdB2nqgP+WJNlLq2SO1TiuTKstr5ZszNgJ/+rQoYN++OEHbdmyRQMGDFCPHj1UW1vb4Lbx8fFq3769Bg8e/Iu3bvLsNN8IyWZa++YJmn5pR11zw8OqKC1R82secno/Mtym8DCbUuOjNZ1bOxEgrrnmGs2ePfvnFV+/JO1bX/dz9SlN34rDUlxq3VVpQADZe3SvmjVrpkEtB+nL/V/qjZ1vqPp4tWw2m7LuzKp7HtpJosOjteS/lnA1GgJS5Q+5qik6oqisLFVu365qY7ToSJGuTU7WuKZNZautVXTXrort2UPxFw1S5ZbNajJiZL0ZQAF/+fTTT/XYY4/ptttuU5Pj5dp9sEDxTVOU1aW7zh9znb/LA04rumNTVeaWqOZghWwRYbJFhskcq2tCvLThTWU0aaGnfvWAbDabwpvHKqplE4XFRjiuTGOyAfjbihUrtH//fuXm5uq6665TSkqKjDGqrq52bBMZGamIiAhFREQoLi5O3bt35xloASQkm2m7D5Vp9u//qMKcT5VyxQyn/3ir+9HIGJtGdkvnFk8EjCeffFLh4eF1C4d3SvvXS7VVdbN1niwiVur8X0wugIC0Km+VerfprTe3v6m3dr6lktwS/Tj/R7Wa0UqRKZFO29pk023dbqORhoB1dNlSlX74oUx1tWSMjtvtWtwyS0kREbJJCktIUOa8eY6G2YlnpR1+7jnHDKBcpQZ/OXLkiG6//XZ17NhR08bfpE0f/VPxyU1VUVqqlMxzmHAAAS0sNkI1h0slu1F402jVFB+XJFXWVGnWoIkyRkqIjlNY02jFdGzqaJ6VLt9b91w1ids74VcbNmzQm2++qf79+6tjx46y2+1Ot3dKUk1Njex2u44dO6ajR4/qq6++cszcCf8L83cB/nDvn9/XulefUHy3S9Wk+zCn9yJsNnXLTNaNA1rpvwe29lOFQH3x8f+ZZfbE7Z2FuyVbmCRTtz46ue72zugmUrMOXJWGgDQ4a7Ak6aXNL6miokJ5z+YpPD5cMZkx9bZtEddCd/S6w9clAi5rMmKkFBamouJiTdm3TwdrapQaGanIiAgpLEwxPXo0eOVZkxEjlXzN1czmCb969NFHVVBQoEWLFun7f3+s/N07JSM1O6el0tp38Hd5wBnFdElRZHqCbFHhssVFSsftevHrf2j57tVqFtdUqfFNJUn247U6vq1Qx747LKnuts74vunc3gm/+/DDD5Wbm6u4uLorJE9tpIWHhyslJUXJycmKiIhQkyZN1K1bN61cuVKHDx/2R8k4RchdmfbRN7n65/x7FJGcrpTh/+P0XmJMhIZ1SdOVvTK1aV+JnyoEfsGWd+saahGx0rGin9e3uaDhmTuBAJJflq/blt2mDkkdtHbhWlUXVqv93PYKi6r/bzt39KCRhsAW3a6tqiMj9Zv9+7SzslKRNtuJS9xli4xUVMuGnzkV3a4tV6TB7+69917169dP/fv3V/P/nIPjmzbT/u+3qGD3LrXt1dfPFQJnFpYQKXNIqv6hRCt2r9Ej/35G0y8Ypyuyf35WVHhCpOJ7tXA0zyKbx3FFGgLCpk2bdNVVV+mccxoeKyQnJ6u2tlbZ2dmKi4tT165dmaUzwIRMM+3HwnL96at8/WP1LsV3vUTxXQYrLDLaaZthXdI0//peenr5Ti1ZnydJmsYz0xBoMntJcc2k0p/keOqqwqXk1szciYD3121/1ZaKLSr5ukRHVh1RxriMBq9Ku6TlJUw4gIBW+UOu8h9/XP+7caO+PXZcL2dlqVV0lGSzKbJVKyVcdJHiLxqkw889x7PREJASExM1uH9frXnrdXUaeJGuffD/U27OepUfKeTKNAS80mV7FHfASHZpz5H9mvr+I7q4XX/dddGEug3CJVt0hJoMOkcJ/TP8WyzQgN69e6tXr14Nvmez2ZSamqqqqiq1aNFCZWVlkpilM9CETDPtrQ379bcvtqtWNiVdcEO9h1xHhduUFFv3vJ4remQ4/S8QUHYtlwo2/WchTIqIkdK7Sf0m+rUswBXlleUyMrLF2JRyaYpSLkmpt02bJm10bfa1fqgOcN2R11/TH998Q++WlujR9Az1iYtTePMWsh89qvCkRDUdO1ZHly3l2WgIWJGRkfrh6zXK+eQj5W3dpEsn3qmC3btUXJDPlWkIeNU/lUm2eFVUHdOkdx5Q09hEPT3qIYXZ/nOlu12S3ch+tPqM+wH8Zfjw4Q2uDwsLU7du3RQbG6vt27dr8+bNOnLkiKS6q9G4Ii1whEwzbff2zdr75ylKvXKW4jtd4PReYkyErj6vpeMZae2bJ3BFGgLT4Z3S/g0nrbBLWf2lXz3JM9JgCYeOHVLN8RrFto5Vk+5N6r3fMr6lqk21thZu1aCWg/xQIXBmVXv3as/Mu3Vs3TqlRkRoarNmujIpSZJkqqoU26unqnb/4JitUxLPRkPA6jTwIuVt3aSin/Zpx+ov1GngRY71QGCzSXbpwNFDshu7XhzzeyXF/DyusMVGKK53C56NhoAVFtbw4+vtdrskqV+/foqLi1NmZqZ++uknrkYLQCHTTHvnqQcU2SxLce361Xuvxm6UEh+l9s0T/FAZ4IaPH5L2rf95OTyGRhos5cCHB1TwTYHaPdiu3ntRYVHq3aK3Wie11vA2Df9rHeBvxe+9p0NffqloSaMSkxRxypXuKRNuVeWWzY5bO7kiDYHqRAOt76hfq2D3LnUaeJFSMlvq/Ktv8HdpwC8ytXYZm1GLhGb65NbFP1+RJknhNsVkp6jpqPb+KxA4C0VFRUpNTXVchcYMnoEpZJpp1RVlyrhhnmwRkY51Nkm3XNhGMtzSCQv47h/Sjn85r0vK+nnCARpqsIAf//mjUi9PVVik87/GRYdFq1eLXprUc5LaJvFsKQSu3cs+1q17cnVDclPdmfrzFQ+26GjZwsNVuWWzUmmgwQJ2rP5Cm1Z8Ikk00GA5a/d8qz998VctvvpRNYmOd6yPvyBD4fFRXJEGS7LZbDrnnHO4ldMiQqaZlnb5/ygyOd1pXa+WSZozisslYRFfzHdejmoitewjffN/dctMPAALiM2KVdqYNKd1EYrQpB6TNLzNcBppCHh3fbNR4TabrklOdqyL6pytpjfeJHvhYW7phGVwSyes7J7356lrWkclxf58a2fMuSlqeiWTZ8DaOnbsyJVoFtHwjboB5plnnlGbNm0UExOjAQMGaN26dW7vI75jf6fl3lnJeuL6Xh6qEPhlZ53jY8XOy9cukgbfI/W+ue7KNMDLPHEubnNbG9kifr4tLsoWpbdHv63be95OIw1e54kM76+q0nPntFTziP/8e2RSktq/+65SrrtWqXfeyayd8DpP5FiS45bOlMyWHq4QODNPZDgmMkrPXjlHEWH/ORfbpPDkGFUfqvBwtUB9njoPnywqKkrdu3fn2WgWEvDNtCVLlmjmzJmaM2eONm7cqJ49e2rEiBE6ePBgo/fZOS1B70y5kGekwWc8nuPkNlLHy+pu7Rwyi1s84XWeynB082in5Q3jNtBEg094KsO/zWql7JgYx3LTK6/0dKnAaXljXAz4kqcyvPCqh5QSl+xYju3VQse3FerYd4c9XDHgzFvn4d69e2vMmDFKTeUWZasI+Gba/PnzNWnSJE2YMEHnnnuunn/+ecXFxenll19u1P7CJC29i3uQ4VuezXGY9KsnPF4jcCaePhdL0pzz53iwQuDMPJXhC5v8fEtR4lVXqenYsZ4uFTgtb5yLAV/yVIa7pP18O2eTy1opcWiW4vum86w0eJ03zsM9evRQv371J0pEYAvoZ6ZVVVVpw4YNuv/++x3rwsLCNGzYMK1evbrBz1RWVqqystKxXFJSIkmKqC6XJP1j8vkqLCz0YtWBqbq6WhUVFSosLFRkZOQvf8DDjh49Kkkyxvj8d/ubuzk+XYaLqqPqVrQfKqWcJ4VYjv2dYSl0c+zJc3HYsTBFKEK/v+j36p/aP6TOx2TYfzyZ4aP/ub0z7sILFXPvLJVJKiPHPhOqGZY8OJ4oKvJ+sQHM3xmWQjfHnjwXl/znv+1iuqYotleCSnVM6hWvah2TCo958a/wPzLsP57McHV1tSTp3HPPdUw4wLjYdzyR4YBuph0+fFi1tbVKS3N+WHVaWpq+//77Bj8zb948zZ07t9767QtvlST1edLzdcJ1R48eVVJSkr/L8Cl3c3y6DHd64qf//PQP6bZ/eKNUuCjUcuzJc/HGmRslSVfoCs8XCpeR4TqNyfDwb3PqftiyWXrhz54uFS4KtQxLHhxPdOrktRrhnlDLsSfPxRctvNYrNcI9ZLhOYzL8xBPcaRQIzibDAd1Ma4z7779fM2fOdCwXFxerdevW2rt3b0j9H/1UpaWlysrKUl5enhITE33++40xOnr0qDIzM33+u62GDDfM3xmWyLE7yHF9ZNhayHDD/J1jMuw6Mtwwf2dYIsfuIMf1kWFrIcMN83eOPZHhgG6mpaamKjw8XAUFBU7rCwoKlJ6e3uBnoqOjFR0dXW99UlKS3042gSQxMdFv30OonizczTEZPjN/ZlgKzRxzLvYsMux7ZNjzGE/4HuMJz+Jc7Huciz2LDPseGfY8K48nAnoCgqioKPXp00fLly93rLPb7Vq+fLkGDhzox8oA15FjWB0ZhtWRYQQDcgyrI8OwOjKMkwX0lWmSNHPmTI0fP159+/ZV//799dRTT6m8vFwTJkzwd2mAy8gxrI4Mw+rIMIIBOYbVkWFYHRnGCQHfTLv++ut16NAhPfTQQ8rPz1evXr20dOnSeg/9O53o6GjNmTOnwUsrQwnfg3+dTY45dnX4HvyLc/HZ4zvwLzLsGXwP/sV44uzxPfgX5+Kzx3fgX2TYM4Lhe7CZUJvPFgAAAAAAAGikgH5mGgAAAAAAABBIaKYBAAAAAAAALqKZBgAAAAAAALiIZhoAAAAAAADgoqBupj3zzDNq06aNYmJiNGDAAK1bt87fJfncqlWrNGrUKGVmZspms+ndd9/1d0lwU6jnmAxbHxkmw1YX6hmWyHEwCPUck2HrI8Nk2OpCPcNScOU4aJtpS5Ys0cyZMzVnzhxt3LhRPXv21IgRI3Tw4EF/l+ZT5eXl6tmzp5555hl/l4JGIMdk2OrIMBm2OjJchxxbGzkmw1ZHhsmw1ZHhOkGVYxOk+vfvb6ZMmeJYrq2tNZmZmWbevHl+rMq/JJl33nnH32XADeTYGRm2HjLsjAxbDxmujxxbDzl2Roathww7I8PWQ4brs3qOg/LKtKqqKm3YsEHDhg1zrAsLC9OwYcO0evVqP1YGuI4cw+rIMKyODCMYkGNYHRmG1ZHh4BSUzbTDhw+rtrZWaWlpTuvT0tKUn5/vp6oA95BjWB0ZhtWRYQQDcgyrI8OwOjIcnIKymQYAAAAAAAB4Q1A201JTUxUeHq6CggKn9QUFBUpPT/dTVYB7yDGsjgzD6sgwggE5htWRYVgdGQ5OQdlMi4qKUp8+fbR8+XLHOrvdruXLl2vgwIF+rAxwHTmG1ZFhWB0ZRjAgx7A6MgyrI8PBKcLfBXjLzJkzNX78ePXt21f9+/fXU089pfLyck2YMMHfpflUWVmZdu3a5VjOzc1VTk6OUlJS1KpVKz9WBleQYzJsdWSYDFsdGa5Djq2NHJNhqyPDZNjqyHCdoMqxv6cT9aann37atGrVykRFRZn+/fubNWvW+Lskn1uxYoWRVO81fvx4f5cGF4V6jsmw9ZFhMmx1oZ5hY8hxMAj1HJNh6yPDZNjqQj3DxgRXjm3GGOPlfh0AAAAAAAAQFILymWkAAAAAAACAN9BMAwAAAAAAAFxEMw0AAAAAAABwEc00AAAAAAAAwEU00wAAAAAAAAAX0UwDAAAAAAAAXEQzDQAAAAAAAHARzTQAAAAAAADARTTTAkibNm301FNPOZZtNpvefffds9qnJ/YBuIMcw+rIMKyODCMYkGNYHRmG1ZHhM4vwdwE4vQMHDqhp06Yubfvwww/r3XffVU5OTqP3AXgDOYbVkWFYHRlGMCDHsDoyDKsjw85opnlYVVWVoqKiPLKv9PT0gNgHQg85htWRYVgdGUYwIMewOjIMqyPD3sNtnr/g4osv1tSpUzV16lQlJSUpNTVVDz74oIwxkuouffztb3+rcePGKTExUZMnT5YkffHFFxo0aJBiY2OVlZWl3/zmNyovL3fs9+DBgxo1apRiY2PVtm1b/f3vf6/3u0+9BHLfvn0aO3asUlJSFB8fr759+2rt2rVavHix5s6dq2+//VY2m002m02LFy9ucB+bNm3S0KFDFRsbq2bNmmny5MkqKytzvH/LLbdo9OjReuKJJ5SRkaFmzZppypQpqq6u9uC3Cl8jx+TY6sgwGbY6MkyGgwE5JsdWR4bJsNWR4QDKsMEZDRkyxCQkJJjp06eb77//3vztb38zcXFx5oUXXjDGGNO6dWuTmJhonnjiCbNr1y7HKz4+3ixYsMDs2LHDfPnll6Z3797mlltucez38ssvNz179jSrV68269evNxdccIGJjY01CxYscGwjybzzzjvGGGOOHj1q2rVrZwYNGmQ+//xzs3PnTrNkyRLz1VdfmYqKCnP33Xebrl27mgMHDpgDBw6YioqKevsoKyszGRkZZsyYMWbTpk1m+fLlpm3btmb8+PGO3zl+/HiTmJho7rjjDrNt2zbz/vvvO/29sCZyTI6tjgyTYasjw2Q4GJBjcmx1ZJgMWx0ZDpwM00z7BUOGDDFdunQxdrvdse6+++4zXbp0McbUhXX06NFOn5k4caKZPHmy07rPP//chIWFmWPHjpnt27cbSWbdunWO97dt22YknTasf/7zn02TJk1MYWFhg3XOmTPH9OzZs976k/fxwgsvmKZNm5qysjLH+x9++KEJCwsz+fn5xpi6sLZu3drU1NQ4trn22mvN9ddff5pvCFZAjsmx1ZFhMmx1ZJgMBwNyTI6tjgyTYasjw4GTYW7zdMH5558vm83mWB44cKB27typ2tpaSVLfvn2dtv/222+1ePFiJSQkOF4jRoyQ3W5Xbm6utm3bpoiICPXp08fxmc6dOys5Ofm0NeTk5Kh3795KSUlp9N+xbds29ezZU/Hx8Y51F154oex2u7Zv3+5Y17VrV4WHhzuWMzIydPDgwUb/XgQGckyOrY4Mk2GrI8NkOBiQY3JsdWSYDFsdGQ6MDDMBgQecfPAlqaysTLfffrt+85vf1Nu2VatW2rFjh9u/IzY2ttH1uSsyMtJp2WazyW63++z3wz/IMayODMPqyDCCATmG1ZFhWB0Z9g2uTHPB2rVrnZbXrFmjjh07OnVHT3beeedp69at6tChQ71XVFSUOnfurJqaGm3YsMHxme3bt6u4uPi0NfTo0UM5OTkqKipq8P2oqChHJ/p0unTpom+//dbpQYNffvmlwsLClJ2dfcbPwvrIMayODMPqyDCCATmG1ZFhWB0ZDgw001ywd+9ezZw5U9u3b9drr72mp59+WtOnTz/t9vfdd5+++uorTZ06VTk5Odq5c6fee+89TZ06VZKUnZ2tkSNH6vbbb9fatWu1YcMG3XbbbWfs7o4dO1bp6ekaPXq0vvzyS/3www966623tHr1akl1s3bk5uYqJydHhw8fVmVlZb193HTTTYqJidH48eO1efNmrVixQtOmTdPNN9+stLS0s/yWEOjIMayODMPqyDCCATmG1ZFhWB0ZDgw001wwbtw4HTt2TP3799eUKVM0ffp0xxSzDenRo4dWrlypHTt2aNCgQerdu7ceeughZWZmOrZZtGiRMjMzNWTIEI0ZM0aTJ09WixYtTrvPqKgoffzxx2rRooWuuOIKde/eXY8++qij+3z11Vdr5MiRuuSSS9S8eXO99tpr9fYRFxenZcuWqaioSP369dM111yjSy+9VH/605/O4tuBVZBjWB0ZhtWRYQQDcgyrI8OwOjIcGGzGGOPvIgLZxRdfrF69eumpp57ydylAo5FjWB0ZhtWRYQQDcgyrI8OwOjIcOLgyDQAAAAAAAHARzTQAAAAAAADARdzmCQAAAAAAALiIK9MAAAAAAAAAF9FMAwAAAAAAAFxEMw0AAAAAAABwEc00AAAAAAAAwEU00wAAAAAAAAAX0UwDAAAAAAAAXEQzDQAAAAAAAHARzTQAAAAAAADARTTTAAAAAAAAABf5tZk2b9489evXT02aNFGLFi00evRobd++3Wmbiy++WDabzel1xx13+KliwBkZhtWRYQQDcgyrI8OwOjKMYECO4Q6/NtNWrlypKVOmaM2aNfrkk09UXV2t4cOHq7y83Gm7SZMm6cCBA47XY4895qeKAWdkGFZHhhEMyDGsjgzD6sgwggE5hjsi/PnLly5d6rS8ePFitWjRQhs2bNDgwYMd6+Pi4pSenu7SPisrK1VZWelYttvtKioqUrNmzWSz2TxTONxmjNHRo0eVmZmpsLDgubuYDIeWYMyxNzIskeNAFYwZljgXhxIyTIaDQTDmmPFEaAnGDEuci0OJRzJsAsjOnTuNJLNp0ybHuiFDhpjU1FTTrFkz07VrVzN79mxTXl5+2n3MmTPHSOIVoK+8vDxfRMlvyHBovII5x57IsDHkONBfwZxhYzgXh8KLDJPhYHgFc44ZT4TGK5gzbAzn4lB4nU2GbcYYowBgt9t15ZVXqri4WF988YVj/QsvvKDWrVsrMzNT3333ne677z71799fb7/9doP7ObXzW1JSolatWikvL0+JiYle/zvQsNLSUmVlZam4uFhJSUn+LscryHDwC/YceyrDEjkOVMGeYYlzcbAjw2Q4GAR7jhlPBL9gz7DEuTjYeSTDjW7Dedgdd9xhWrdu/YudweXLlxtJZteuXS7tt6SkxEgyJSUlnigTjRQKx4EMB79gPxbeyrAxwf/dWUUoHAfOxcEtFI4DGQ5+wX4sGE8Ev1A4DpyLg5snjkNA3OA8depUffDBB1qxYoVatmx5xm0HDBggSdq1a5cvSgNcQoZhdWQYwYAcw+rIMKyODCMYkGO4wq8TEBhjNG3aNL3zzjv67LPP1LZt21/8TE5OjiQpIyPDy9UBv4wMw+rIMIIBOYbVkWFYHRlGMCDHcIdfm2lTpkzRq6++qvfee09NmjRRfn6+JCkpKUmxsbHavXu3Xn31VV1xxRVq1qyZvvvuO911110aPHiwevTo4c/SAUlkGNZHhhEMyDGsjgzD6sgwggE5hls8cb9pY+k0MyosWrTIGGPM3r17zeDBg01KSoqJjo42HTp0MLNmzXLrvlbuSQ4MwXocyHBoCcZj4YsMGxOc350VBetx4FwcOoL1OJDh0BKMx4LxRGgJ1uPAuTh0eOI4+P02zzPJysrSypUrfVQN4D4yDKsjwwgG5BhWR4ZhdWQYwYAcwx1uT0DQpk0bPfLII9q7d6836gEAAAACHmNiAABCl9vNtBkzZujtt99Wu3btdNlll+n1119XZWWlN2oDAAAAAhJjYgAAQlejmmk5OTlat26dunTpomnTpikjI0NTp07Vxo0bvVEjAAAAEFAYEwMAELrcbqadcN5552nhwoX66aefNGfOHL344ovq16+fevXqpZdffvkX7zcGAAAArI4xMQAAoafRExBUV1frnXfe0aJFi/TJJ5/o/PPP18SJE7Vv3z79v//3//Tpp5/q1Vdf9WStAAAAQEBhTAwAQOhxu5m2ceNGLVq0SK+99prCwsI0btw4LViwQJ07d3Zs8+tf/1r9+vXzaKEAAABAoGBMDABA6HK7mdavXz9ddtlleu655zR69GhFRkbW26Zt27a64YYbPFIgAAAAEGgYEwMAELrcbqb98MMPat269Rm3iY+P16JFixpdFAAAABDIGBMDABC63J6A4JJLLlFhYWG99cXFxWrXrp1HigIAAAACGWNiAABCl9vNtD179qi2trbe+srKSu3fv98jRQEAAACBjDExAAChy+XbPP/5z386fl62bJmSkpIcy7W1tVq+fLnatGnj0eIAAACAQMKYGAAAuNxMGz16tCTJZrNp/PjxTu9FRkaqTZs2evLJJz1aHAAAABBIGBMDAACXm2l2u11S3axEX3/9tVJTU71WFAAAABCIGBMDAAC3Z/PMzc31Rh0AAACAZTAmBgAgdLnUTFu4cKEmT56smJgYLVy48Izb/uY3v/FIYQAAAEAgYUwMAAAkF5tpCxYs0E033aSYmBgtWLDgtNvZbDYGDgAAAAhKjIkBAIDkYjPt5MvYuaQdAAAAoYgxMQAAkKSws91BbW2tcnJydOTIEU/UAwAAAC/Z1rmLtnXu4u8yghJjYgAAQofbzbQZM2bopZdeklQ3aBg8eLDOO+88ZWVl6bPPPnNrX/PmzVO/fv3UpEkTtWjRQqNHj9b27dudtjl+/LimTJmiZs2aKSEhQVdffbUKCgrcLRvwCjIMqyPDCAbkGP7AmBj4GRlGMCDHcIfbzbQ333xTPXv2lCS9//772rNnj77//nvdddddeuCBB9za18qVKzVlyhStWbNGn3zyiaqrqzV8+HCVl5c7trnrrrv0/vvv64033tDKlSv1008/acyYMe6WDXgFGYbVkWEEA3IMf2BMDPyMDCMYkGO4xbgpOjra5OXlGWOMmTRpkpk+fboxxpgffvjBNGnSxN3dOTl48KCRZFauXGmMMaa4uNhERkaaN954w7HNtm3bjCSzevXqBvdx/PhxU1JS4njl5eUZSaakpOSsasPZKSkpCYnjQIaDWyjk2BMZNoYcB6pQyLAxnIvPZGt2Z7M1u7O/y2i0QMowY2I0ViDl2FsYTwS3UMiwMZyLg5knMuz2lWlpaWnaunWramtrtXTpUl122WWSpIqKCoWHhzeqoXdCSUmJJCklJUWStGHDBlVXV2vYsGGObTp37qxWrVpp9erVDe5j3rx5SkpKcryysrLOqibAHWQYVueJDEvkGP7FuRi+wJgYOD3GEwgGnItxJm430yZMmKDrrrtO3bp1k81mcwRp7dq16ty5c6MLsdvtmjFjhi688EJ169ZNkpSfn6+oqCglJyc7bZuWlqb8/PwG93P//ferpKTE8crLy2t0TYA7yDCszlMZlsgx/IdzMXyFMTHQMMYTCAaci/FLItz9wMMPP6xu3bopLy9P1157raKjoyVJ4eHhmj17dqMLmTJlijZv3qwvvvii0fuQpOjoaEdNgC+RYVidpzIskWP4D+di+ApjYqBhjCcQDDgX45e43UyTpGuuuabeuvHjxze6iKlTp+qDDz7QqlWr1LJlS8f69PR0VVVVqbi42Kn7W1BQoPT09Eb/PsDTyDCsjgwjGJBj+BpjYsAZGXbNvtmfS5JaPjrIz5WgIeQYrmhUM2358uVavny5Dh48KLvd7vTeyy+/7PJ+jDGaNm2a3nnnHX322Wdq27at0/t9+vRRZGSkli9frquvvlqStH37du3du1cDBw5sTOmAR5FhWB0ZRjAgx/AXxsRAHTKMYECO4Q63m2lz587VI488or59+yojI0M2m63Rv3zKlCl69dVX9d5776lJkyaO+4yTkpIUGxurpKQkTZw4UTNnzlRKSooSExM1bdo0DRw4UOeff36jfy/gKWQYVkeGEQzIMfyBMTHwMzKMYECO4RZ3p/9MT083f/3rXxs9fejJJDX4WrRokWObY8eOmf/5n/8xTZs2NXFxcebXv/61OXDggMu/I1Sm7Q10wXocyHBoCcZj4YsMGxOc350VBetx4Fzsuq3Znc3W7M7+LqPRAuk4MCZGYwXjsWA84Z68+1aZvPtW+buMRguW43AqzsWhwxPHwWaMMe4035o1a6Z169apffv27nzMb0pLS5WUlKSSkhIlJib6u5yQxXFoPL67wMGxaDy+u8DAcWi8YPnutnXuIknq8v02P1fSOIF0HBgTo7E4Fo0XLN+d1Z+ZFizHwR/47gKDJ45DmLsfuO222/Tqq6826pcBAAAAwYAxMQAAocvtZ6YdP35cL7zwgj799FP16NFDkZGRTu/Pnz/fY8UBAAAAgYgxMQAAocvtZtp3332nXr16SZI2b97s9N7ZPHgVAAAAsArGxAAAhC63m2krVqzwRh0AAACAZTAmBgAgdLn9zLQTdu3apWXLlunYsWOSJDfnMQAAAAAsjzExAAChx+1mWmFhoS699FJ16tRJV1xxhQ4cOCBJmjhxou6++26PFwgAAAAEGsbEAACELrebaXfddZciIyO1d+9excXFOdZff/31Wrp0qUeLAwAAAAIRY2IAAEKX289M+/jjj7Vs2TK1bNnSaX3Hjh31448/eqwwAAAAIFAxJgYAIHS5fWVaeXm507++nVBUVKTo6GiPFAUAAAAEMsbEAACELrebaYMGDdJf//pXx7LNZpPdbtdjjz2mSy65xKPFAQAAAIGIMTEAAKHL7ds8H3vsMV166aVav369qqqqdO+992rLli0qKirSl19+6Y0aAQAAgIDCmBgAgNDl9pVp3bp1044dO3TRRRfpqquuUnl5ucaMGaNvvvlG7du390aNAAAAQEBhTAwAQOhy+8o0SUpKStIDDzzg6VoAAAAAy2BMDABAaHKpmfbdd9+5vMMePXo0uhgAAAAgUDEmBgAAkovNtF69eslms8kYI5vN5lhvjJEkp3W1tbUeLhEAAADwP8bEAABAcvGZabm5ufrhhx+Um5urt956S23bttWzzz6rnJwc5eTk6Nlnn1X79u311ltvebteAAAAwC8YEwMAAMnFK9Nat27t+Pnaa6/VwoULdcUVVzjW9ejRQ1lZWXrwwQc1evRojxcJAAAA+BtjYgAAIDViNs9Nmzapbdu29da3bdtWW7du9UhRAAAAQCBjTAwAQOhyu5nWpUsXzZs3T1VVVY51VVVVmjdvnrp06eLWvlatWqVRo0YpMzNTNptN7777rtP7t9xyi2w2m9Nr5MiR7pYMeA0ZRjAgx7A6Mgx/YEwMOCPHsDoyDHe4dJvnyZ5//nmNGjVKLVu2dMxS9N1338lms+n99993a1/l5eXq2bOnbr31Vo0ZM6bBbUaOHKlFixY5lqOjo90tGfAaMoxgQI5hdWQY/sCYGHBGjmF1ZBjucLuZ1r9/f/3www/6+9//ru+//16SdP311+vGG29UfHy8W/u6/PLLdfnll59xm+joaKWnp7u8z8rKSlVWVjqWS0tL3aoJcAcZRjAgx7A6Mgx/YEwMOCPHsDoyDHe4fZunJMXHx2vy5MmaP3++5s+fr0mTJrk9aHDVZ599phYtWig7O1t33nmnCgsLz7j9vHnzlJSU5HhlZWV5pS7AVWQYwYAc1+n+Snd1f6W7v8tAI5BheANjYsA95BhWR4ZxQqOaab4ycuRI/fWvf9Xy5cv1hz/8QStXrtTll1+u2tra037m/vvvV0lJieOVl5fnw4oBZ2QYwYAcw+rIMKyODCMYkGNYHRnGydy+zdOXbrjhBsfP3bt3V48ePdS+fXt99tlnuvTSSxv8THR0NPctI2CQYQQDcgyrI8OwOjKMYECOYXVkGCcL6CvTTtWuXTulpqZq165d/i4FaBQyjGBAjmF1ZBhWR4YRDMgxrI4MhzZLNdP27dunwsJCZWRk+LsUoFHIMIIBOYbVkWFYHRlGMCDHsDoyHNoafZtnVVWVDh48KLvd7rS+VatWLu+jrKzMqYubm5urnJwcpaSkKCUlRXPnztXVV1+t9PR07d69W/fee686dOigESNGNLZswKPIMIIBOYbVkWH4E2NioA45htWRYbjFuGnHjh3moosuMmFhYU4vm81mwsLC3NrXihUrjKR6r/Hjx5uKigozfPhw07x5cxMZGWlat25tJk2aZPLz8936HSUlJUaSKSkpcetz8KxgPQ5kOLQE67Egx67rtrib6ba4m7/LaLRgOQ6nIsOu25rd2WzN7uzvMhotkI4DY2I0VrAeC3Lsurz7Vpm8+1b5u4xGC5bjcCoyHDo8cRzcvjLtlltuUUREhD744ANlZGTIZrO5uwuHiy++WMaY076/bNmyRu8b8AUyjGBAjmF1ZBj+wJgYcEaOYXVkGO5wu5mWk5OjDRs2qHPnzt6oBwAAAAh4jIkBAAhdbjfTzj33XB0+fNgbtQAAAACWwJgYgLv2zf7c3yUA8BC3Z/P8wx/+oHvvvVefffaZCgsLVVpa6vQCAAAAgh1jYgAAQpfbV6YNGzZMknTppZc6rTfGyGazqba21jOVAQAAAAGKMTEAAKHL7WbaihUrvFEHAAAAYBmMiQEACF1uN9OGDBnijToAAAAAy2BMDABA6HK7mSZJxcXFeumll7Rt2zZJUteuXXXrrbcqKSnJo8UBAAAAgYoxMQAAocntCQjWr1+v9u3ba8GCBSoqKlJRUZHmz5+v9u3ba+PGjd6oEQAAAAgojIkBAAhdbl+Zdtddd+nKK6/UX/7yF0VE1H28pqZGt912m2bMmKFVq1Z5vEgAAAAgkDAmBgAgdLndTFu/fr3ToEGSIiIidO+996pv374eLQ4AAAAIRIyJAQAIXW7f5pmYmKi9e/fWW5+Xl6cmTZp4pCgAAAAgkDEmBgAgdLndTLv++us1ceJELVmyRHl5ecrLy9Prr7+u2267TWPHjvVGjQAAAEBAYUwMAEDocvs2zyeeeEI2m03jxo1TTU2NJCkyMlJ33nmnHn30UY8XCAAAAAQaxsQAAIQut5tpUVFR+uMf/6h58+Zp9+7dkqT27dsrLi7O48UBAAAAgYgxMQAAocvtZtoJcXFx6t69uydrAQAAACyFMTEAAKHHpWbamDFjtHjxYiUmJmrMmDFn3Pbtt9/2SGEAAABAIGFMDAAAJBebaUlJSbLZbJLqZi468TMAAAAQKhgTAwAAycXZPBctWuSY4nvx4sVatGjRaV/uWLVqlUaNGqXMzEzZbDa9++67Tu8bY/TQQw8pIyNDsbGxGjZsmHbu3OnW7wC8iQwjGJBjWB0Zhq8wJgZOjxzD6sgw3OFSM+1kQ4cOVXFxcb31paWlGjp0qFv7Ki8vV8+ePfXMM880+P5jjz2mhQsX6vnnn9fatWsVHx+vESNG6Pjx4+6WDXgFGUYwIMewOjIMf2BMDDgjx7A6Mgy3GDfZbDZTUFBQb31BQYGJiIhwd3cOksw777zjWLbb7SY9Pd08/vjjjnXFxcUmOjravPbaay7vt6SkxEgyJSUlja4NZy8UjgMZDn6hcCzI8Zl1W9zNdFvczd9lNFqwHIczIcNntjW7s9ma3dnfZTRaIB0HxsRorFA4FuS4YXn3rXJ6WZXVj4MryPCZzZkzx8yZM8ffZTSaJ46Dy7N5fvfdd46ft27dqvz8fMdybW2tli5dqnPOOafRTb1T5ebmKj8/X8OGDXOsS0pK0oABA7R69WrdcMMNDX6usrJSlZWVjuXS0lKP1QS4gwwjGJBjWB0ZhqcxJgbcR45hdWQYp3K5mdarVy/ZbDbZbLYGL12PjY3V008/7bHCTgxM0tLSnNanpaU5DVpONW/ePM2dO9djdQCNRYYRDMgxrI4Mw9MYEwPuI8ewOjKMU7n8zLTc3Fzt3r1bxhitW7dOubm5jtf+/ftVWlqqW2+91Zu1uuT+++9XSUmJ45WXl+fvkgC3kGEEA3IMqyPDOB3GxIDvkGNYHRkOXi5fmda6dWtJkt1u91oxJ0tPT5ckFRQUKCMjw7G+oKBAvXr1Ou3noqOjFR0d7e3yfK7N7A8lSXse/ZWfK4GryDCCATmu0/2V7v4uAY1EhuFpjIkB95FjWB0Zxqlcbqad8Ne//vWM748bN67RxZysbdu2Sk9P1/Llyx3hLC0t1dq1a3XnnXd65HcA3kSGEQzIMayODMNbGBMDriPHsDoyjFO53UybPn2603J1dbUqKioUFRWluLg4twYOZWVl2rVrl2M5NzdXOTk5SklJUatWrTRjxgz97ne/U8eOHdW2bVs9+OCDyszM1OjRo90t27JOXJGGwESGEQzIMayODMMfGBMDzsgxrI4Mwx1uN9OOHDlSb93OnTt15513atasWW7ta/369brkkkscyzNnzpQkjR8/XosXL9a9996r8vJyTZ48WcXFxbrooou0dOlSxcTEuFs24BVkGMGAHMPqyDD8gTEx4Iwcw+rIMNxhM8YYT+xo/fr1+u///m99//33ntidx5SWliopKUklJSVKTEz0dzluO/XKNKs+M83qx8Gf+O4CB8ei8az+3Z36zLRN4zf5qZKzY/Xj4E/B8t1t69xFktTl+21+rqRxrHAcGBPjl3AsGs/q392+2Z87Lbd8dJCfKjk7Vj8O/hQs393DDz/s9L9W44nj4PJsnr8kIiJCP/30k6d2BwAAAFgOY2IAAIKf27d5/vOf/3RaNsbowIED+tOf/qQLL7zQY4UBAAAAgYoxMQAAocvtZtqpD9ez2Wxq3ry5hg4dqieffNJTdQEAAAABizExAAChy+1mmt1u90YdAAAAgGUwJgYAhBqrPiPNG87qmWnGGHlo/gIAAADAkhgTAwAQWhrVTHvppZfUrVs3xcTEKCYmRt26ddOLL77o6doAAADgAds6d3HM5AnPYUwMAEBocvs2z4ceekjz58/XtGnTNHDgQEnS6tWrddddd2nv3r165JFHPF4kAAAAEEgYEwMAELrcbqY999xz+stf/qKxY8c61l155ZXq0aOHpk2bxsABAAAAQY8xMQAAocvt2zyrq6vVt2/feuv79OmjmpoajxQFAAAABDLGxAAAhC63m2k333yznnvuuXrrX3jhBd10000eKQoAAAAIZIyJAQAIXS7d5jlz5kzHzzabTS+++KI+/vhjnX/++ZKktWvXau/evRo3bpx3qgQAAAD8jDExAACQXGymffPNN07Lffr0kSTt3r1bkpSamqrU1FRt2bLFw+UBAAAAgYExMQAAkFxspq1YscLbdQAAAAABjTExAACQGvHMNAAAAAAAACBUuXRl2pgxY7R48WIlJiZqzJgxZ9z27bff9khhAAAAQCBhTAwAACQXm2lJSUmy2WyOnwEAAIBQw5jY/568/r8cP9+95AM/VgIACGUuNdMWLVokSTLGaO7cuWrevLliY2O9WhgAAAAQSBgTAwAAyc1nphlj1KFDB+3bt89b9QAAAAABjTExAAChza1mWlhYmDp27KjCwkJv1ePk4Ycfls1mc3p17tzZJ78b8JSQz/HDSXUvWFbIZxiWR4bhab4eE0vkGNZHhmF1ZBgnc+k2z5M9+uijmjVrlp577jl169bNGzU56dq1qz799FPHckSE2yUDfkeOYXVkGFZHhuFpvh4TS6Gd45OflQbrCuUMIziQYZzg9pEfN26cKioq1LNnT0VFRdV7TkRRUZHHipPqwpmenu7RfQK+Ro5hdWQYVkeG4Wm+HhNL5BjWR4ZhdWQYJ7jdTFuwYIFjFiNf2LlzpzIzMxUTE6OBAwdq3rx5atWq1Wm3r6ysVGVlpWO5tLTUF2UCZ+ROjskwAhHnYlgdGYan+XpMLDGegPVxLobVkWGc4HYz7ZZbbvFCGQ0bMGCAFi9erOzsbB04cEBz587VoEGDtHnzZjVp0qTBz8ybN09z5871WY3AL3E3x2QYgYZzMayODMMbfDkmlhhPwPo4F8PqyDBOZjPGGHc+EB4ergMHDqhFixZO6wsLC9WiRQvV1tZ6tMCTFRcXq3Xr1po/f74mTpzY4DYNdX6zsrJUUlKixMREr9XmLW1mf+i0vOfRX/mpkrNTWlqqpKQkyx4HT/qlHAdbhhucfODhEt/X4QHkuE4onou7v9LdaXnT+E1+quTskOE6oZjhbZ27OC13+X6bnyo5O4GUYX+OiaXQG0809My0u5d84IdKzl4g5difQvFcvG/2507LLR8d5KdKzg4ZrhOKGX744YfPuGwVnsiw21emna73VllZqaioqEYV4ark5GR16tRJu3btOu020dHRio6O9modwNn4pRyTYQQ6zsWwOjIMT/DnmFhiPAHr41wMqyPDoc3lZtrChQslSTabTS+++KISEhIc79XW1mrVqlVenxa2rKxMu3fv1s033+zV3wN4EzmG1ZFhWB0ZxtkIhDGxFDo5ZhbP4BUqGUbwIsOhzeVm2oIFCyTV/Svc888/r/DwcMd7UVFRatOmjZ5//nmPFnfPPfdo1KhRat26tX766SfNmTNH4eHhGjt2rEd/D+BN5BhWR4ZhdWQYnuSPMbFEjmF9ZBhWR4ZxMpebabm5uZKkSy65RG+//baaNm3qtaJO2Ldvn8aOHavCwkI1b95cF110kdasWaPmzZt7/XcDnkKOYXVkGFZHhuFJ/hgTS+QY1keGYXVkGCdz+5lpK1ascFqura3Vpk2b1Lp1a48PJl5//XWP7g/wB3IMqyPDsDoyDG/w5ZhYIsewPjIMqyPDOFmYux+YMWOGXnrpJUl1g4bBgwfrvPPOU1ZWlj777DNP1wcAAAAEHMbE/vfk9f/FM9UAAH7hdjPtjTfeUM+ePSVJ77//vvbs2aPvv/9ed911lx544AGPFwgAQKDp/kp3dX+lu7/LAOBHjIkBAAhdbjfTCgsLlZ6eLkn617/+pWuvvVadOnXSrbfeqk2bNnm8wFDVZvaHajP7Q3+XATTew0l1LwAAghBjYgAAQpfbzbS0tDRt3bpVtbW1Wrp0qS677DJJUkVFhdNsRgAAAECwYkwMAEDocnsCggkTJui6665TRkaGbDabhg0bJklau3atOnfu7PECAQAAgEDDmBgAgNDldjPt4YcfVrdu3ZSXl6drr71W0dHRkqTw8HDNnj3b4wUCCEInbv98uMS/dQAA0EiMiQEACF1uN9Mk6Zprrqm3bvz48WddDAAAAGAVjIm9h1k6ASBwPPzww/4uIeC41ExbuHChJk+erJiYGC1cuPCM2/7mN7/xSGEALIpJBwAAQYoxMQAAkFxspi1YsEA33XSTYmJitGDBgtNuZ7PZGDh42ckzfO559Fd+rAQAACC0MCb2Pq5IAwBYgUvNtNzc3AZ/BgAAAEIFY2LPOtE4u3vJBwGxHwAAXNWoZ6YBQD2Nub2TiQgQwLq/0t3fJQAAAAAIQC4102bOnOnyDufPn9/oYgBYDM9HAwCEEMbE3sGtnQAAq3GpmfbNN984LW/cuFE1NTXKzs6WJO3YsUPh4eHq06eP5ysEEHg83UTjCjUA8Kltnbs4fu7y/TY/VmItjIkBAKGCGTzPzKVm2ooVKxw/z58/X02aNNErr7yipk2bSpKOHDmiCRMmaNCgQd6pEkBoOLlJR2MNABBgGBMDAPCzkxtuodZ8c/uZaU8++aQ+/vhjx6BBkpo2barf/e53Gj58uO6++26PFgggRHG1Gizg5OeqbRq/yY+VAPA1xsSB6+TbRpmUAADgDW4300pLS3Xo0KF66w8dOqSjR496pCi4ps3sDxtcv+fRX/m4EsAHaK7BR5h4AIArGBMHHp69BgCNF2pXlp0tt5tpv/71rzVhwgQ9+eST6t+/vyRp7dq1mjVrlsaMGePxAoPZ6Zph3vgdNNhwVvw50QCTHAAAAhBjYms40WDjCjUEon2zP5cktXyUW8PhPzTRGsftZtrzzz+ve+65RzfeeKOqq6vrdhIRoYkTJ+rxxx/3eIHwDJpqANAwrkRDqDt5MgKJCQlcxZgYgCtONMyAYHdqUy5QmnQn6vB0PW430+Li4vTss8/q8ccf1+7duyVJ7du3V3x8vEcLO9kzzzyjxx9/XPn5+erZs6eefvppx78AWpG3r0g70/7P9B6NNu+yXI4D9YowJinwG8tl2E9ONOd4hlrgCfYMn9oU8+T+aLDV548xsWS9HAfKrZdcoRY4rJZh4FRWzLA/GltnamIFauPNHW43006Ij49Xjx49PFlLg5YsWaKZM2fq+eef14ABA/TUU09pxIgR2r59u1q0aOH13+8qX9yyCeuySo4th+eo+YzVM+yLBtcvXeHGZAX+ZfUM+5srV695+gq3E/sL9Eaer8bEUmDn+NRmVaA00RBYAjnDnubOFWknb3u6Wz65JTQwWCXDgdqcCtS6GsNmjDH+LuJMBgwYoH79+ulPf/qTJMlutysrK0vTpk3T7Nmzf/HzpaWlSkpKUklJiRITEz1SU0O3TAZDM+3E3+ONW0K9cRys5Gxy7JXvrqGrzk40pAL1irQzOVMzzYMNt1DOcSCei0/VUDPrRNMq0G7l9FczjQwHdobd5ekr0TztRBOssU2xhj4XiMfBlwJuPHESqzXTTr5CzddXrYVyjoPlXHymxpanb+s88Tsa2q+/GmuBchz8wVcZdueqrlDR0HfiynfR0Oc8keGAbqZVVVUpLi5Ob775pkaPHu1YP378eBUXF+u9996r95nKykpVVlY6lktKStSqVSvl5eU1+CV1m7NMkrR57ogGlxvaFvW/n4a+m5O3KS0tVVZWloqLi5WUZMFmzVlwN8fuZljzWjov37/vl7dBw058dye+r1O+y1DNsbfOxee/en69z625cc1p3wtm3vy7T+xbIsOezvD2Pn0d72dvWP+LdZy8/clO/uzptgllJ38/oZphyQfjCRc8fcu1kqRpi99wWg42J/6+Mzn1u3BHqObY2/9tt3/OV46fz5l7QYM1nLzN6Zz4rCvbBgtX/uaTv1My7NkMz5s3z+u1Q7r//vsdP3skwyaA7d+/30gyX331ldP6WbNmmf79+zf4mTlz5hhJvAL0lZeX54voBBR3c0yGA/8VajnmXBx8LzJchwxb9xVqGTaG8UQwvkItx5yLg+9FhuuQYeu+zibDjX5mWqC6//77NXPmTMey3W5XUVGRmjVrJpvN5uhAns2/yvlaMNRsjNHRo0eVmZnp79IC3i9lWLJeJqxWr9RwzeTYdZyLAwPn4sYjw4GBDDce44nAwHji7HAuDgycixuPDAcGb2Q4oJtpqampCg8PV0FBgdP6goICpaenN/iZ6OhoRUdHO61LTk6ut11iYqJlDvwJVq85lC4BPpm7OXY1w5L1MmG1eqX6NYdijjkXO7N6zWT4Z2TYOkI9wxLjiZNZrV6J8YTEufhUVq+ZDP+MDFuHJzMc5omCvCUqKkp9+vTR8uXLHevsdruWL1+ugQMH+rEywHXkGFZHhmF1ZBjBgBzD6sgwrI4M42QBfWWaJM2cOVPjx49X37591b9/fz311FMqLy/XhAkT/F0a4DJyDKsjw7A6MoxgQI5hdWQYVkeGcULAN9Ouv/56HTp0SA899JDy8/PVq1cvLV26VGlpaY3aX3R0tObMmVPvUstARs3WF+o5tlq9kjVr9qZQz7BEzVZHhqk5GIR6jq1Wr2TNmr0p1DMsUbPVkWFqPsFmjDEe2xsAAAAAAAAQxAL6mWkAAAAAAABAIKGZBgAAAAAAALiIZhoAAAAAAADgIpppAAAAAAAAgItCoplWVFSkm266SYmJiUpOTtbEiRNVVlZ2xs9cfPHFstlsTq877rjDazU+88wzatOmjWJiYjRgwACtW7fujNu/8cYb6ty5s2JiYtS9e3f961//8lptp+NOzYsXL673fcbExPiwWmsjw95Bhn2LHHsHOfYdMuwdZNh3yLB3kGHfIsfeQY59hwx7h88zbELAyJEjTc+ePc2aNWvM559/bjp06GDGjh17xs8MGTLETJo0yRw4cMDxKikp8Up9r7/+uomKijIvv/yy2bJli5k0aZJJTk42BQUFDW7/5ZdfmvDwcPPYY4+ZrVu3mv/93/81kZGRZtOmTV6pzxM1L1q0yCQmJjp9n/n5+T6r1+rIsP9rJsNnjxz7v2ZyfHbIsP9rJsNnhwz7v2YyfPbIsf9rJsdnhwz7v2ZPZDjom2lbt241kszXX3/tWPfRRx8Zm81m9u/ff9rPDRkyxEyfPt0HFRrTv39/M2XKFMdybW2tyczMNPPmzWtw++uuu8786le/clo3YMAAc/vtt3u1zpO5W/OiRYtMUlKSj6oLLmTYO8iwb5Fj7yDHvkOGvYMM+w4Z9g4y7Fvk2DvIse+QYe/wR4aD/jbP1atXKzk5WX379nWsGzZsmMLCwrR27dozfvbvf/+7UlNT1a1bN91///2qqKjweH1VVVXasGGDhg0b5lgXFhamYcOGafXq1Q1+ZvXq1U7bS9KIESNOu72nNaZmSSorK1Pr1q2VlZWlq666Slu2bPFFuZZHhj2PDPseOfY8cuxbZNjzyLBvkWHPI8O+R449jxz7Fhn2PH9lOKLRFVtEfn6+WrRo4bQuIiJCKSkpys/PP+3nbrzxRrVu3VqZmZn67rvvdN9992n79u16++23PVrf4cOHVVtbq7S0NKf1aWlp+v777xv8TH5+foPbn+nv8aTG1Jydna2XX35ZPXr0UElJiZ544gldcMEF2rJli1q2bOmLsi2LDHseGfY9cux55Ni3yLDnkWHfIsOeR4Z9jxx7Hjn2LTLsef7KsGWbabNnz9Yf/vCHM26zbdu2Ru9/8uTJjp+7d++ujIwMXXrppdq9e7fat2/f6P2GqoEDB2rgwIGO5QsuuEBdunTRn//8Z/32t7/1Y2X+Q4athQw3jBxbCzmujwxbCxmujwxbCxluGDm2FnJcHxm2Fk9k2LLNtLvvvlu33HLLGbdp166d0tPTdfDgQaf1NTU1KioqUnp6usu/b8CAAZKkXbt2eTSsqampCg8PV0FBgdP6goKC09aXnp7u1vae1piaTxUZGanevXtr165d3ijREsgwGQ4G5JgcWx0ZJsNWR4bJcDAgx+TY6shw6GXYss9Ma968uTp37nzGV1RUlAYOHKji4mJt2LDB8dl///vfstvtjgC6IicnR5KUkZHh0b8jKipKffr00fLlyx3r7Ha7li9f7tQpPdnAgQOdtpekTz755LTbe1pjaj5VbW2tNm3a5PHv00rIMBkOBuSYHFsdGSbDVkeGyXAwIMfk2OrIcAhm+KymL7CIkSNHmt69e5u1a9eaL774wnTs2NFp6tl9+/aZ7Oxss3btWmOMMbt27TKPPPKIWb9+vcnNzTXvvfeeadeunRk8eLBX6nv99ddNdHS0Wbx4sdm6dauZPHmySU5OdkzNevPNN5vZs2c7tv/yyy9NRESEeeKJJ8y2bdvMnDlz/DL1rDs1z5071yxbtszs3r3bbNiwwdxwww0mJibGbNmyxWc1WxkZ9n/NZPjskWP/10yOzw4Z9n/NZPjskGH/10yGzx459n/N5PjskGH/1+yJDIdEM62wsNCMHTvWJCQkmMTERDNhwgRz9OhRx/u5ublGklmxYoUxxpi9e/eawYMHm5SUFBMdHW06dOhgZs2aZUpKSrxW49NPP21atWploqKiTP/+/c2aNWsc7w0ZMsSMHz/eaft//OMfplOnTiYqKsp07drVfPjhh16r7XTcqXnGjBmObdPS0swVV1xhNm7c6POarYoMewcZ9i1y7B3k2HfIsHeQYd8hw95Bhn2LHHsHOfYdMuwdvs6wzRhjXL+ODQAAAAAAAAhdln1mGgAAAAAAAOBrNNMAAAAAAAAAF9FMAwAAAAAAAFxEMw0AAAAAAABwEc00AAAAAAAAwEU00wAAAAAAAAAX0UwDAAAAAAAAXEQzDQAAAAAAAHARzbQAc8stt2j06NFn3Obiiy/WjBkzPPp7H374YfXq1cuj+0RoIsMIBuQYVkeGYXVkGMGAHMPqyPDpRfi7ADj74x//KGOMv8sAGo0MIxiQY1gdGYbVkWEEA3IMqyPDp0czzcOqqqoUFRXV6M8nJSV5sBrAfWQYwYAcw+rIMKyODCMYkGNYHRn2Hm7zPEsXX3yxpk6dqhkzZig1NVUjRozQ5s2bdfnllyshIUFpaWm6+eabdfjwYcdn3nzzTXXv3l2xsbFq1qyZhg0bpvLyckn1L6MsLy/XuHHjlJCQoIyMDD355JP1arDZbHr33Xed1iUnJ2vx4sWO5fvuu0+dOnVSXFyc2rVrpwcffFDV1dUe/S5gTWQYwYAcw+rIMKyODCMYkGNYHRn2HZppHvDKK68oKipKX375pR599FENHTpUvXv31vr167V06VIVFBTouuuukyQdOHBAY8eO1a233qpt27bps88+05gxY0576eSsWbO0cuVKvffee/r444/12WefaePGjW7X2KRJEy1evFhbt27VH//4R/3lL3/RggULzurvRvAgwwgG5BhWR4ZhdWQYwYAcw+rIsI8YnJUhQ4aY3r17O5Z/+9vfmuHDhzttk5eXZySZ7du3mw0bNhhJZs+ePQ3ub/z48eaqq64yxhhz9OhRExUVZf7xj3843i8sLDSxsbFm+vTpjnWSzDvvvOO0n6SkJLNo0aLT1v3444+bPn36OJbnzJljevbseeY/FkGJDCMYkGNYHRmG1ZFhBANyDKsjw77DM9M8oE+fPo6fv/32W61YsUIJCQn1ttu9e7eGDx+uSy+9VN27d9eIESM0fPhwXXPNNWratGmD21dVVWnAgAGOdSkpKcrOzna7xiVLlmjhwoXavXu3ysrKVFNTo8TERLf3g+BEhhEMyDGsjgzD6sgwggE5htWRYd/gNk8PiI+Pd/xcVlamUaNGKScnx+m1c+dODR48WOHh4frkk0/00Ucf6dxzz9XTTz+t7Oxs5ebmNvr322y2epdhnny/8erVq3XTTTfpiiuu0AcffKBvvvlGDzzwgKqqqhr9OxFcyDCCATmG1ZFhWB0ZRjAgx7A6MuwbNNM87LzzztOWLVvUpk0bdejQwel1ItQ2m00XXnih5s6dq2+++UZRUVF655136u2rffv2ioyM1Nq1ax3rjhw5oh07djht17x5cx04cMCxvHPnTlVUVDiWv/rqK7Vu3VoPPPCA+vbtq44dO+rHH3/09J+OIEGGEQzIMayODMPqyDCCATmG1ZFh76GZ5mFTpkxRUVGRxo4dq6+//lq7d+/WsmXLNGHCBNXW1mrt2rX6/e9/r/Xr12vv3r16++23dejQIXXp0qXevhISEjRx4kTNmjVL//73v7V582bdcsstCgtzPmxDhw7Vn/70J33zzTdav3697rjjDkVGRjre79ixo/bu3avXX39du3fv1sKFCxv8PwcgkWEEB3IMqyPDsDoyjGBAjmF1ZNh7aKZ5WGZmpr788kvV1tZq+PDh6t69u2bMmKHk5GSFhYUpMTFRq1at0hVXXKFOnTrpf//3f/Xkk0/q8ssvb3B/jz/+uAYNGqRRo0Zp2LBhuuiii5zugZakJ598UllZWRo0aJBuvPFG3XPPPYqLi3O8f+WVV+quu+7S1KlT1atXL3311Vd68MEHvfo9wLrIMIIBOYbVkWFYHRlGMCDHsDoy7D02c+rNrAAAAAAAAAAaxJVpAAAAAAAAgItopgEAAAAAAAAuopkGAAAAAAAAuIhmGgAAAAAAAOAimmkAAAAAAACAi2imAQAAAAAAAC6imQYAAAAAAAC4iGYaAAAAAAAA4CKaaQAAAAAAAICLaKYBAAAAAAAALqKZBgAAAAAAALjo/we1wGrwrxwpMwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNMAAAHECAYAAAATemzMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hTZfvA8W/SpCPde5eWUlbZe8neqCAIKO6BIsrrgPfn3hsFRUXFhQtfBRRkyh6ydwtlldK9090mbdIkvz9C0qZ7t8Dzua5eJSdnPCmn6cl97ue+JQaDwYAgCIIgCIIgCIIgCIIgCLWStvYABEEQBEEQBEEQBEEQBOF6IYJpgiAIgiAIgiAIgiAIglBHIpgmCIIgCIIgCIIgCIIgCHUkgmmCIAiCIAiCIAiCIAiCUEcimCYIgiAIgiAIgiAIgiAIdSSCaYIgCIIgCIIgCIIgCIJQRyKYJgiCIAiCIAiCIAiCIAh1JIJpgiAIgiAIgiAIgiAIglBHIpgmCIIgCIIgCIIgCIIgCHUkgmk3gcMxWQS/sJnDMVmtPRRBEIQafXnmS7r/1L21h9Gq1l9ZT/efupNcmNzaQxHq6ULnLmR+/kWt62V+/gUXOndp0D5z/1rHhc5d0CSJ80MQBEEQblZ79uzhjTfeoKioqLWHYtYWx9ScZK09gJa25kQi/10bWe3zf80fQp8g1yY9Znp+Mb8dTWB8uDfhfs712vaXw3G8+ncUPQNd+PvJoU06rsY6GZ/Dh/9c5HxKPjYyKd38nVkwugP9gt1ae2jC6VXw9/zqn39kJwT2b7nxtAZ1Dux8Ey7/A8V54NYeesyCoU+39siuS+uvrOfVg6/y+5TfCfcIb9S+1KVqVp5bSX+f/vT3abnz8GruVab+PRVrqTV7Zu/BydqpxY59vTiTcYZPT33KxeyL2FjZ0MW9C4/3eJzeXr1be2gtJvevdaS+9BIA7Vb9iqJvX4vnDQYDV0aNpjQtDYcRIwhc8XVrDLPJFB09RsIDD1T7vN+Sj3GeMqVJj6lXq8n67nsUAwZgP3BAnbdTnT5N5pKlFF+4gMTGBtvwcDyemIeiT58mHZ8gCIIgNIf09HT27t1LSkoKhYWFKBQKPD096dSpEwMHDmzx8ZSUlHDo0CHOnz9Pbm4uMpkMJycngoODGTp0KE5O4lq5JjddMM3kuXEdCXSzq7Q82N2+yY+Vnl/Msl3RBLja1TuYtv5MCgGudkQk5hKnLCLYo/7jGxjixsW3J2Jt1XSJiMm5ah744RguCjnPjA3DYIB/ryg5eCVLBNPaklEvg0u7ysvd2rf8WFra+vkQvR0GPAYeYZB2DiLXiGBaG1BcWsxXEV8BVAqmPdbjMR7p/kizHHfT1U142HmQX5LPjrgdzOg4o1mO01i3tb+NSSGTsJZat+hxUwtTmbdzHi42LszvOR8DBg6nHOZI6pGbKphmIrGxIW/TpkrBNNWx45SmpSGxrvz/0yniDBIrq5YaYpNyve8+7Lp3q7Rc0atXkx9LX1yMcvlyPKDOwTRtSgqJj87FysUFjwVPgd5A0aFDFB0+LIJpgiAIQpuXkJDATz/9hLOzM3369MHBwYH8/HySkpI4cuRIiwfTdDodK1euRKlU0qtXLwYOHIhGoyEjI4OzZ8/SuXNnEUyrxU0bTBvZyZMeAS6tPYwaJWarOBmfw9f39uXldWdZfyaZZ8Z2rPd+pFIJttKmvbjffTGDwpJSVj06kJ6BLgDMHd6eklJdkx5HaKQOY8G/GT9kaIrAuukD0I2mKTJmpPV7GCa+X7a8tKT1xiTUiUwqQ9YMf5oMBgNbYrcwOWQyyYXJbI7d3OaCaSqtCoVcgZXUCitaPiCzP2k/Rdoivhv/Hd08jEGVB8IfQKPTtPhY2gKH4cMp+GcbPi+/jERWdk7mb9qEbXg4upycSttIbWxacohNStG3L04TJ7T2MKpVuG8f+qIign5ciV1341Rw94cfQq+5Oc9PQRAE4fry77//YmNjw9y5c7Gzs0zqKSwsbPHxXLx4kbS0NKZPn06PHj0sntNqteh0bfNzvcFgoLS0FLlc3tpDuXmDaXXxzf4Y/jmXxlVlEWqNjjBvB+aP7MDk7r4W6/0bncmyndFcSi9Apzfg42TLxG4+/N/EzhyOyeLub48A8N+1keYpph/d2YOZ/QJrPP7608k428kZ3dmLSd19+PtMSpXBtA0RKXyzP4bYzCIkEgn+LnbM7h/Iw8NCAMxj+N/cQQwOdQfgWGw2Px6K5UxCLspCDe4O1kzq5sv/TeyErbz2D3FSifG7ocJyG9n1eUf+phX7L/x0KzywCUJuKVueEw/LesDUL6H3PcZl656A83/DEwdgy/9BwmEIGQF3/2YMXu15D6LWQVEmuARBnwdgyAKQSMr2+4Yz9J8LgQNg34eQmwhenWHC+xBcYRpzfgrsfheit5VN0xz8FPS5rw4vTGL8MlQ4Q2XX7wfd64FWp2VF5Ar2J+0nsSARnUFHF7cuPNnrSQb4GrNPkguTmfjnRAC+ivjKnKH2RM8nmN9rPl+e+ZKvIr7i7ANnzfvt/lN37up0F4P8BvHF6S+Iz48nyDGIRf0XMcx/WJ3GdjrjNMmFyUwKmURSYRLP73+etKI0fOx9LNabsHYCHVw78GD4g3x84mNicmMIdAzkpYEv0d+nPzvjd7L8zHIS8hMIdQnlzSFv0sXdsvbV1byrfHH6C46mHqW4tJgOrh2Y12Meo4JGmdcxTZv9YcIPbIvbxo74HWj1Wg7dfcj83D8z/sHfwd+8zb9J//L9ue+5kHUBiURCsFMw93W9jyntjVPwTqafZNWFVZxVniVLnYWbrRvj2o3j6T5PYyuzrfVnJLn2u2qo8HtjbdWyGXJthdOUKRTs3EnRoUM4DB8OgEGjIX/7djzmzSPnl18qbXOhcxc8nnwSzwVPmZepTp4k/f0PKLl8GZm3N+6PVJ15qddoyFyyhLwNGzGUlKAYOBCf11+r83gL9+9HueIbis+fRyKRYNe/H96LFmETFlbPV1693D//Im/DBkqio9EXFCAPCsLt3ntwvftui/XUZ8+R+emnFEdFoVerkXl4oBg4EL/33kWTlEzM2LEAKJcvR7l8OUCln1slkmvZ9RXOT2kVGYKCIAiC0NZkZ2fj5eVVKZAG4ODgAEBOTg7Lli1j6tSp9O5tOSvgjTfeYMSIEYwaNcpiuUqlYvPmzVy5cgUrKyt69OjB2LFjaw02ZWdnAxAUFFTpOblcbrF9Wloahw8fJj4+noKCAmxtbQkLC2P8+PEoFIpK2xcXF7N9+3YuXrwIQJcuXZg8eTLW5f5mnz59moiICDIyMigpKcHV1ZWBAwfSv7/lrJVPPvkELy8vBg4cyK5du8jIyGDs2LEMHjy43vsYNmwY27ZtIz09HUdHR0aOHEmvRmTg37QNCAqKS8ku0lh85RRZ3t1ceTCOcD9nnhvXkf9O6ISVVMr8VafYfTHdvM7l9AIe+fEEGp2e58Z15OUpXRjb1ZsT8cY71h28HHhunDEAdveAID6Z3ZNPZvdkYIh7rWNcfyaZieE+WMuk3N7Tn1hlERGJuRbr/BudyX/+dxpnOzkvTOrM8xM7Mai9GyfjK98xL2/L2VTUGh33DGrHG7eHMzzMk58Ox/Hc6jN1+OnBxHAfHG1lvLflAppSfZ22EVpBST4UZVl+qbIbvj99KfwyHew9Yfzb0PV24web/90Fh5dDhzEw4T1wD4Mdr8K2lyrvI/4g/PMC9JgNo14CVQ78OgPSz5etU5gB342Fq3uN0zQnfmAMpm14Cg5/Wfs4rRUQfgec+Q1SIxr+eoV6KdQW8lf0X/T36c+zfZ/liZ5PkF2czeM7H+ditvGPqauNK68OehWAMUFjeG/Ye7w37D3GBI2pcd+nM07z7pF3mRg8kef6PkeJroTn9j5HbnFunca2+epmAh0D6ebRjZEBI7G1smVr7NYq103IT+D5/c8zMmAkT/d5mnxNPk/teopNVzex+Phibm1/K/N7zSepIIlF+xahN5S9B17JucK9m+/lau5VHun+CIv6L8JOZsfTe55mV/yuSsd698i7xOTG8HiPx3mkW/XTW9dfWc+Tu54krySPR7s/yjN9nqGzW2cOJh80r7M9bjvFpcXM7jSbFwe+yFD/ofzv4v946UAVv4dVGNtuLI5yR5acXIJWp63TNjcyub8/dr16kb95s3lZ4b//oi8owGny5Drto/jSZRIeeZTS7Cw8nnoKl+l3kPnFFxTs3Flp3dRXXiH7p5+xHzoUz4XPIZHJSHx8Xp2Ok/f33yQ+Pg+pQoHXwoV4zH8CzZUY4u65t86NCvRFRZTm5FT6Kh9czfn9d+R+fng8/hhezz+P3MeHtDffInvVKvM6pVlZJDz6KNrkZNznzsX7lZdxuu1W1BHG92KZmys+b7wOgOO4sfgt/hC/xR/iOH5cjeNzHD8OqaMjGYs/wiCy0QRBEITrjIuLCykpKaSnp9e+cj2sWbOG0tJSxo4dS1hYGEePHmXjxo11Gg9AREREpRupFV29epWcnBx69+7N5MmT6datG+fOnWPVqlVVbrtmzRo0Gg1jx44lPDycM2fOsG/fPot1jh8/jouLC7fccgvjx4/H2dmZzZs3c+zYsUr7y8rKYu3atYSGhjJp0iR8fHzqvY/s7GxWr15NaGgoEyZMwM7OjvXr15ORkVHrz6o6N21m2j3fHa20zFom5fI7k8yP9ywaaZGl9cCQYG797ADf/RvL6M7eAPwbrUSj0/PjQwNws698d9TT0YaRnTxZuuMyfYJcuKN3QJ3GdzYpj5jMIt683TjVpn+wK77Otqw/k2yeVgnG6ZaONjJ+fnggVlJJNXur7IVJnS1e25yBQbTzUPDRtksk56rxd6kcMS8vLkuFVCLhTEIuz/5xhs/u7l2v4wst5OeplZdZ2cCrDXzT0JVA+DQY+0bZsoubIXY/jH4Fhv/XuGzAXFh9Pxz5yvjv8jXaMs7DY3vB79rdlm4z4It+sOdduOvaB7Jdb4FeB/MPg+JaDb7+j8Dah2HvB9DvIZDXcI6WFIJKCQYd/HonPPwPuIc27DULdeZk7cS2GduQW5XdyZrRcQa3r7ud3y78xltD30IhVzCu3TjePvI2HV07clvobXXa99W8q/w99W8CnYwZvf19+nPnxjvZEruFOV3m1LitVq9le/x2ZnacCYCtzJaRgSPZfHUzD3V7qNL6cflx/DLpF3p59QIg1DmUx3c+zpuH3mTDtA34Ohizk51snHjr8FucTD9prv32wfEP8HHw4fcpv5szuu7qdBf3b72fT059wph2lkFDZxtnvhv/HVY1TMUv0BTwwbEP6O7RnR8m/oCNVVmGZfkLmGf7PmuRgTaz40wCHQP57NRnpBammsddnYT8BCQSCZGZkbzw7wssHr64xnHdDJxunULm0k/QFxcjtbUlb+MmFP37I/f2qtP2mZ9/BgYDwb/+itzPDwDH8eO5ervle3PxxYvkb9iI65y78XnNmI3mds89JC/6LyWXLtV4DH1REWnvvofLnXfi+/Zb5uXO06YRM2kyWStWWCyvTurLL1e5POzf/cg8PQFo98vPSG3LzjG3e+8h4dG5ZP/4E273GLOY1adPo8/Lw++77yxqsHk98wwAUoUCxwkTSHvjTWw6dsL59ttrHRuAJj4epFLUEREk/9/z+C/5+LqtTycIgiDcfIYMGcKvv/7K119/jb+/P+3atSMkJISQkBCsGvH3zNXVlbuvZYgPGDAAGxsbjh8/zpAhQ8xBp6p07twZd3d39uzZw6lTpwgJCSEoKIiOHTuaM+VM+vfvz5AhQyyWBQQE8Oeff5KQkEC7dpY1un19fZk6texaR6VScerUKcaNK7tx9tBDD1lkvw0cOJBffvmFw4cPM2CAZT3V7Oxs7r33Xjp06GCxvD77yMrK4qGHHjKPNTw8nKVLl3L69GkmTGhYmYubNjPt7anh/PrIQIuvHx+yTAcsH2zKU2kpKC6lf4gr55LzzMudbI3xyB3n09Dra47o1sf6M8l4ONiYp2VKJBJu7eHLxohUdOWO42QrR6XV8W90Zr32X/61qTTGLL2+Qa4YDBBV7vVVJSlHxUMrjzG7fyAr7u/Ltqg0Xvgz0uJD3Yt/nWXw+5WzMIQWNvljuG+95de9axu3z34Vsmeit4PECgZWyKAYvAAwQHSFDIyAAWWBNACXQOg0GWJ2GwNoBgNc2ACdJhr/XT6rLnQMlOTVnm227nHITYCnjoO9hzGomJtY9nziMeOU06t76/vqhRpYSa3MgTS9QU9eSR46vY5wj3AuZF9o1L4H+Q4yB9IAOrl1wkHuQFJhUq3bHkg6QG5JLpNDyrKJJodM5lLOJa7kXKm0fqhzqDmQBtDd01ifaYDvAIuAVA8PY32JpALjGPJK8jiWeowJ7SZQpC0ipziHnOIccktyGeI/hPj8eNKLLO9Gzug4o9aA1eGUwxRpi3i4+8MWgTQom5oJWATSVFoVOcU59PLshQFDrT//lMIU5u+az/Sw6SwbtYzdCbt54/AbFu/rbx5+k7Frxta4nxuN06RJ6EtKKNy7F11hEYV79+J0a906Wxp0OooOHMRxzBhzIA3AJjQU+2GW09oL9+0HwPVey2nsbg/cX+txCg8dQp+fj9OUKRYZZVhZYdejB0XHKt88rIrH/PkE/fB9pS8r57LGSeUDabqCAkpzclD07482MRFdQYFxHUdjseLCvXsxaJsmw1GbnEzi4/NwmTGDgOXGzL7UV1+zOD9TX3ud6JGjatiLIAiCILSe0NBQHn30UTp16kR6ejoHDx7k119/ZcmSJebpkA1RcUqjKYgUHR1d43ZyuZy5c+eag2Rnzpxhw4YNLFmyhC1btlBaWmqxrolWq6WoqIiAAGOSUGpqaqV99+vXz+Jxu3btUKvVFBcXV7nP4uJiioqKCA4OJicnx2I9MGbRVQyk1Xcfnp6eFkE/e3t7PDw8yKmiBm5d3bSZaT0DXWptQLDrQjqf777C+dR8i6mM5UtA3dbTjz+OJ/L8n2f58J9LDAl1Z2I3HyZ380XawEwtnd7AxogUBoe6k5itMi/vFejKt//GcvCKkuEdjXeJ7xvcjs1nU3lw5XF8nGy5JcyDKT18Gdmp5rvmyblqlm6/zM4L6eSpLS92C4pLq9nK6Mu9MUilEhaO74iNzIrFd/Zg4ZoI7G1kvHF7OGCc/tqrXAad0Er8+zZtAwKpDJz8LZflJoKjL9g4Wi73vFbfLy/BcnlVGWLuHUCrgiKlsS5OcR6c/NH4VZWiGoLHicfh4iaY+SO4BsO9f8L3440BtYf/AQcvY3acVAa+varfj9Agf1/5m5/O/0RsXiyl+rL3kvK1vxrC175yVpWTtRP5Jfm1brvp6ib8HfyxtrImId94PgY6BmIns2Nz7GaedrXs8OrjYHkXz9HaeG77KCyXO1gb79rla4xjSMhPwICBL858wRdnvqhyLNnF2Xjbe5sf1+XnklhgDASHudRc+yq1MJUvznzB3sS95jGZFGprLmz73dnvkEqkLOi9AGsra94a+hYvH3gZe7k9Lwx4ATBOYe3h2aPG/dxoZG5u2A8eTN6mTejVxaDT4VTHu5e67GwMxcVYB1fuqGwTHELRtQAaGDtVIpViHWRZS9U6JKTW42jj4wFIePDBKp+XVri7XB2bjh2xr3DXuSLVqVNkfv456jMRGNRqi+f0BQVYOTqiGNAfx/HjUS5fTvZPP6EYMADHMWNwuu3WBtc3U37zLRKJBM9nnkZqbY3fu++Q8sKLSO3t8XnZOI25JDoaux431/kpCIIgXF/8/f256667KC0tJT09nQsXLnDkyBFWr17NvHnzGlRU393dsnyUm5sbEomE3NxcwJgVVr6ZgFwux/bazTFbW1vGjx/P+PHjyc3N5erVqxw6dIhjx45hY2PDmDFjzPvYt28f586do6ioyOJ4FYNWAM7lbsSZjmNa1/TvhIQE9uzZQ1JSEtoKN9/KrwfG7Luq1GcfFcdkGldV46+rmzaYVptjsdk8+vMJBgS78c7Ubng62SCXSllzMpG/z6SY17OVW7H68cEcvprF7osZ7LucyabIVIaEJvDLI/WbemlyKEZJRkEJGyNS2BiRUun59WeSzcE0DwcbtvznFvZfzmTv5Qz2XspkzckkpvfxZ+msXlXuX6c3cN93R8lVa5k3IpRQT3sU1jLS8otZtCYCfS1zpk/F59DV18ncbGB6nwCUhSW8t+UiDjYybuvpx6mEHL66p2+9X7vQwiTVnJ+Garq3WNmAtJkTWk31p3rMhp53V72Od7eqlwMkXsvCCLh2l8bJD+79C36YAD9Pgwc3GYN0YePBzqWJBi0AbIzZyCsHX2F04GgeCn8IN1s3pBIp35/93hwQaiippOrzzlCpDYqlQk0h+5L2UaIrYcq6yhlFW65u4T+9/2OR4WUlqTpTrNoxXHvP1GM8dx8Mf5AhflUHJYKcLIu82lrV3higLnR6HY/teIy8kjwe7vYwIc4h2MnsyFBl8MrBVyzqulXlTOYZOrt2Nk9NvS30NrLUWSw5uQSFTMGkkElEZEbwychPmmS81xPnW6eQ+upr6DKV2A8fjlUbaxNvuJat7rf4Q2QeHpVXsGqaSz1NQgIJDz6Edfv2eD//PHJfHyRyOYX79pP900/mcUgkEgI+W4b6zBkK9uyl6MABUl9+mewfVxL8++9I7evfAVp9+jQ2XbqYg3HOU6dSqswi46OPkNorcJo8GfWZM/h/tqxJXqsgCIIgNCeZTIa/vz/+/v64u7vz999/c/78+WqL4ev1Da9R/scffxB/7cYbQM+ePbnjjjsqrefi4kKfPn3o0qULy5Yt4+zZs+Zg2po1a0hMTGTo0KH4+PhgbW2NwWDg119/rbJmmqSaz5imdbOzs/npp5/w8PBgwoQJODk5YWVlRXR0NEeOHKm0T5ms8rVMffdR25gaQgTTqrH1XCo2Mik/PzLAokPlmpOVPxBKpRKGdvBgaAcPXgWW77nCR9sucTgmi2FhHkioX0Bt/ekUPByseWtq5YDBP+fS2B6VTrFWZ56qaS2TMrarN2O7eqPXG3jl73P8djSB/4wOI9ij8kXrxbR8riqLWDKzJzP6ltVwq89U0dQ8ywjuY8NDURZq+GLPFdafSSbcz4nxXb2r2VpoM2xdjN+LK0ztza1H4MMl0DhdsqTAMjtNeS212LlCh5ismMr7yLoCcoVxSiaAtaNxymdoA6bsmN4o85LB+dr57dkR7lkDP90O34yAvCS49dP671uo0Y74HQQ4BPDpqE8t/mB9ecayaUR93xMbY2fCTkp0Jbw66FVcbFwsnovLj+Pz059zOuM0fbwbn8EZ4GA832RSGYP9Bjd6fyaBjsZspejc6ErBOJPo3Gji8uN4d9i73B5aVoPqUMqhOh1DgoQ0VZrFsge7PUhWcRbfnv2WLbFb6OzW2aIj6c3CcexYUl9/A3VEBP6fLK3zdlZubkhsbdHExVd6riQu1uKx3M8P9Ho0CYnYtC/LRtPExlbctBJTNpuVm3utmWWNUbhnDwaNhsAvl1tMWy06WrnIL4Bdr17Y9eoFzz5D3sZNpPz3v+Rt2YLrzJn1P7hEQmmFaSTujzxMaVYWWV+vIH/jJmy7dMFxTM2NTARBEAShrfG79jfV1CUTKmd7mbLMqpKVlWWRuZWdnY3BYDA3GJgwYQLqctnkjo6OFXdhwc7ODldXV3NhfrVaTWxsLCNHjmTkyJEWx22oS5cuodPpuPvuu83jBIiLi2vRfTTWTVszrTZWEgkSJJQPAidmq9geZVnvJldVuaNUV1/jXWvNtXRKO2tj0Cu/lumTAMVaHdui0hjd2YvJ3X0rfT0wpB2FJaXsOG8cR8UOpFKphC4+jteOX3UE25QtVz4GazAYWHkwrtbxAQzr4EGssoi/TlnWKnp+YmfCvBxIylEztot3g6e5Ci3IJdBY7yy+wgfu49/VfR9h442ZbMe+sVx+eDkggbAKNZaSjkHKmbLHeUlwaQuEjgaplfGr6+3GumnlO3yaFClrHk/ICOP3fR+CrtzvXEA/GL7IWEvNLRS8utb1FQp1ZMroKp8tFpkZSUSmZY07U22vAk1Bs49p09VNBDgEMKvTLMYHj7f4ejD8QRQyBZuvbq59R3XgbudOf5/+rLm8hkxV5ZsT2cUN66Q7xG8I9nJ7vj/7PSW6EovnTHfTTFlz5e+uGQwGVl1YRV0M8h1EfH48G2Msuz890+cZQp1DSS5MZlTgqGqz825kUnt7fF5/HY+nnsJhVN2DiRIrK+yHDaVg1y7jNM5rSmJiKDpw0GJdh+G3AJDz6y8Wy7N/+rnW49gPG4bUwYGsFSuqrFFWmt2IDs7lmWr7lTvHdAUF5P31l8Vqury8Snd5bbt0Nm56rQun1M7u2va1T9MGsB88GE18PHl//22x3Gvhc1h3CEWbnIzD6NFImjtzWhAEQRAaKDY2tsosKFNtMw8PD2xtbVEoFBaZZGDsWlmdis+ZOlmGhRnLg/j5+REaGmr+8vIyloNKS0urNGUTjIG7zMxMPK5lu1eX0XXkyJFqx1QbaRV/r4uLizl9+nSL7qOxbtrMtL2XMonJrFxDpm+QG0HuCkZ39uK7A7E88MMxbu/lR1ahhl+OxNHOXcHFtLIPgMt2RXMsNpvRnb3wd7Ejq0jDL4fj8XW2pV+wsQthO3cFTrYyVh2Nx8HGCjtrGb0DXQh0U1Q6/o7z6RSWlDK2S9VZXb0DXXG3t+bvM8nc1tOP5/+MJFetZUioO77OtiTnqPnxUBxdfZ3o4Fl1nZRQTwfauSt4b8sF0vOLcbCRsfVcKnnq2oN9APNHdWD7+XQWrongQLSSPu1cUWlK2RCRQmKOip4Bznyx+wp9glzN01GFVnJlZ1mGWHmBA8AtBGydjd05j60wZnS5BsPlbTXXJKuo4yQIvgV2vW0MVHl3g5g9cGkzDJpv2ckTjEGsX6cbGxZYWcPx743LR75Yts7YNyD2X/huDPR5ADw7gTrH2Hjg6l54oXKmh5lPN+O+j34N346EbncaX2fCYTj3JwQNMf5743/gjq/r/joFANZdWceB5AOVlt/b9V6GBwxnZ8JOnt7zNMMDhpNckMzqy6sJdQlFpS2r/2grsyXUOZR/4v6hnVM7nG2c6eDSgTDXmmuC1VeGKoPjaceZ07nqbp/WVtYM9R/K9vjtvDDwBeTS+tepqOjlgS9z/9b7mb5hOjPCZhDgGECWOouIzAjSVen8efuf9d6ng7UD/9f//3j90OvctekuprSfgpO1E5eyL1GsK+bdYe8S4hxCoGMgS04sIUOVgb3cnp0JO+tUUw7g0e6PsjthNy8feJnDKYfp5dULlVbFltgtJBcm0829G99EfkNPz54M8W++7Ke2yuWOaQ3aznPBAor+PUDcvffievfdoNOR/esqbDp0sOjSadulC05TppDz2//QFRRi17sXqsNH0CQk1LB3IysHB3xef52U558ndvoMnKZMxsrVDW1qCoX79qPo3Ruf116tdT+qkycxaEoqLbfp1AnbTp2wHzoUiVxO4hPzcZk9C71KRe6atVi5u1OaWfY3I2/9enJ++x+O48YiDwxCX1RE7po1SB0ccBhhvNkhtbXFukMo+Vu3Yh0cjJWzMzZhYdh27Fjl2Nwff4yCXbtIeeFFig4dwq53b/RFKvI3b0ablIxt9+4ov/4au169cKjQ3EEQBEEQ2oItW7ag1Wrp0qULHh4e6HQ6EhMTOXfuHC4uLuYpnn369OHAgQP8/fff+Pn5ER8fX2MWWE5ODr/99hsdOnQgKSmJyMhIunfvXmMnT4CYmBj27t1Lp06dCAgIwNrampycHE6fPo1OpzNnodna2tKuXTsOHjyITqfDycmJmJiYRhXuDw0NxcrKit9++41+/fqh0Wg4efIk9vb2FBbWXOe3KffRWDdtMG3pjstVLv/ozh4EuSsY0sGDxTN68NW+GN7adJ5AVzuen9iZpBy1RTBtXBdvknLUrD6RSE6RFld7OQND3Hl2XEecbI0fzORWUpbM6sXify7y8rpzlOoNfHRnjyqDaX+fScZGJuWWsKqDUFKphFGdvfj7TDI5RRru6O3Pb8cS+PVIPPnqUjwdbbi1px/PjA2rNjNMbiXl+wf68caG83y55wo2cismhHtz/+BgJi37t9afnZu9NX8/OZRPd15mx/l0NkSk4GpvzS1hHiy7qzfeTrZM/eIAT646xdonhtDJp+ZUUqEZ7Xm36uVTvzQG0wAmfQQ6LZz4wRjcCr8Dxr8NXw6q2zGkUrj7d9jzHkT9BadXgUsQjHsbhiyovH67ocZg3t4PjFlpnp1g2pfGIJiJgxfM3W3MLruw0Zgpp3ADz84w7s3axzTpQ2NQ7/h3sPd9Y7MBnx4w/RvoNgN2vQX/LgHXEBj5fN1epwDAH5f+qHL51A5TmdZhGlnFWay5tIZDyYcIdQnlg1s+YFvcNk6knbBY/40hb/D+sfdZfHwxWr2WJ3o+0eTBtK2xW9Eb9IwMHFntOiMCRrAjfgcHkg40yRTGUJdQfr/1d76O+Jq/Y/4mtyQXN1s3urh1YV7PebXvoBrTw6bjZuvG92e/Z0XECmRSGSHOIdzX1dj9US6V88XoL3j/2Pt8d/Y7bKxsGB00mrv7382dG++sdf+utq78b8r/+DLiS/Yk7mFr7FZcbF0Y4jeED4d/iJfCi7s3383CfQv5edLPTf5/daOy7dSJoO++Jf2DD1F+9jkyHx88n3qK0sxMi2AagO9772Ll5kb+xo0U7NqF/cCBBK74mit16FDpfNutyLy8yPr2W7K+/wGDRoPM2xtF3744T59ep7Hm/PILVV0Wezz5JLadOmHTPgT/ZcvIXLaMjMUfIfPwwPXuu7BydSP15ZfN6yv690cdeZa8LVvQKbOQOjpi1707fh99hHVAWWkJ37ffJv2dd8l4/wMMWq3xONUE02SurgSv/gPlF8sp2L2bvM1bsHJ1wWHIUPw+/hiZlxdxs2aR/MwztPttVbX7EQRBEITWMn78eM6fP090dDQnT55Ep9Ph7OxM//79GT58OHbXsrZHjBhBUVER58+fJyoqirCwMO69914++uijKvc7c+ZM9uzZw86dO5FKpQwYMIBx48bVOp6uXbui0WiIiYkhNjYWtVqNra0t/v7+DBkyhJByTZBmzJjBli1bOH78OAaDgdDQUO69916WLFnSoJ+Fh4cHs2bNYvfu3Wzfvh0HBwf69euHvb09f1fIQm/OfTSWxNCYimuCIAj18YYz9J8LUz5u7ZEIgiAIgiAIgiAIQoOI4hKCIAiCIAiCIAiCIAiCUEcimCYIgiAIgiAIgiAIgiAIdSSCaYIgCIIgCIIgCIIgCIJQR6JmmiAIgiAIgiAIgiAIgiDUkchMEwRBEARBEARBEARBEIQ6EsE0QRAEQRAEQRAEQRAEQagjEUy7zn2y4zLBL2y2WFaq0/P+lgsMfn8XIS9uZu7PJwAIfmEzn+y43BrDFIS6O70K3nCGnPib47hCq5mwdgIvH3jZ/Hj9lfV0/6k7UcqoOm375K4nm3N4glAnmZ9/wYXOXSjNyWn2YxlKS0n/6COiR47iQpeuJD75VI3ra5KSudC5C7l/rWv2sQlty6E1q1gy+1ZU+XmtPZQW8+1TD/PPl5+09jCENij1g2Mof6z92qKlpH5wjOzVl1p7GEIbFBERweeff85bb73F+++/X+v6n3zyCevW3bx/42WtPYAbSWK2ilsW7zE/lkrAx8mWbv7OPD02jHA/5xYZx+oTSazYf5WHh4bQzd8JPxe7Fjmu0MKK8+HIl3BhI2THgkEHriHQcTwMfAKcfJvv2Ps/Bs/O0OXW5jtGfWx/FQ59BuF3wMwfW3s0QiMl5ifyQ9QPHE45TKYqE7mVnDCXMCYET+DOjndiK7Nt7SEKN7Hcv9aR+tJLSKytCd2xHbm3t8Xz8ffdjy43h/YbNzbpcZVfr8CmQyiOY8c26X7LS3rmWQr++Qf3Rx/Ba9GiSs/n/vkX2d//gNsD92PbtSsy32b8OyPUy7m9O9n21adYyeU88tm3OLp5WDz/x5svoM7P58ElXzbpcY+uW41bQCBh/Qc36X7L2/jJB1w+coD+t89g+D0PNdtxhBuDNq2I/J3xaJIK0RVqkCrkyL0U2HVxw2Gof/MdN70IVaQS+77eyNya5zpFry4l5d0jUGrA+7m+yL0UzXIc4cZ17NgxtmzZgr+/P3PnzrV4LjMzk/Xr19OhQweGDRuGXC5vpVFeP0QwrRnc3tOPUZ090enhSkYhq47Es/dyJuvmD2nygNqC0R14YmSoxbJDMUp8nGx57bauFssvvj0RmVTSpMcXWkl2LPw8FfKSIHwa9H0QrOSQHgWnfoELm+A/p5rv+P8uha5T20YwzWCAc3+CSxBc+gdKCsDGsf776XkXdJsBMpumH6NQZ/uT9rNw70LkVnJuD72dDi4d0Oq1nE4/zZKTS7iSe4U3hrzRJMfaeMdGJBLxnig0jEGjIeubb/F59ZUWOZ7ym29wGj++2YJpusJCCvfsQe7vT97mLXguXFjp90N19Agyb2+8X3yxTvuU+/vRKeIMEpm43GwpOq2WY+vXMubheS1yvKPrVtNx0NBmC6aVqFRcPXkMJ09vLh7czy1zHmyz79sPfbKizY7tZlESn0/mN5HIXGyw7++DlaM1pXklaBLyKTiU0rzBtAwVBbsSsGnv3GzBNNXZTECC1FGG6nQGzhOCG7Qfn0X9QJyqN6WzZ8/i4uJCcnIyWVlZuLu7m5+Li4vDYDAwceJEi+U1WbBgwU39vieubppBN38n7ugdYH7cr50rj/58gl+PJPD+9O5NeiyZlRSZleWyrEINTnaV/2tt5VaVlgnXIV0p/HEfFGXCg5uhXYUL2NGvwsFPW2VoVdIUgbV98+0/7l/IT4YHNsIv042Zer3m1H8/Uivjl9BqkgqS+O++/+Lr4Mv347/HU+Fpfu7uzneTkJ/A/qT9jTqGwWCgRFeCrcwWayvrxg5ZuInZdOlC7po1uD/2GHJvr2Y5hsFgwFBSgtS2+bMxC7Ztx6DX4/vuuyQ8+CCq48exHzDAYp3SrGysnGq/WWEoLQW9Hom1NRIbcYOiJXkGt+fs7m0MnDYTB7e6fRiqL4PBQKlWg9y6+f9vo48eRK/XM2He06x5+yWSLpwjsGvTXks3RvmfhUxkcbS6gt0JSG1leD3VG2mFz0K6Qk0rjarpqE5nYNfJFStXW1QRmQ0OpklkotLTzSgnJ4fExERmz57Nxo0bOXv2LCNHjjQ/X1RUBIBtLdccBoOB0tJS5HI5spv8ZtnN/epbyJAOxouZpBwVANuj0vjfsQSiUvLJVWnxcbblzr4BPDmqA1YVMsdOJ+SwbFc0p+Jz0OoMtHNXMKtfIA8PCwGMNdOW7Yom7oMplaaZmmqp/W/uIAaHuhP8wmaeHhPGs+M6mtdJyytm6Y5L7L2USa5Ki5eTDSM6evL6beFYizfatunC35B+1hg0qxhIA7B1gjGvWS5LOgF73oOk46DTgn8f4zpBg8rW2fM+7PsAFpwyTuO8uBkwQJfbYPLHYH0tlfyNa9mVEb8ZvwB6zoE7virbx/yjsP8juLLDmDE27wCknYPDyyH+IBSkga0zhI2H8W+Dwq3hP4/I1cYppyHDof1I4+OqgmlHV8CJH4w10WTWximxg5+CHjONz59eBX/Ph6cjwbWdcdnFzXDyR0iNBHU2OPlBr3vgloUi8NYMVp5biapUxVtD3rIIpJkEOQVxb9d7AVgXvY5NVzdxJfcKBZoCAh0DmdN5DrM7z7bYZsLaCXRw7cCcznP47PRnXMm5wjN9n+G+rvcxYe0E+vn0491h71psoy5V8+bhN9kRv4NSfSmjA0fz/IDncbapnFl8KPkQS08uJTYvlgDHABb0XsDYdpaZQ/mafL468xU74neQXZyNj70PM8Jm8FC3h5BKyt5nfzz3IzsTdhKXH0dxaTHtndvzaPdHGR883mJ/3X/qzl2d7mKQ3yC+OP0F8fnxBDkGsaj/Iob5D6vfD11oMI/HHyN50X/J+vZbfF55ucZ1DaWlKL/5hrx16ylNS0Pm6YnTrbfi8dSTSK3LgrpXRo/BJiwM13vvJfPTTymJjsZr4XOkv/8BAHnr15O3fj0AztOm4fdBWT0TfX4+KR8upmDXLjAYcBw3Dp/XXkVqV7dSD3mbNmI/ZDD2gwZiHRpK/sZN5mCaJimZmHIZcRc6dwEg6KefkPv7EzN2LF7//S8SmRXZv65Cm5xMyJ9rkTo6ETN2LL7vvYfL9DvM25dcvUrmZ5+jOnoUvUqF3NcXxwkT8Hr2GQC0yckov/sO1eEjaFNTkdraohg0CK///hfrgObLLLkRDJw2iy2ff8Sxv9cy+qHHa1xXr9NxdP1qovbtojBLib2rG52HjmDwnXMsAkPfPvUwHoHt6D3hVg788QvKxHhuuftB9v78LQBR+3YRtW8XAOEjxjBx/rPmbUtURez/9QeuHD+CwWAgbMAQxjwyD7lN3QLEFw7spV2PXgR164GbfyAXDuytFEwzTXGd/eaHXD58gIsH96HX6eg0+BZGP/w42pIS9qxcQcypYwB0Hz2B4fc8ZJFNYdDrObV1I2d3byM3PRUbhT0d+g3iljkPYuvgUOvPou+UqXz71MMEdu1u8fqLiwo5vPZ/XDl+mKKcbOycnAkK78GI+x9F4eSMrlTLkb/+4Oqp4+SmpaLX6/AOCWXIzHsJ6tajTj8joUxpdjFyb0WlQBqAlYPlDTSDzkDB3kSKTqajyyvBytEaRS8vnMYGWQSbkl74F8cxQTiPa2exfeoHx7Bp74zbrE4UnUgnZ62xLrXy27PmdTzmdsc21MX8uCQuj9xNV9GmFWHlZIPTmCDs+1qWCqj2teUWo4nLx+3uzshcbSk8kExJfD427Zws1tMq1eRvjaUkPh99cSlWCjnWwU64Tg9DaiurNHYAvUpL/p5Eii/noMspBokE63ZOOE8MxtrPodJYhOtTZGQktra2hIWF0bVrVyIjI83BtE8++YS8PGONy48++giAESNGMGrUKD755BO8vLwYOHAgu3btIiMjg7FjxzJ48GA++eQTgoODueOOsr/xarWaffv2ceHCBQoLC1EoFISEhDBhwgTs7e0pLS1l//79REdHk52djV6vx9fXl1GjRhESEtLiP5fGEMG0FhCfZQyiuSiMb+JrTyahsJHx6C0hKKxlHI7JYumOyxSWlPLS5C7m7f6NzuSRH0/g6WjDQ0ND8HS04UpGIbsvZpiDaeW5O1jzyeyefLH7CiqNjv+baHyD7OBV9Ztgen4xU5cfIF9dyt0Dggj1sic9r5gt59JQa3UimNZWXdpq/N7zrrqtf3UfrLoTfHvBiOdBIoUzq+Cn2+ChfyCgr+X6ax40BpPGvgapEXDqZ7D3gHFvGZ+/4xvYsAD8+xqnlwK4VTgf1zwAbqHGgJ3BcG0ceyAnDnrfCw5ekHHRGKjKvACP7oKGpAiXlsCFDTB4gfFx9zth/XwoSAfHchcnJ3+Erf9nnJo6cJ5xu/RzkHyiLJhWlTO/GbPqBj9p/B67H/a8CyX5MP6d+o9XqNHepL0EOATQy6tXreuuvrSaUJdQRgaOxEpixb6kfbxz9B306Lm7890W68blxfF/+/+PmR1nMiNsBiHONf+hfu/YezjKHXmi5xPE5cWx+vJqUopSWDlhpcWHr4T8BBbtX8SsjrO4PfR21sesZ+G+hXw19iuG+A0BjIG5h/55iAxVBjM7zsTH3oeIzAiWnVqGUq3k+QHPm/f364VfGRk4kintp6DVafkn7h8W7lvIctlyhgcMtxjj6YzT7ErYxexOs7GX27Pqwiqe2/sc22dsx8XWpdafn9B4cv8AnKfebsxOmzu3xuy01FdeJW/9ehwnTEDx0IMUR0SS9c03lFyNIfCLLyzWLYmLJXnRIlxnzcJl5kysQ0LwW/whqa+8im2P7rjOmmU8fmCgxXZJzz6LtX8AXs89S/H58+SuWYvM3a3K2mcVadMzUB09Zg7OOU2ZTPZPP+Pz6itIrK2Rubnit/hDlF+vQK9S4fWcMVhgE9oefXEJALnr/sJQosFl1kyk1tZYOTtj0BsqHav40iXi77kXiUyGy6xZyP390SYmULhnjzmYpj57DvXpMzhNnozMxxttcgo5v/9Owv33037zpjoHCG9Gzl7edB0+mrO7tjFg6p01ZqdtX/EZUft20XHgUPpNuYPUK5c4tn4N2cmJTF1kOX05OyWJzZ99RI+xE+k+egJufv5Memoh21d8hk9oR3qMnQiAi7ePxXabPvkQZy9vht39ABmxVzi7ezsKZ+c61T4rzM4iMeosE580nm+dhw7n1Oa/GfPwPKxklbPAdq9cgb2LK0Nm3kNq9EUid/2Djb09KZcv4OjuybC7HiD29HFObPwLj8B2hI8YY952x7dfELVvF+Ejx9J74m3kZaZz5p9NZMTFcNdbH2FVLvuiqp9FVTTFav54/XmykhPpNmoc3iGhqPPziTl5lMLsLBROzpSoVJzdvZ3OQ4bTY8wENGo1Z/fs4M/3XuOe95biFdy+1p+TUMbKxQZNQgHatCLkPjXPisj58zKqUxnYdffA5hZ/NIkFFOxNRJuhwuP+rjVuW5FNiBMOQ/woPJSC46hAZNdqmZWvaVaapSbr1wvY9/fBvq+3OQBnHeCA3Lv2GRyqM5lI5FbYdXFDIrfCyt0W1ekMi2CaoVSP8odzGEr1OAzxw8rRGl1eCeqL2ejVpeZgWkWl2cWoz2eh6O6Blast+kItRUdTyfwmEp/n+mLlJDKMbwRnz56lS5cuyGQyunfvzokTJ0hOTsbf35+JEycSERHBxYsXmTJlCtbW1niXqwmblZXF2rVr6devH3379q12GmhJSQkrV64kMzOT3r174+vri0ql4tKlS+Tn52Nvb09JSQmnTp2ie/fu9OnTB41Gw6lTp/jll1+YO3cuvtdRPVYRTGsGao2e7CINOr2BmMxC3t50HoAp3Y0XGJ/d3dtiyuW9g9rhvO4svxyOZ+H4jtjIrNDpDby07iyejjZsefoWnO3KLhoMhsoXpwAKaxl39A7g92OJ5Kg0FlNNq/LhPxfJLChh/ZND6RHgYl7+3PhO1R5DaAMyL4GNMzjX/P8LGANZm56F4Fvg3j/LAlb9HoLlA2H323D/esttfHvA1OVlj1XZxjpspmBaz9nGfboGG/9dFe9ucOf3lsv6PwpDFlguC+gHfz4CCYeh3ZDaX09Fl/+B4jzoNt34uPMUY+24c3/C4Pnl1tsOnl1g1s/12/+M70Be7kNb/0dg4zNw/HtjZqCor9ZkCjWFZKgyGBU4qk7rr5y40qIRwZwuc5i3Yx4/R/1cKZiWUJDA12O/Zqj/0DrtWy6V892E75BLje+7fg5+LD25lL2JexkVVDa+uPw4Phn5iTkTbXrYdG5ffzufnvzUHEz7OepnEgsSWXPbGto5Ge9qz+o0C087T36M+pEHwh/Ax974t2HTHZssXtPdXe5m1sZZ/Bz1c6Vg2tW8q/w99W8CnYwBlf4+/blz451sid3CnC4NmOYsNIjHvHnk/b2BrO++w+fll6pcp/jiRfLWr8dl5p34vv22ceGcOVi5u5P9ww8UHTmK/aCB5vW18QkEfvstDrdYZhmmvvEm1gGBON9+e5XHse3SBb93y7Isdbm55K79s07BtPzNm5FYW+Mw2hhccJ48GeVnn1O4fz+OY8ciVShwvv12ctesRWcltRiDJikZgNK0dEK3b0Pm5lbpufLS334HDAZC/voTuZ+febnnwoXmfzuMHIHTxAkW2zmOGkncXXdTsH07zlOn1vqabmYD75jN+f27ObZhLaMfrDo7LSPuKlH7dtF99HjGP/4fAHpNmILC2YUTG/8i4VykRWZUbloqM158k+Beljfgdn67HBdvH7reUvV7t1dIeybMe9r8WF1QwNk9O+oUTLt4cB9Wcjkd+hl/PzoPGc6h1au4evpElTXa7J1dmP7CG0gkEnpNmEJOeirHN/5Fz7ETGfuosftyj7ET+PapRzi3d4c5mJZ0MYqzu7czecEiugwbad5fUNfu/Pn+61w+csBieXU/i4qOb/gLZWI8ty98ibABZdc4g2bcZb7OtnVwYO4X31sEB7uPmcDKZ+dx+p+NFj87oXaOwwNQrjxH+mensA5wxDrEGdtQF2xCnZFYlSUJaFIKUZ3KwL6/D64zwowLB4PUQU7h/mSKY3ItMspqI3O3wzrECQ6lYNPBpcptSzPVeD7eA5sQY5a7XXcPUj84RtGJdFym1B40VZ/JwK6rMZAGoOjhSdGxVFxuC0ViZby+12ao0GUX43ZPZxTdyzL8nca2q3KfJnIfe3wW9kNSboaUorcXaUtPUHQ8HacxQbWOT2jbUlJSUCqVTJo0CYCgoCCcnJyIjIzE39+fLl26kJaWxsWLF+natSv29pYB3uzsbO699146dOhQ43EOHTpERkYGs2fPpkuXsiShESNGmN/37OzseOaZZyymiPbp04cvvviCY8eOMfU6+hsvUo+awSc7L9Pn7R30f3cnd31zhIQsFS9M6szEbsYoa/lAWmFJKdlFGgYEu6HW6ojJMM5VjkrJIzFbzcPDQiwCaUCTFPnT6w3siEpnTBdvi0BaUx5DaCYlBWBTx5TrtEjIjoHuM41BsaIs45dGBe1HQPwh0Ostt+n3sOXjdkOMUxyL8+s+xor7AMuglLbYOI6A/sbHqRF133d5kavBrze4X2vCYeNonDp6drXlerbOkJ8CySfrt//yYy4pMI653RDQqkB5uWFjFqpUqC0EwF5et/p65YNOBZoCcopz6OfTj6TCJAo0BRbr+jv41zmQBnBnxzvNgTSA2Z1mI5PI+Df5X4v1vOy8GBNUltngYO3AbaG3cSH7Akq1EoDt8dvp490HJ2sncopzzF+D/AahM+g4kX6iyteUV5JHoaaQvt59OZ99vtIYB/kOMgfSADq5dcJB7kBSYVKdX6fQeNaBxuBW7urVaDMyqlyncJ+xzp/bgw9aLHd/6MFrz++zWC4PCKgUSKsL17sss5Xt+vZFl5uLrrCw1m3zNm3EYcQIrByMv3/WwcHYhoeTt3FTnY/vOH68RSCtKqXZ2ahOnMB5xnSLQBpYXneUrxFn0GopzclB3q4dUicnis9X/n0QLLl4+9DlllGc3bmNwpzsKteJPW187+k75Q6L5f1uNT6+evq4xXJnL+9ag0dV6Tl2ksXjgC7hFBfkU6JS1brthQP7aN+7H9Z2xuweV19/vNt34OK/e6tcv9uo8RbnkW+HTmAw0G1U2VR5qdQKn/YdyEtPNy+7fOQANgp72vXojSo/z/zl1b4Dcls7EqMiLY5T159F9NGDeLYLsQikmZjGKZVamQNpBr0edWEBep0On9Aw0mNjaj2GYMk2zBWvJ3ph28UdbWoRhfuSUP5wjtT3jqE+n2Ver/hSDgAOt1hmFTreYrxRXXyx6t+bxpB5KcyBNDBOO5V7KCjNLq51W01qEdo0FXa9yjKgFT090ReVUhydY15myjwruZyLXqOr89gkMqk5kGbQG9AVaZHYWCH3UKBJrv1viND2RUZGYm9vb55GKZFICA8P59y5c+grfhasgouLS62BNIDz58/j7e1tEUgzKXvfk5oDaXq9HpVKhV6vx8/Pj9TU1Pq8rFYnMtOawd0DgpjS3RepBJzs5IR5O2BTrkvA5fQCPt52icMxWRSUlFpsW1CsBcqmhnbybkBXwjrIKtJQUFLabPsXmpGNo7HuV11kXbsQW19DV6+SPLBzLXvsbDl1CNOUseJcYz22unCt4g6YKhv2fWjMGivKtHyuPoE6E3UuRO+AAXPLXicY68Bt2wDKK+Bx7U1/2DNwdS98Oxrc2kPoaGOAsXzNuKpkXIDd7xind5ZUGGNDxixUy0FuDBAXaYvqtP7pjNMsP7OcyMxI1KVqi+cKNYU4Wpe9twU41CGLs5x2jpbnr0KuwEPhQUphisXyQKfASjcegp2CAUguTMbDzoOE/AQu51xm+B+WmWUm2eqyC/Z9ifv4JvIbLmZfRKMvK5QsqaLllq995RR4J2sn8iuep0Kz83hiHnkbNpD1bdXZadqUFJBKsQ6yvLMv8/RE6uRkfL4ceUD9zlfzdhWmRVg5GT+06fPysHKo/gZMSUwMJecv4DJ1Kpr4sr8tigEDyPntN3SFhTVuXzbu2muZaRMTAbAJC6txPX1xMVnffEPuX+soTU8vKxcA6ArEB7u6GDT9Li78u4djf6+pMjstX5mBRCLFxcfyvLF3ccXG3p6CTMvgsLNX3eo6VeToYVn/0sbeeC6VFBVio1BUtQkAWUmJZMTF0HX4aHLSyn5HArp2J2LbZkpUqkrbO1U81rXnHd09Kiy3p7io7DzKTU2hRFXEV3PvqXIsqvw8i8d1/VnkpacRNrD2rPuofbs4sWkd2clJ6HVlnwsa+jO/2VkHOuJxX1cMpXq0qUWoo7IoOJBM1qoLeP+nN3Jve3S5xSABmbtl7T4rR2sktjJ0uSVNPi4rl8qzGSR2Mgzq0irWtqQ6nYHEWorMzZZSpfGaRyKTYuVqY2xK0Nl4I0PmZovDMH8KDySjOpOBdbATdl3dUfT2qnaKJxgDaIUHUyg6kkJpTjGUi61IFSJccL3T6/WcO3eOkJAQcnLKgq8BAQEcPnyYq1ev1hooc3V1rfF5k5ycnCoDaRWdOXOGQ4cOoVQqLYJ5Li4udTpOWyF+O5pBiIeCYWEeVT6Xp9Yye8VhHGxlPDuuI+3cFdjIrDiXkscHWy9SRXkRQbDk0dGYcZaXVPtUT8O1N6dxb4NPNd2vrCt8SJJUU1i/PlN/ZVXUs1nzICQeg6H/MY7F2t44vl9nlI2zPs6vB10JHP7C+FXR2dUw6toHW89OsOCEcVrolV1wfgMc/85YQ25U1VOzUOfCysnG4OWol4wNC2Q2xiy6na83bMxCtRysHfCy8+JK7pVa103MT+TRbY8S4hzCon6L8LH3QS6V82/yv/xy/hf0WP7f2LTidFy9Qc9g38E81K3qKU2m4NvJ9JMs2L2Avt59eWXQK3jYeSCTylh/ZT1bYrdU2q5844LyDIg/Ii3NOjAQ59tuI3f1atznPlr9inXM+JY2tPulVdXv3bW9dedt2AhA+vsfmBsdlFewbTsuM6bXenhpHQvK10XaO++Q99c63O6/H7tevZA6OiCRSEh+bmHlbGqhSi7ePnQZZsxOGzC1+tqgdZ2JIGtg506JtJr3qlpOzAsHjA219v78rbnRQXnRRw/SbdS4Oh2ryuXljm8wGFA4uzD5qaqnRNs5Wd5IbOjPoirn/93DP19+Qof+g+h/23QUTs5IpFYc+3s1uelpTXacm5FEJsU60BHrQEdkHnbkrL2M+qyyQn2yRszEqWdJHIm06mPVthuDwYA6IgODRk/60sozLIoLs9CX6JDaGP8GuNzaHvt+3qijsiiOziF3QwwFexLxfLIXMueqz92CPYnk74hH0c8bp/HtkNrJQQK5m67W92UKbVBsbCyFhYWcO3eOc+fOVXr+7NmztQbTmrJrZ0REBOvXr6dz584MHToUe3t7JBIJBw4cIDu76bNCm5MIprWwI1ezyFFp+frevgxsX1a4LzHHMt29nbvxbtql9IJqA3ON4W5vjaONjEvpBbWvLLQtnSbBubUQ+Yexq2RNTI0BbBwhtG61qOqkvtOA1TkQuw9GvgQjywquW2SU1VfkGvDqagyIVXRyJZxdYxkos7aHbjOMX6Ua+ONeY9fSYc+BvIoPgXEHjNNbZ/8KweWmCObWMStQqLfhgcNZe3ktZzLO1NiEYG/SXjR6DZ+P/hxfh7KsiuNpx6vdpj7iC+IZ4DvA/FilVaFUKbnF/xaL9RLzEzEYDBYfRuPy4wDj1FKAQMdAVKUqBvtV0Xm3nJ3xO7GxsmHFuBVYW5V1HFt/ZX0jX43QEjyemEfexo1kffddpefkfn6g16OJj8cmNNS8vFSpRJ+fX2m6Y3Wao/iCwWAgf9MmFAMH4nr33ZWeV371FXmbNtYpmFYXpqYJJdHRNa5XsG07ztOm4f1C2fu7vqQEXYG4ZqmPQdNnc+HAHo7/vbbSc04eXhgMenJSU3APKMtIL8rNoaSoCEfP6htqWGiGsiAGg4ELB/YRGN6DXuMnV3r+yJ+/c+HA3krBtIZy9vYl/uwZ/Dp3Qd6EgTJnbx+UiTVfM1w+chBnbx9uX/iyxd+SQ2tWNdk4BLAOMN441hUYs76tXGzBYGwKUL5JgK5Ag6G41CKLTGInw1BsmT1mKNWb91WmeUrklFzNQ5enwWlcO2Reljer9epScv+6gvp8Fva9y35n5T72yH3scRoTREl8PplfRVB0JBXnCcFVHkN9Tmns7nlnR4vlBnUpKCo3+xCuL6YpnpMnV34/vXDhAhcuXODWW29tkmO5urqSUU3ZC5Pz58/j6urK7NmzLd739u7d2yRjaEmiZloLs7p2wpQP8mtK9fxy2PKPbTc/ZwLd7PjhQCx5aq3Fc03RHEAqlTAu3JtdF9KJTMqt9LxoQNCGdZ0KXuGwf4kx06uikgLYda1ZgG9vY0bVoc+hpIqpMUXKho1BrjAW/q8rc7ZbhfPqyJcNO35eEsQfhPA7IHxa5a9e90L2VUi6Vo9KVeEuh8zamK2GAfSWv19m0irGXKoxZrQJzeLh8Iexk9nxxqE3zDXHykvMT+TX87+as7LKZ2EVaAqaLPC09vJatOXOiz8u/UGpoZRh/pZ1rDLUGexK2GV+XKgpZGPMRjq7dcbDzngTZELwBCIyIziYfLDScfI1+ZTqjRfoUokUiUSCzlBW4yS5MJk9iXua5DUJzcs6KMiYnfbHakqVlueuwwjjFN/snywboGT/+OO150fU6RgShaLJg0nqU6fQJifjMv0OnCZOqPw1aRKqo8fQptd8YVxXMjc3FP36kffnX5Wmt5a/7pBIpZXSNXJ+/RV0da8BJICLjy9dho0icuc/FOXmWjwX0rsfAKe2/G2x/OTm9QC0792/TseQ29hQXFS36fl1lXzpPPmZ6XQbOZaOg4ZV+uo0ZDiJUWcpzM6qfWd10GnwMAx6PUf+/L3Sc3qdzmJKaH2EDRxKZnws0ccOVXrOdL5LTVlz5c731OhLpERfbNAxb3bFMblVfoYpvmS8DpR5GANntp2MU9YKD1g2SSm49ti2c1n9R5m7LSWxlte8RcfSqJAEj9T62rVJce3TNuvDNMXTcXgAiu6eFl8OA3yRedihOm18j9YXl2LQWb5+uY8CJGDQ1ZDVW0XWnCoyE11+xYChcL3RarVcuHCBjh07Eh4eXulrwIABaDQaLl261CTH69q1K+np6Vy4cKHScxXf98r/riYlJZF4rRTE9URkprWwvu1ccbaTs3B1BA8NDQZg3enkShNzpFIJ70zrzqM/HWfysn+Z2S8AL0dbYjILuZxewC+PDKy07/r6vwmd+TdayewVR7h7QBAdvBzIKChmy9lU1swbUqnxgdBGWMlh9i/w8zRYOckYUAocaFyecdGYkWXnAmNeA6kUbv8cVt0JXw6CXveAky/kp0Lcv8aMtTl/1H8Mfr2MNcgOfQGOPsbOngH9ql/f1gnaDYWDy0CnNY4hZk/da79VdHYNYDBm6VUlbBxIZcYGBQH94Jdp4OBt/Dk5eBk7oh77FsImGH8GVQkcaKwXt+4JGPi48e57xO+V4oFC0wl0CuTDWz7kv/v/y9T1U7k99HY6uHRAq9dyJvMM2+O2M7XDVO7vej9yqZyndj/FzI4zUWlV/Bn9J262bmSqM2s/UC20ei2PbnuUCcETiMuP449Lf9DHq0+lTqPBTsG8dug1zinP4W7nzror68gqzuLtoW+b13mw24PsSdzDU7ueYmqHqXR174q6VM3lnMvsiN/BthnbcLV1ZXjAcH4+/zPzdsxjSvspZBVn8fvF3wl0DORyjmh2cT3wmPc4eRs2oImNxSasbLqEbefOOE+bRu7q1egK8lH0709x5Fny1q/HYewYi06eNbEN70rR4cNkrfwRmZcn1gEB2PXs2agx523cCFZW1Qb0HEaPIvPTT8nfssXcMKGxvF95mfg59xA7fQYus2YhD/BHm5xC4b59tF+/znjckSPJ27ABqaMDNqEdUJ85Q9Hhw1hdZ7VU2oKB02dx/t/d5KQk4R5QVrfPK7g94SPGELnrH4pVRQR26UZazGWi9u2iQ/9BFp08a+LdvgMJZ89wYtM6HFzdcPbywTesU6PGfPHAXiRSKSF9qg7ohfYdwIHff+biof3mhgmNEdi1Oz3GTuTY+jVkxl2lXY8+SGVW5KamcPnIAUY9+BgdB9W/KUj/26cTffQgGz/5gG6jxuEd0oHiwgJiTh5l7KNP4hXcnvZ9+hN97BB/L3mX9r37k5eRRsTOrbj7B6Itqb0wvWApd0MMBq0eu67uxiwunYGS+HzUkZlYudpg389Yh87azwFFHy+KjqWhLy7FJsQZTWIBqlMZ2HZ1t+jGad/fh9x1V8j65Tw2Ya5oUwspjs5Fam/5MVru5wBSKNiXhL5Yh0QmwSbUBSsHaxrKUKpHfS4Lmw6uSORV58DYdnGj8GAKukINmvh8cv+Owa67BzJP4+svOp0BUgl23aqf6WTb2Y2CXQlkr7mMdTtHStNUqM5kYOXWdNP3hdZx6dIlNBoNnTpV/b4cEBCAQqEgMjISX9/K9Xjra8iQIZw/f57Vq1fTu3dv/Pz8UKvVXLp0iVtvvRUfHx86duzIhQsX+OOPPwgLCyM3N5cTJ07g6emJRnN9BXBFMK2Fudpb88OD/Xhn8wU+3n4JZzs503r7MzTUg/t/sMwyGtHRk//NHcSyXdF8928seoOBIDcFdw9omvbEPs62rH9yKEu2X+LvM8kUlJTi42TLyE6e2MmrqZsltA3uoTDvX2Nm14VNcHGzsYaXW3vocz8MLNdwIOQWeGQH7F8Mx74BTZExsBTQF/rW3pq+ShPeg41PG4vzl6qh55yag2kAM76DLf+F498aA1Kho+DetbCkARfdkWuMjRKqqwNn5wJBgyHqL+NY+z5kDMAdXm58/U5+xgDZ8P9WfwyFG8xZDdtfNr5OOxfoMQtCRsCvTTPlSahsVNAo/rz9T1aeW8mexD38cekPrK2s6ejakUX9FnFnxzuxtrJm6cilfH76c5acWIKHnQezOs3C1caV1w691ugxvDTgJTbHbmb5meWU6kuZFDKJFwe8WKm2UJBTEC8OeJElJ5cQlxeHv6M/Hw3/yKJzqJ3Mjh8n/si3Z79le9x2NsRswEHuQDundjzZ60kcrtUsHOg7kLeGvMX3577nw2Mf4u/oz7N9nyWlMEUE064T1u3a4XzbbeStX1/pOd933kYeGEDeuvUU7NyFzMMD98cew+OpJ+u8f+/nXyDttdfIXLYMQ3ExztOmNSqYZtBqKfhnG3a9e1UbpLLt2BF5QAB5Gzc0WTDNtnNngv/4nczPPiPn998xlJQg9/PDadJE8zreL78EVlbkb9yEoaQEuz59CPrhBxIfraEmnVAlVx8/ut4yiqh9uyo9N/7x/+Ds5UPUvp1cOXYYexdXBkybyeA759R5/yPvf5Qd33zBwT9+pVRTQviIMY0KpulKS7l05CB+Hbtg51D1zS6PoGCcvby58O/eJgmmAYyb+xTe7TsQufMfDvz+M1IrKU6e3nS5ZRR+nbo2aJ/WtnbMfvNDDq1exZXjhzm/bxd2zi6069bT3BQhfORYinJziNz1D3ERp3D3D2LyU4u4fOQAiefPNslru5m4TA5BdVZJ8aVsdMc0GHR6ZC42OAzyw3F0IFK7so++rjM6InOzpehUBuqoLKwcrHEcGYjTWMvPWfb9fdBlF1N0Io3iyzlYhzjj+Ug3Mr+1/P+xcrTGdVoY+XsTyfnzMujBY273RgXTii9mYyguxa5L9Z2S7bq4UfhvMqqITOy6uGPT0RX1xWx0RzVIraXIfezxeCgcm6Dqm4g5jQrEoNGhOpOJOjITuZ8D7g+Gk7c1rsFjF9qGyMhIZDIZ7du3r/J5qVRKx44diYyMbJLi/zY2Njz00EPs3buXCxcuEBERYe4i6nSt/mSvXr0oLCzkxIkTXLlyBU9PT6ZPn05UVBRxcXGNHkNLkhjEfD5BEARBEARBEARBEARBqBNRM00QBEEQBEEQBEEQBEEQ6kgE0wRBEARBEARBEARBEAShjkQwTRAEQRAEQRAEQRAEQRDqSATTBEEQBEEQBEEQBEEQBKGORDBNEARBEARBEARBEARBEOpIVvsq1ze9Xk9KSgqOjo5IJJLWHs5Ny2AwUFBQgJ+fH1KpiOHWhziH2w5xHjecOI/bBnEON5w4h9sGcQ43nDiH2w5xHjecOI/bBnEON5w4h9uGpjiHb/hgWkpKCoGBga09DOGaxMREAgICWnsY1xVxDrc94jyuP3Eety3iHK4/cQ63LeIcrj9xDrc94jyuP3Eety3iHK4/cQ63LY05h2/4YJqjoyMAsbGxuLm5tfJomtdVZSHbz6Uzvps37T0cLJ7TarVs376d8ePHI5fLW3xs+fn5BAYGmv8/hLq7mc7hmrT2OQziPG4McR6Lc/h6J85ho9Y+j8U53HDiHDZq7XMYxHncGOI8rvs5rFWqUJ/Lwq6bO3IPRZOOQZzDDdeU5/CBAweIjIykR48eDBs2rCmG12Ja+724Kc7hGz6YZkqddHR0xMnJqZVH07z+PZ7Ohgs52Nk70Ku9n8VzWq0WhUKBk5NTq104ACKVtQFupnO4Jm3lHAZxHjeEOI/bxjlsMBgAcQ43hDiHjdrCeQziHG4IcQ4bteY5XFBQYPHBTZzH9SfO47qfw/nHc9FcKEJu74hTe59mGYs4h+uvKc/hAQMGYG9vT3h4+HX3+3AjXE/c8MG0m8nkHr4W3wVBEIT6i82LZXvcdsYHjyfEOaS1h9OksrKyWnsIgiAIN6Xi4mKys7NFJo/QYux6eFh8F248Hh4ejBgxosWPq1QqOX78OAD9+/fHw+PmPMdEMO0GEurpwIIxYa09DEEQhOva9rjtrLuyDoDHez7eyqNpOiqVitzc3NYehiAIwk3HYDCQlpaGVqtt7aEINxG5pwL5mKBm2bdWqWqW/QrXh6ioKCIiIgBQKBStEtBrC0TrDUEQ2g5lNOz7yPhdEKoQmxfLiogVxObFNtsxxgeP544OdzA+eHyzHaOl6XQ60tLSWnsYgiAIN6XMzExOnjzJ6NGjuXTpUmsPR7hBFOxLQpvZOkEt9TmR6X4zCw8Pp2fPnvTs2ZPw8PDWHk6rEcE0QRDajqj1cPoX43dBqIIpa2x73PZmO0aIcwiP93z8hprimZ6eTmlpaWsPQxAE4aZTVFREUlISCxcuxM3NjZCQG+dvi9C6VKfTUUcqW+XYdt3cW+W4Qtvg4eHBpEmTmDRpEgD79u1DqWydc7E1iWmegiC0PmW0MYDm18v4OHxaKw6mHNO4wqeBh5hC3ZKqq1tmyha7kbLGmlt+fj6FhYWtPQxBEISbjk6nIz09nXfeeYfMzExWrlyJtbU1xcXFrT004Qag6O3davXQmro7qHD9ioqK4vTp0wA33XRPEUy7AcVkFrIlMpXJPXwJ9XRo7eEAoNFoWnsIQltmykgDGPHfVh2KhbY6rptAdXXLTFljQt1otVoyMjJaexiCIAg3pYyMDFJSUtizZw+vvfYaYWHixpzQdBxHBLR6h3vh5qJUKomKiiI8PNzcdMA0zfNmnO4pgmk3oC2RqfxxIhGgTTQkMBVdFYRqmTLR2kpGmklbHddNQGSgNY20tDT0er3FY0EQBKH55efnU1BQgJeXF9u2bcPNzQ0fH5/WHpYgCDe5qgJidVVVFlpTdBRtzJhak6iZdoOJySwkW6VhXBdvJvfwbe3hAMaiq9u3N199I+EG4BFmzPxqa1Mp2+q4bgI3Yt2ylpaVlYVarTY/jo2N5c4772zFEQmCINwcSktLSUlJ4ZNPPiEnJwcXFxd8fHyQyUQeg2CkzVSRvyuh1RoICDcvU0AsKiqq3tuGh4fTu3dv/Pz8mrROWmPG1JpEMO06FpNZyOe7oonJLKuFsyUylR3n03Gzt24TUzwLCwtRKpV8+umnrT0UQRBuAC3RzfNGUFxcTHZ2tvmxXq/nueeew9PTsxVHJQiNJ2pNCdeDtLQ0Pv/8c7799lvi4uJwdXXFwaH1r8uFtkMdqaToRFqlBgIiyCY0N1NAzDQtU6lUsnXrVrZu3VprcMyUhZaSktKkwa+KY7peiNsj17GqpnOastHaQlaaVqslLS0NmUzGN998Y+72IQhtVi0NB8oHJ4TWUV0tNaGMXq8nNTUVg8FgXiaVSlm0aBF2dnbcfffdrTg6QWg4vV4vpioLbV5OTg779u3j66+/5qmnnmLw4MHX1bQloWWYGgdUbCBgCrIByMcEtfi4hBufKSCmVCrZt28fKpWKiIgIABQKRZ2mbDZ1nbSmmCpaX+WvkxtKBNOuY1UFzkI9HdpMnbTU1FR+++03JkyYgJeXV2sPSRBqV0PDgatXr7Jt27aWH5NgQdRSq11mZiZardb8OCYmhpCQEIYOHSq6egrXtbS0NEpLS1t7GIJQrZKSEq5cucKiRYvo06cP8+fPx9fXF4lE0tpDE9oYuaeiymBZdUE2QWhqpqmVQUFBeHh44ObmVufgWGsEv5paUzToEsG0NqCh3TfbSuCsKllZWfz555+8/vrrWFtbM23atNYekiDUrpqGA9nZ2Tz88MOcOnWqxYckWBLdPGtWWFhIXl6e+XF8fDwzZ87kySef5JFHHmnFkQlC4+Tm5opgsNCmmRpuHTlyhJKSEj766CP8/PxEt0WhXqoLsrU1WqWYhnq9MwXOsrKyUCqV+Pv73zRZtLm5uRQUFDR6P6JmWhtgmq65JTK1tYfSJFQqFSdPnuSVV17h1ltvZdasWXh7e7f2sAShdlU0HFCr1Tz77LMcOHCAJUuWtOLgBKFmOp2O9PR08+OSkhKeeeYZPDw8mD17diuOTBAap6SkhMzMzNYehiDUKCsri5KSEiZMmMDOnTvp2rUrjo6OrT0sQWgW6nNZrT0EoZFM2WV2dnatPZQWpVaryczM5Ndff230vkRmWhvQluqcNZZOpyM2Npann34ab29v3n77bfz9/SkpKWntoQlCZbXUSNNqtSxevJiff/6ZN954g1tvvbXFhygIdZWWloZOpzM//vDDD7ly5Qp//PGHufC1ra1taw1PEBqkfA3AyMhINBpNaw9JECpRq9UcP36cbdu28dhjj+Hu7i4avgg3NLtu7q09BKGJ9O/fH4VCYdGQICoqivDwcHOmWlXLrkelpaXmawpXV9dG709kprUBpumabaH7pklVnULrIjU1lcOHD5OUlMSyZcsICQnBxsammUYpCI1kqpEWtb7SU3q9noSEBNasWcP999/PM888g729fYsPURDqIjc3l6KiIvPjY8eOsWrVKl588UW6du0KgEwmw9f3+r9pI9xc0tPT0Wg0ZGdns2DBAj755JPWHpIgWNDr9cTHx7Nw4UI2bNiATqcTddKEG57cQ9HaQxAawdR8QKlUmjPUTEEyUy218p06q1p2vTHVdDc1lJsyZUqj9ymCaUKVGjL1NDs7G5VKxfDhw9m1axcDBgzA2dm5GUcptAnKaNj3kfH79aD8eMOnQe/7KtVIg7Isn19++YXFixeLc1loszQaTaUpcP369eOLL74wd+6USCT4+flhZWXVGkMUhAbJy8ujoKAAnU7Hc889h0aj4e23327tYQmChczMTD744AOuXLnCJ598QnBwMNbW1q09LEEQhGpFRUVx4sQJNm/ejFKpNC9XKpWoVCo6depk0YwgPDyc3r17N1n3zqZWPjhYnczMTNLT05k5cyZff/11kxxXBNOEKk3u4cvsfoF1nnpaXFzM0aNH+eKLL9DpdPj4+IgOnjeLGrK72qTy462iRhrAhQsXmD17NvHx8fj6+oqaf0KbZbrLZmrvrdFoOHHiBFKplHHjxpkzIzw9PcUUT+G6UlJSYu609fnnn3P06FGWLl0qri2ENqWwsJANGzbw008/sWjRIgYNGiTqpAmC0OaZpmuapm+aREVFcenSJRQKhcV0zorZa21NbZlz+fn5ZGVlsXDhQnJycpg0aVKTvFeLmmlClerTKVSv1xMTE8N//vMfAObOnYufn59Ib79ZVNMBs82qZbyZmZncc889JCYm4uTkJAJpQptmKnhtsnjxYlavXs3u3bvNFzxOTk64uLi00ggFof7KB4nz8/NZvXo1Tz/9NIMHD0av17f28AQBMNbeSU9PZ+fOndxyyy3MnTtXBHuFm4bpJp5wffLw8GDKlCnmOmgmpn/XNwOttWuq1TTu4uJi0tPT+fjjjzlw4ADfffcdnTp1apJZRyKYJjRaWloar776KsnJyaxdu5b27duLNuA3E1N21/WihvGq1Woefvhhzp8/zx9//EH//v1FUFhos9RqtbnuA8COHTv45ZdfePXVV80XMjY2NiIgLFx3THXSwBgM3rBhA25ubsjlchEYFholOyWJi4cPgKzx3evS09PR6XS89dZbaDQa/P39xTWDUCVtpgp1pBK7Hh7IPWuvNVbf9VuD6LDcupoieGXKNqttWV2YMsOABm3fWNWNW6fTkZqayt69e/nhhx948cUXGTFiBP7+/ha1hhtKTPMUGiUvL4+ffvqJdevW8cYbbzBgwABRpF24LpWWlvLiiy+yadMmPv74Y6ZMmYJUKt4iBYjNi2VFxApi82Jbeyhmpg6HJklJSbz00ktMmDCBe+65BwArKyuRJSxcd/Lz88nPz6ekpIQPPviAnJwcPDw8kMlkou6f0GiXDx/g/P49jd5Pbm4uP/zwA7t27UIikYg6aUKN1JFKik6koY6svp5TY9Zvabm5ueTn57f2MG5qLd0QoLaaZLXVVKtLTbPmkJqailarZfDgwXz44Yc89NBD+Pv7N9m1hPikKDSYqZ7J0aNHufPOO5kzZ06bnUctCDUxGAykpKTQtWtXXnjhBebOnYtMJhJ3W1JbDFiZbI/bzror69get721h2KWnp5OaWmp+fGSJUtwcnLi3XffNQfPfHx8RJawcF3RaDTmOmnvvvsuq1atMgeNvb29RXdwodE6Dh5G1+GjGrUPjUbDvn37ePvttzl+/DjOzs6iTppQI7seHtj388GuR90+J9V3/ZakVqtFVlorKR+QasqGAHUJdNUWvKutplprdANVKpXExcURGRmJtbU106ZNw8/Pr0mvJcSnRaFBytcz+fDDDwHw9a1bswJBqFX0Djj0OQxZAGHjmv1wJ06cwMnJiVGjRnHPPfeID2ytwBSwAni85+OtPBpL44PHW3xvbfn5+RQUFFgse+utt8jIyDB/oHN3dxdZwsJ1xXRdodfrWbduHX/88QfvvPMOXbt2xc3NTQQrhCbh5hdA/9tnsGXLlgZtbzAYuHr1Ks8++yxhYWG88MILok6aUCu5pwL5mKBmW7+llJaWkpKSIuqltZKKUymbajplXaZohoeHo1KpyMrKYuvWrfTv398icFbdtFPTcj8/P/N+WkJhYSFpaWksWLCA7Oxstm7diq+vb5NfG4tgmtAg6enpvPLKKwwbNowxY8YQGBgopl4IVVNGGztnhk+r1DWzWoc+h7gDxn83czDt9OnTTJw4kQceeIDXX39dBCBaSVsLWJUX4hzSZgJ8Wq3WnLkDcPToUfz8/AgMDDQHG+zt7XF3d2+tIQpCg2RmZlJSUsLFixd54403mD59OjNnzqzUUUwQWlN2djavvfYaaWlprFu3juDgYDGVXrgpmGZx6HS61h7KTashzQHqUlutLvv18PBAoVAQEREBgEKhsAi8VReQa41aahqNhtTUVF5//XXOnz/PqlWrcHd3x9XVtcmPJYJpQr0VFBTw3XffsWrVKnr37o2npye2tratPSyhrYpaD6d/Mf67ro0Khiyw/N5MkpOTmT17Ng4ODjz++ONN0tVFaJi2FLBqy9LS0szdDFNSUliwYAEjR45k8eLFAMjlcpElLFx3CgoKyM3NBeDcuXOEhoby+uuvi/NZaFOKi4uJj4/n1KlTvPzyywwZMkTUSRNuGunp6RQXFwNw5swZcnJyWnlEN5+GNAeoSzCrrvs1ZaeZ/l3xufosby56vZ6UlBRWrlzJX3/9xeLFixk0aFCzZRCLYJpQL1qtlr179/L2228ze/Zs5syZIzprCTULn2b5vS7CxjV7RlpRURF333036enpbNq0iU6dOjXr8QShsbKzs1Gr1YDxvfjZZ5/FwcGBl19+GQCJRIKfn59onCFcV7RaLenp6ebHd955J1OnTsXa2lo0HBAaLTslicuHD9Bx8DDc/AIavB9T0xcHBwfWrVuHp6enmHos3DTKNxxITk5m/vz5BAcHt+6ghDqpKZhV346gHh4eTJo0qcrtqgvINbQ7aEOlpaWRm5vL999/zyOPPMLMmTPx9fVttgxiccUt1JnBYODy5cv85z//ITQ0lDfffBMfH5/WHpbQ1nmEGTPS6jrFswXodDo+/fRTDh8+zIoVKxg2bFhrD0moRVtuUNBUqnqNpmUX0y+SlZVlXr506VLOnTvH0qVLzRmVPj4+ot6fcF0pXydt5cqVLFu2DIPBgFwuF+ez0CQuHz7A2T07uHz4QKP2k5aWxksvvURMTAxOTk54e3s30QgFoW0r33CgsLCQefPmYWdnZ66ZLbRtNTUGqK0pQHWNCRraTKC5O3pmZ2dTWFiIQqHgr7/+4v/+7/+a/aacCKYJdaZUKklLS8PFxYXPP/+ckJAQUSdCsKSMhn0fGb+3UaaaD9OnT2f16tXMmjVLnMfXgdbsqNlSgbyqXuP2uO38dfkv/jz5p7ngb0ZGBr///jsLFy6kV69eALi6uoosCeG6o1QqKS4u5vjx43z00UdotVokEok4n4Um03HwMEL7DUSVn0d2SlKD9lFUVMSHH37I6tWryc3Nxc/PT1w3CDeF8g0HdDodixYtIjk5ma+//rpZ6k8JLau2jqDVBc3q0km0qsBZc3b0VKlUxMXF8dprr5GTk4OXlxcBAQHNPhVfTPO8CcRkFrI1IonARuyjqKiI7OxsAgMD+f333/H39xd1IoTKGlIfranV0vDgt99+Q6vVMnz4cG677TYxJe460ZoNClqq02hVr3F88Hjys/Lp49zHvMzLy4uNGzfi7+8PgJ2dnSjQLlx3ioqKyMnJISMjg2effZa+ffvyzDPPoFAo8PT0bO3hCTcIN78AFI5OnN2zA4WTM4Nm3FWv7XU6HVu2bGH58uU88cQT3Hrrrcjl8mYarSC0HRUbDmRmZhITE8Onn35KWFgYhYWFrTxCobGqmoJZfgpndVNE6zJ1s6pabdXtLysri0uXLtV5umlFWq2W5ORkFi1axPHjx3nwwQfp3LkzCoWi3vuqL/Ep8joRk1nI57uiicms/xvXlshU/jqdDECssqje+yktLWXnzp3MnDmT9PR03NzccHBwqPc4hJtA+DTofV/l+mgtmbFmCuhFra/01IEDB3jsscf43//+h5+fHzJZNfcTroMMu5uNqUFBiHNIix97fPB47uhwR7MH8qp6jZ5WnkwNmEqgYyBarZZvvvkGtVpNQEAAEokEmUzWrLUgBKE5lJaWkpaWRmlpKc899xxgnLpsa2srGg4ITa7j4GF0HzWOjoPrX9Lh8uXLPPvss/To0YOXXnpJZEwKrU6bqaJgX8OyLOujfMMBg8GAj48PmzdvZvjw4QAiqeIGVT57rKYporWpKnutuv1dvHixwRlrpqDvkiVL2Lt3L0uXLqVv374t1lROBNOuE1siU/njRCJbIlPrve3kHr6M6mjsYPHH8URWHU3gtfXn6hxQu3jxIgsWLMBgMODr6ysyIITqVVcfrYYAV71lxdQc6KomoHf16lVmz55Nu3bt+Pnnn2vuQNuU4xWue60VyCstLbUozL5s2TI+/fRToqON575EIsHX17f6oLAgtEGmOmk6nQ6NRoOXlxeffvopXl5e+Pv7i4YDQqNkpyRx5M/fLaZ0uvkFMGjGXfVuQJCXl8fp06cxGAx89tlnItArNIo2U0X+rgS0mapG7UcdqUR1Or32FRuhfMOBY8eOMWfOHHJycswBNJlMhp+fX7OOQWgdVQXByk/ZNP07Ojq6xvpn9QnEde7cudZpo9VJT09n3bp1rFixgkWLFjF58uQWzW4XV+ANEJNZyJbIVCb38CXUs2UytCb38LX4Xh+hng642suhCDCAr7MtZxJz+fVwPK/fXnbSVvW6MjMzWbhwIbm5ufzyyy8EBwdzVVnU4q9faONqmVpZqaNnbevX5OJmOFPDVFJTQK+c/Px8pk+fjlarZc2aNbUXDm5IB1JBaGLp6enm6RX79+/n22+/ZdGiRfTo0QMAT09P7OzsWnOIglBvWVlZqNVqtFotCoWCpUuXAuDt7S0aDgiNZmo4ANR7Smd5Wq2WzMxM+vXrx44dOwgLCxMZwEKjqCOVFJ1IA0A+JqjB+7Hr4UGpQQdFzRNQK99wID4+ngULFtClSxfzrCSpVIq/vz8lJSXNcnyhdVU1hTMqKooTJ04QFxeHl5cXly5dIi4uDqVSSVxcHFOmTGlUso27u3uDOn7m5OSQn59PTk4Od9xxB/Pnz2/xmx4iM60BGpMlVlcVp3WGejqwYExYvYJX5fcxPtzYdXP2gEB6BblgJZVAhWuCiq9LpVLx6aefsn37dt5//30GDBiATCZrkdcvXGdqy+SqmLHWmMyvzlOqnkpaDb1eT0REBCqViv/97391u+vRBjuQCq0jNi+WD459wAdHP2hwAwJTA4P4/Pg6b5OTk0NRURFgDKr93//9H8OHD+eRRx4BwMnJCRcXlwaNRxBai0qlIjs7m7i4OCZMmMCZM2cAYwMNJyen1h2ccEPwDu2Ai7cP3qEdGrWfw4cP8+KLL1JYWEhgYKCokyY0ml0PD+z7+WDXwzLoUN+MNbmnAscR9cuyrKvyDQfy8/OZN28eLi4uLFu2DLlcjkQiwc/PDxsbG7TKxmXYCW1TVY0DTB0xMzIyUKvVuLq6EhwcbF7W0IYCMTExFt/rM76EhARSU42xiHvuuYfFixfj7+/f4rWwRWZaAzQmS6yuTAErgAVjGvaBvvw+5g0P5gIQ4mHPvYPa4aawrjT+8q9Lp9ORlpaGj48P8+fPZ86cOeYMiJZ4/cJ1pr6ZXI3J/Lq4GbpNswx01ZDplhixD+/4rexZ+z3+PW6p//GEG1ZsXizb47YzPnh8tVM4t8dtZ8OVDeabD662rjWuX90+1l1Zh0QvwZtasiKBkpISi4uYnTt3YmNjw4cffohUKsXGxqb27EpBaGNKS0tJTU1FrVbzn//8B7lcTocOHVAoFKJ8hNBk0mOukJ2SxImN63D28qlxaufxDX/SefCwSuukpaUxf/58ioqKRGdZodG0mSrUkUrsenjgVEVGWlNlrDVW+YYDer2eZ555hqysLFavXm2uP+Xt7W0u6q4+l9VqYxVqV76RQG1/Y01TNt3c3LCzs+PSpUtAWeMA03nh5eWFnZ0dCQkJgDGDVy6XN3jK79GjR3FxceHgwYOkp6fXaaymLLn4+Hg+++wzxowZw6OPPoq/v3+r3PQQmWkNUN8ssYY0D5jcw5fZ/QIbHLCKySwku0jDuK7elfZR3fjLL4+Li0Or1TJhwgReeeUVi/bHDcmSE25w9c3kqrh+fQr+R/xeOaOtfKZbuX0tX76cW2fMQXduPX7Zh+vxgoQbiSkzrGJmmSnItT1ue7Xbjg8ez+0dbuf29reDhFrXr+p4pgYGo4NG1zpWg8FAWloaBoPBvOyee+5hw4YNuLm5YWVlhZ+fn5huJFx3TA0H3nzzTfNFsIuLi2igITSpjteCY1nJSVw+fKDGdc/v31NpnZKSEl599VUuX77M559/TnBwcDOOVrgZmIJl6siqa0tVl7EGTVdnrS7KNxyQSqXceuutLFu2zPw74O7ubpFBbNfNvdnHJDRc+UYCtTl06BBJSUmcP38eoFL9svDwcPr168eUKVPo0KEDrq6udOvWDS8vL3Q6HVeuXKmxflp1Bg4cCBiz0+s6VtM0zt9//53IyEj69u2Lt7d3q5U9EZlpLaAhWWamgFVdVFXrbEtkKjsupDO7XyChng5cTs0FjN08O/q61Li/7OxsHnvsMby9vXnvvfdEBoTQeFVljpVfdvw7iPgfqJQw6cPK2/n1guRIoAP0vAvCb7fcvnym27XA2j9HL/LsK79wx+SxdBw/HEm3O2oej3DDMgXNAB7v+bh5uak7Z01dOkOcQ3hhwAuAMUjmauNqXr+6zLaKxzM1MNBqtURR84WCUqk01yE5ePAgCQkJ3HXXXea7wj4+PmK6kXDdycrKQqVSsXbtWtatW8fixYvp3LmzeeqIIDRGdooxcGbq1uke2A73gKBau3d2HT7KYh2DwcDq1av57rvv+L//+z8mTJggAr1Co5mCZFUFy8A4bbO6jLSWylor33AgOjqasLAwpk+fbn7e2dkZd3fL4JncQ9Fs4xEazxQMq0t5m27duqFUKs3/xxUzxMrXUYuKiiInJ4fCwkKmTJlCVFQUWVlZ5pI6kyZNqvMYTeVKunbtiru7e53Geu7cObZv324uQzV69OhWLRMhgmktoLmnRVYM1sVkFpKt0jCuS1lW2vaoNAKvfa8pmFZcXMzixYvZvXs3s595C7XcqcXnHgs3IFPmGJQFvFRZcGmLcVn6eSjJN36varu4fyE3FYJfgaH/AbncmH12ulwjAlPTgfBpRMWmcfcz39GnTx9+WLUGK3v76sdTVRMD4YZSXdDMFOSqq4rrNyZIVxWVSkVOTg5gvEO8aNEiunbtyuzZs5FIJLi7u2Nf8VwWhDZOrVaTlWWcDtSnTx+ee+45pk6dire3d81dlQWhjkxNB1QF+WQlxpOdkkTYwKHmAFt1Uz373z7D4uaEUqkkIiKCYcOG8dJLL4kbF0K9lJ/OKfcsCzTVFCyrTW2BuKagUqnMDQcOHDjAY489xrJlyxg3bhwA9vb2eHl5VdpO1Exr20wBMFONsZqmUBYWFmJlZYVEIuH8+fNkZGRU21SgPkG62ly8eBEwZq6PHDmy1vVzc3NRKpXs3LmTu+66i/vvv7/Vy0SIYFoLqE+WWUNUDNZtiUxl69k0Qj3LPnSND/fhwrFL5kYEVdHr9WzevJklS5YweNJM4lx7s/NiFl383Zpt7MINqmLmVxWZY3SaBJ0mQ9YVSD4JBgNkXjIGySpuZ8pMywMOfgbdbq+27lqhrS9T3/kbF1c3/vrrr6qDD6Jb502lvkGzumqqIB1grlNp+veiRYuQyWR89NFHSKVS7O3tK90VFoS2TqfTkZqaSn5+PnK5nNDQUEJDQ0XDAaFJmbLLVPl5ZCUn4e4fAAaDMcCWn4fCydm8zuXDB2g/YHClfZhuZjz22GM8++yz5mxgQair5sgia0wgri5MtSwNBgMxMTE8/fTTDBs2jNGjjWUpbGxsqp2KL2qmXR9M0z2hrAZaxXpqpsCYn58fhw4dIiMjg82bN1cZUCufpbZ161YiIiLw8fHB1ta2yqBrTXx8fMjLy8PHp/r4hElxcTGZmZkMGDCAp59+mieffLLFO3dWRQTTbgAVg3WTe/hy5GoWV65N/1wwJowQD3tzAwIT0/TQ7gHOnE3Ko6NtHk899RTdu3fn4/ff4aRSIpoMCA1z/Ds4vQqit8G0r8oCY1HrwcETXIOhw1i4sgui/gKdFpCC1AqOfWPMRJuypKy2GkDwSNiyxVgzTaK3zEa7Rq/Xk5WVxbx58xg7dmz1BTHL71cQGimpIKnSdM/yU0DBmMU2JmAMAPH58exK2mWxfnp6OqWlpQAsX76cEydO8NNPP+Hm5oZcLm8TFwxC21ByNZaCbf/gOGEiNu3r3gijNaSlpaHRaFi0aBFqtZqff/5ZNBwQmpybXwCDZtxFdkqSOXCWl5FGWsxlki6cQ11gnL6mys/j/P7dFOXng1tZCROdTseSJUtQpqUxsntnht82rZVeiXA9a4kssqZkMBhITk5Gp9ORnZ3N448/jp+fH0uXLsXKygqZTFZjd0RRM+36UFUmWfkAW3h4OFFRUfj5+ZGSksKQIUM4dOiQOeBmym6rqZlBdnY2BQUFnDt3jr59+9Z5bKabyGlpaXTu3Lna9UpLS4mOjiYlJYWQkBCeeuopgoKC2sQ0fBFMa8OqqoVWl+dCPR2YO7w9y3ZGE6ssIiazkCAXm0r7N00PPXI1i5iUDMYEypk5cyZz5sxhYI8whrSBE1S4DimjIfYAaFWQHmUMoI34b1lGmmsw5MRByhnAUG5DPRRlgrU9ZFwo266inneBXw/LDDaMFwVr166lV69ePProo+Z5+ILQXEzTPI+nHSepMAkwTveMzYvl3SPvEptf1vCgfDfP3Qm7WXe1bHpofn4+hYXGBjWlpaUcP36cBQsWMGDAAHMbejHdXjAp2PYPuWv/BMDmiSdaeTTVy87OpqioiK+//pr9+/ezYsUKc9evtnABLNx4TEE1MGagKZMS0JaUYG1ji8LFBVVBvrEzc7nzLzsliVXffMU773/M6MED6ajNY3dmGmMeeaLGTqCCUFFds8iqmw5a23NNLT093VyjdcWKFRQVFfHjjz/i4OCAVColICAAmaz6UIGomXZ9KJ9JZlI+wGbqjmllZYVOpzM3GjAF2Pbt24dKparU4ROgf//+AOTk5ODk5MSQIUMsjmMKwjk4OHDu3Dnz84cOHWLIkCF07tyZo0eP0rlz52oDdqag78KFCzl79iw7d+5EoVBw8ODBOnX/bG4imNaG1dS44Ncj8fx5MolslYbXbyuLNJuCbNkqDTGZhcRkFhLiYc+84cGV9m/KOuvkZcvWPQmM6hpIyIinadeunbjQFRouaj3kxhuzzNzaG5sKKKONgS+VEtS54NXF+DgnDpJPgdwWchKgMB20amOAzMETvhsLMjsoLYZh1wJrQ/8Dhz6tVPPs7bff5vXXX2fz5s107NixxV+2cPMxZZ11de/K+azzFllocflxhDiFWEwBHR0wmqiEKEYHjcYgNTA+eDxarZaMjAzzOjKZjJUrV5rfg318fLCxqXwzRLh5OU6YaPG9LTLVSTt06BCfffYZTz75JCNHjhQNB4QWkZ2ShKogHxcvH5SJ8WjUKi4d+pcxjzyBwtGJ9gMGc/jUGQB2r/mdt5Z+hpebK59+/jmR61ebO4F2HDys1rprglBfNU0HbamGAzk5OeaGAwALFy5k1qxZBAQEmG/iWVtb1xz4EzXTrlvlA2zh4eHExcWRkZGBl5eXOUA1YsQI8zTOjh07VurwadqPQqHg0qVL9O7dm7CwMIugWPkMuLy8PACKiorIyMigqKiIuXPnAsZOsYcOHeLEiRPExcVZTC/NzMzko48+YufOnXz55ZcEBQVx6tSpSlNXW4sIprVhk3v4kq3SkF1kDIxZZKAZKny/xhSAG9fFmxl9AkAC3QOcWbEvhsAK+w/1dOCp0R1Ys2YNX/3f/fT/4QeG9JhW410IQahV+DRjcwHTyXlpKyABhbvxe8JhY620/R9DzG5Q54CVNSCFUrXxu8ITtr8CJQVl+93yPIS+UXYMMNZS2/o8f+y/yBsfbmT+/PlMHhAGW583Hqv/I8bAnOjeKTRSVZ07y9dGuyXgFvO6Xd27EuwUzAPhD5jXLd/Ns51TO3MG28e7P2aAxwD8FH68/PLLzJ49m969ewPGVuGOjo4t/EqFts6mfUibzkgz1UkrKChg4cKFDB06lPnz54uGA0KLyE5JYtf3X5GdkkRQtx6UajUU5eSQdvUK+1etpOe4SZzdtR1cvchMSuCr/60mt0jFOw/eR/KJIzi4uZk7gZoaGwDmjDdBaKyapoM25VTR6gJhKpUKpVIJwO+//0737t0JDw8nNDQUMN7EUyiM69cY+BM1024IHh4e5ky06jK97OzsLIJW5QNmFaeRmgJoKpUKtVqNg4MDYWFhxMXFMWTIEHbu3AlQKXHHFNQrP700Pz+f77//nuXLl/P4448za9YsHB0dm7QJQmM1a9QkJiaGlStXEhMTw7Jly/Dy8mLr1q0EBQW1iRff1oV6OuCmsOaPE4m42Vubs9NiMgtBAjP6BHDv4HbEZBby65F4MEBHHwc8HWzIU2t5cnQHAF5bf46ErAIWdal8jKioKBYsWECPHj0YO3as+c2zpmmkglAjjzCY9IHx38poUHgYM9JMTQeCBsOFDVCQDgZjjSj02rLt7VxBlVkWSLN2NE4ZLTZ2OWTHGzDgQWNG2r6POLrxRx7+LpPx/cL47LPP4MBSiPifcV2Fu+UUUxC10oQGqapzZ1UBNoCDKQc5n3WegykHLYJsFa2LWMeWy1vQlmhR7lSyfv16pk6dChgvXFo7dV24eTRlHTZT/T8HBwfefvtt+vTpg7u7+03fcEBcE7eMy4cPkJWchJOHBzmpKRRmZ6MtKQaDgaunjqPKyyUjIZ6QGfex4duvyMjOYc6k8QQ42nFu706kVlL6TbkDN78Ac9MC03dBqI+GdPdsyoYDVQXCtFqtueHArl27eOONN3jiiSfM70EeHh4WN/FqCu7J/UV38RuVKaDVoUMHFApFpb9RFZsalA+0mdZVqVRcvnwZvV6PwWAgICAAV1dXxo4da57mWV75oJ6fnx87duzAxsaGjz76iC5dujBu3Dj0ej1bt24FjFNM28J1crMVYdm3bx/du3fn6NGj/PXXX+Z6MBEREbz++ut13s/+/fu57bbbzDU21q9f30wjbntiMgvJVmkY18Wb7gHOfL4r2hzk2nE+HTd7axKzVTy08hh/HE/kz1NJrD6exPnUfLZFpbElMpUtkanEZBbR3qPyG15OTg7z5s2jtLSUr7/+2qIDhynDbUtkaku+5BvSzXwOA8YsNXWuMZDW/1EoSIX8FEAPSEAiBYkVSGXGx5oi0KivZasBcjvw6gqu1z7gnfkFjn8PQGmnW3n3lCPt/dxZ88fvWF3dDZe3Qbuh0HOOZdfO3veJ7p2NcLOfx+ODx3NHhzsspm2aAmzb47ZbrmzAWJenQuZwecXFxfRy6MW4duOwT7Vn+fLlPPnkkwwePBiZTFZt9yyh4W72c7gmpjpsBdv+adR+cnNzKSws5MSJExgMBsaOHYu/vz+enp5NNNLrk7gmbj7ZKUkc+fN3slOMdSs7Dh5Gr3GT8OnQiZzUFJBIcPXxR2Zji7OPL8qEePQ6HQDKpARm9e/JhD49KMxW4hEYRNfhY8zBM1MNNjHFs2ndLOexKZiljlS22DG1mSrydyWgzVRh18MD+34+5kCYwWAgJSUFnU7HxYsXWbRoEWPHjmXBggUAODs74+bmZrE/uacCpzFBVdZv0yYXNf8LaqOu93NYqVSyb98+c4aiKTgWFRVl8TglJYURI0ZYBK2USiUqlYpOnTpVeSOofHdQHx8fJBIJ6enpREREEBUVRVhYGA888ABhYZVnCpmmlyYmJrJnzx4OHz7Mxx9/zIsvvsjw4cOJiooiIiLCvK+2oNmCaS+88ALvvPMOO3bswNra2rx89OjRHDlypM77KSoqomfPnixfvrw5htmmmeqiIYGzSXnm4NbkHr6M6+JNtkrD4n8ukpCtBmBsF29CPOyRW0no6O3I5B6+dA9wJtTTngeHBAOwYl8MMZmF7DibxLA5/+HQoUN8+umnOPp3MAfrAItjmJYJDXPDnMPKaGPRf2V03dffvBBO/QTn1xkDase/NzYYsHYwBhrsPcHWFQw60JcCBtAVQ8Y50GmM+ynKgPSzUJh2bcdSOPcX+l/vIvmfz/hw6Rf8c/AMjiG94dDnkHwS0s+XTfGEsu6dYopng90w53EDmaZ0ls9AKx9gi82LZUXECmLzYpndeTYPdH2A2Z1nV7kvg8FAWloaAQ4BjPMcx4evfkj//v2ZP38+EokEX19fMd2+Gdzs53BNHCdMxOXOGfWqw5b1/feUXI2l5Gosyq++Iu/CRTIzM9m8eTP33HMPBw4cQCaTiYYDiGvi5mSainlm22aO/Pk7UJZJJpVZoVWryM9Mx9rWFlVODtqSYnR6jN07tQZ6DbuFwdNnEjZwKD6hHek1fjJufgGVgnRNxbzf1OQm3e/15Ho/j8sHrGp6Xh7gYBHMqs+2pufLP65tW7AM4FUMhJkaDmRmZjJv3jxCQkJYvHgxUqkUe3t7vL29q91vVW7mbp5t9RyuGCSrTsXgWXh4uEVNtIqPy+/7+PHjXLp0ydyZu+IxlUolmzdv5vz58+Tm5lJSUoKdnR0dO3ZEpVIRHR3N1q1b2bp1K1lZVU8VdnZ25ujRoyQlGd9/58yZg6enJ+Hh4fTs2ZOePXu2mYzuZrtaP3v2LL/99lul5V5eXrX+B5c3adIkJk2aVOf1S0pKzJ1JAHNxRa1Wi1arrW6zNiVWWcT2qDQKVSXYSA1I9Xq6+dpzwt0WD3srvt59mWOx2Wh1euysrbCxMqDXlXI0JgN/Z1sUVpCaU8iqQ1fZH51JYXEp3+67wmw/+HZfNMv3RKMryETj3Qvfcbb8kOTB4uX/otUZ+HLPJfQGsLaSYG8tw2AwsP9iGtlFGgJd7EAqwUUho1ij54mRoQwL82TtyUS+PxDLI8NCuLNvoHn848N9CLmWEXclLbd1f6it6IY5h89tgIjVYJAamwDUZf2sBFD4GKdsZkSD8rIxcOYUCE5yY8MBTRFIa6+joy25dmGhN6AvymXukr+5vbMNE2L+xNbaCq1Bb1xRag35afBlVdMypGDjCGFjIXY/yBQQ2B9snSByjTHY5tbemD2nvAzuHY3NEvrcB+6haFfPrccP7MZyw5zHtYjPj2d3wm46u3XmYvZFRgeNpp1TO/Ny02OAAEUAD3d9mPj8eN4+/Dax+bHkqfN4tu+zdHHpwoeHP2ROlzkM9hsMwNXsqwBsjdzK2eSzDPIbRF5KHp6enjz7+rOsPLcSg8KAp9KT9s7t2Zmwkzld5gDw24XfmNNlDn4OfpXGUR/rL65vmh/UdehmOYcbolSno1QioVSnQ1rNays8dJisb79Bb+8AkyeR8dPPFOzajV2fPuRu2ULayh9JHzCAl79ZwdgOHeh4/gLOAwdRfDWWnLVr0efnI3V2wnXGnQAU7NqJ1M2dwh3bcb33Pqz9/CjYtRPHMWOxDq7+3E5esrRZfgbNSVwTN5/2AwaTlZrClVPHKdWUkHgxCrmtLXERZ5BIJUhkcvSAHgPIZEisZPxz9iIHoi4ROmIQ0Qf2En1gL9YKBRqVijM7/8FKLkcilVKq0RCxZwd2Do44XcuuzFdm4hEYRL/bZuDq41ftuHLSUrhy7DAdBgy2WO/i4QOc37+HAtXNW7z9ej+PCyLSUZ1Op9Sgw3FE5axF0/MKg7f5edM467qt6fnyjwFUp9MpKSzGoJBa7NdE4muL3lGGWlmI5HwG2pQi5H72ZF5OJd9GTUl8AVcSLuNo58DiR19DdyWfgqtpeAzrSubJy+jVpRb7k9rKsB/gg9zDDq1STdHxNDCA/QAfMjfV8eb6DaitnsPnzp0jIiICg8HA0KFDq1wnKyuLoqIiOnbsSKdOndBqtZSWlmIwGFAqlRw7dgyAPn364OzsjFarJSsri/Xr16NUKnF0dMTR0RGFQsGWLVtISEggOzubY8eOYWdnh0ajobCwECsrK2xtbc3d6C9evGjuWG9y8uRJunfvztKlS9HpdMjlcgoKCti8eTNnzpzB09OT9PR0fvzxR6ysrEhISACMwbYLFy5QXFwMQGlpKXK5HIPBgE6nw9bWFr1ej0ajwd7eHp1OZx5H3759yc7OJjk5mdTUxs/AkxgMhhomojRcQEAAq1evZsiQITg6OhIREUH79u1Zt24dixYtIiYmpt77lEgkrFu3jmnTplW7zhtvvMGbb75Zaflvv/1mrgd2s8vNzUWv11dK5W1OKpWKOXPmkJeXd1PXTRHncNP45Zdf+Ouvv3jhhRcYOHBgix1XnMdG4jxuGgaDAYlEYv7eEsQ5bCTO4aanVqv573//i0QiYfHixdjZ2TXLca7Hc1hcE7cdly9f5oUXXuCOO+7gvvvua7VxXI/ncXMQ53HLMRgM6PV6rKys0Ov15uBCQ4lz2Eicw01r27ZtfPXVV8yfP5/x48fXvkEjNMU53GyZaXfddRfPP/88a9asQSKRoNfrOXjwIIsWLeL+++9vrsPy4osv8txzz5kf5+fnExgYyKhRo3B3b9vpqKaMrnA/J348FEesUsWsfgE8PiKUA9GZvLvlAgXqUmzkUnKKNEzo5oMECacScshXa7GztkJuJUWr06PTG5gQ7kNMZiETu/lwNb2AbsTx+pESLv3yAfqSItrd8y4Bfr4oCzWU6PTYWEnQ6gz/z955xzdd53/8mbTpSHebrrSldFFo2UPZIFNAEXHgXuh5yqF3p3fy03Oinqen553nKS701BNEFFRQQPaUvQp00Ba624zOpEma5PfHl29I0nRBy+r3+XjwSPP9fj8juVz99pXX+/3CBijkkBAWwD0jE/luXzHHyuuID/XHR+HlcKbdODgObb0ZO3ZWHiwlLTKQ7Mp6rukVRViAwsWZdqRA6r3WXi7bz/D2f8GhJTDgtrPOte3/gv2fQ0QKBMWcSfYE7DawWs4GELQDi9yPdf3+xelPHmD59zpemBDA034fw6GPO7BJOSiUENZDcJ/5BAvONF0+lB6AwBjoOapFZ1rtZ3d1YK3uzeX4OV58dDHf5X1HYlAid/S5o01nmsjO0p18fORjegT34N7MewH4LOszTteepkdwDw5WHeT65OsZHT2a3D25NIQ0sGHHBg58f4B3336XkJAQqsxV7GzYSX1TPdih3lKPrlHH3H5zgc5zpn114Kvzf6O6CZfjZ1hE+/HH1KxcScgNNxAxd26b58yFp9p0hYnONFNtHXlzHyD5nX8TMmwY3rfewuktW3n/7X+grazkgzvvJH3HTiJjYwm7WXChdaYzLe/lVzrjLbqgSPfE50dLLi+RdR++Q/bO7cjkcmQyOXIvL7wV3lgaTTQ1WcBuJyAsnMrKSt5avZ7Y0GBuv/128r/9EntTc1eIl0KBj9Ifu81GSFQMVrOl05xpIqIzRaJtLoXPsUVjpDFLi19mBApV13xR0BJ1m4sFp9sgwelm0RipP1rJTkMWkydPRqFQOK5r2FuGPNgPn7hA/NJCMZyuplJeg6msno9/+R8H9x/kzd8tRNkzFJvGTHzPeKzZtfj3VWGpNHTImXZ62aEL+j5czlwKn2ERrVbL/v37ARwBQVqtlhMnThATE0N+fr7LOXHMjh07qKysJDg4mNDQUJKTk8nPz6exsRGTyeQo2fTz86O6uhpvb2+8vb2prq5GqVTS2NiI9Uy/Sm9vb8fP/fr1IysrC5PJxPHjx1m+fDmDBw8mKiqKQ4eEz5hCocBmsznGeHl54evri9kstARqyZlmMplQKBTI5XK8vb0xm83I5XKH464znGldJqa9+uqrzJs3j4SEBKxWKxkZGVitVu644w7+8pe/dNWy+Pr64uvr2+y4QqFw/LK5FDlZVc+LP57gZFUDd17txXM39Gf14TKm9Y9FoVCwJU9PWZ2FXlFBlNc0UmeBH45UEuTnjcVqo67RSryfDzUmK0ofL165sS8J4UpWHy7jqpQobh6SwOrVhfSvXM/h0hxSbl1AUEQ0sWGBNDTV0y8ykF4xQUKPNuChMcmO9FBNg5XS+iZmDExwHAN4Z30uS/eVMmdoAr88ObHVBNDUmNAL9l5e7lyun2H6zgSZDTJngkIh9Ewr3QsmDZTqQNUL0icL4QPFe8BmArkCQhMFoa1wy9m5ZN6ATRDdzh7k6NGjvPijjrv6K3hutByZTbD34hcCNptQMqrwB0sD+EdA2mTQnoTaEhj6gCMBlAOfw1VzheeaXNjzEcQNcO2z5gHFrR/CQ193ydt3pXGpfI5bStz0xOTkydjldse1YxPHOs6lRqSSGpHqcdzx6uNUmCoYGTKS1IhUFh1axJ6qPY5+amsL1zK552S8arwASFQk8sM/fyAxMZFaWS3r8tYxZ8QcnlI9BcCiQ4v4Lu87bky90bEH972cK7N6zzrnsd2NS+UzfC6ETZmKt91O0JSpzfYqnvPNyKTmo48ImnotAWmpBKS5fq7cEz7Dxo0lbNxYGnLzyDuWRfJ77+HdI4HTp08T2DeTh+6+m+vi4rh6+nTi4+Nd3JYB/7eg2R7F9aJuvaXZsdaIe+KP8FLzb/gvZaR74vMjf/dOsjauQw4Mv+m2ZueHz7oVP2Ugubt3UK/T4qsMIDFzAHl7d4G1CblcTlyvPpjCYwj79RB3jb5K+EPPS45PQAjmRiPmhgaUIaHMeeG1TgkciEpIJCqhZVH4cnr/LzaXwufYeKwM074qvGVeKCdeGBeWmAbqE+yHNVSJf0KI8JpjFYKgtzrL5T0IGhCNt8zLkR5qt9vRBRjxNYWw/th23v/iIx577DFUE5ORyWTEj48XHMQth467oIhVoJx59rWr7xsAj3fFK7/yuBQ+wyIxMTEEBARw4MABAgICGDduHDExMcTExADQu3dvR5pnZmYmKpWKmJgYZs+eDZxN+lSpVPTu3dvjGu7jN2/ezIEDBwgLC0Ov1zNo0CDGjRuHxWJh9erVzJo1iyVLllBRUUF6ejorVqwgPz+f7du3Y7PZSE9PJyIiArVazY4dO9BoNAwdOtQlRdQT4rrieu77qq2t5a9//et5vZ9dJqb5+Pjw4Ycf8txzz3HkyBHq6+sZNGiQx+SG7s7JqnqeW3GUE+W19I4JdohRzsIVMvCSyRjYI5Re0YG89tMJbHZQ+nhRa7QTH+bPI+NTeG/TSYr1Rj7cks/w5AiW7i1C12Am3F+O7uBBvlj8IVdffxc1KSPoER7AQ2OT2ZxdBTIY1yvSkUI3vX+sY2nxZ+dj4nNdg9kRUtBszxJXLppcyFoB6oFQelBIyRSb/ItkrYD89dBkFsSu2hLwUULhdkD4ZgGbVTgeN1gQv4xnGlHareAbAnIv8PaDhgqaZL4oFAqm9fLlk5k+rmVxjTWAHLy8hXGWBjDq4NhKUIZD0ljXZE/nx6wVgmNu0N1SQMEViJi4CfDwgIdbvVYMGXCmPWKcmPDp/pgRkeEYG044pQ2l2Gw2FixYgMVi4c0332RjxUY21mzk1L5TPDP8GZJCkprNIyHRUXyTk/B95JFWz2nee4/qb5YLxzxcKyZ8Nun0eIeHOUQ1n56JcCwL7x4JlJWVcejQIfQ//UTPY8fpOX1ai4ED7uJcd0K6J24bXWkxOTu30WvE6GZilhgoID62RFTPFABsTU34BQXRd/wkTIZ6fJWBxA4ahv+pAp4y1tF3+Ag0QEh0DNVlJditggNt4tzfSsmdEh4RQwScwwTOFVEkE+cSf3ZPzBTDBLzD/WjSNWIprsc/veUWPYpIJYqJPRzPy8vLMZlMHD58mAULFnDdddfx6KOPAoKg0lWl+BKdh7v401njnYMGPF0jBhQAzQQr8ZzBYECpVHrcW1ZWFnv37qWwsJAZM2aQmZmJwWDAaDQSFRXVLDxg7dq1NDY2Mn36dCZOnEh8vCD0Gs70lhw2bJhjjbCwMMd+28L5dcLZtNDOpMvjwhISEkhISOjqZS5rVh8u42RVA71jgnlpVt9mri6Au4YnEq70cQhtVyVFsPpwGf3iQzhSXOM4Hhviz4db8nlobDIJ4cIv5QJNA99szaJs8TsMHnY119wxjx+PVzOwRyjj06McSaHhSh+en9n8g9mSSJYSGUh4gI9jrCSkdSOyVgjursKtoC8UjjkLaSCIVdo8qDgqCFoGHdjtCIrtGexNYGmCulJQRggCmNwbbBZoMkKP4aAIoPrwT1SajKSPT+fx20JR2I1uG5IBNiEBtEFM/bQL89SWQEWWZ6FMkwsGLaRPOyuueSJ3nZAU2v+B9r9HEpcE5ytMtUeMcxbhnMU3cWyTpYkpIcL6K1asYNu2bXz00UdER0dzXfx1nM45TUGtME5MDBXHt8dRJyHREp4ELPGYb2ZfQqHFBE/xeJNeL4hqej3eYWH4T5oMQFVVFeXl5cyfP5/4qCjeufFGEoePQP/BBx7Xa9LrqV+/AfAs3nUHpHvilhFTOaG5+yxcHd/smLP4lrNzG8e2rMdmtaFK6EFoTBymhjrsdhl+AYF4JyTxm/mPc22fZHxrdZywmFFdM4249Ezi0zPAbmfg1BmSkCbhwFnwUkQqmwlV54MokomIP7vPL4ptivhAQUhrQchz3yuAXq+nrq4OvV7Po48+Sp8+fXj11VeRyWRERkYSFBTUKa9FomtpTdQ6n/HOopLo3nK+RhSf1Go1mzdvdhHMxHMGg6HFvWVmZlJYWIhGo2HPnj2OvnCnT59m0KBBjnXT09Ox2+0sWrSI1NRUXnjhBQYOHIhMJkOlUnkMefAkiLkLgs7PW3vfWkoT7QhdJqbddNNNXHXVVTz11FMux19//XX27NnDsmXL2jVPfX09eXl5jucFBQUcPHiQ8PBwevTonF9qFxtn55cnIQ1aFrQSwpWMT48CBIfbkeIaF0Fu/sQ0nlm2F4vRyIIFC6iNyGDCwCRO1eYLTjRadp51dO8SnrniPsPOAlTqJMhbDwaNcNxZsFKlwexFQlnlznegqVEQ02QyoYxT7gtNDcK1p3YK57y8hYRNUw1YTVCwGbNNwYz/1RPq781vxoNcZge7DBdRLrQHmOoFZ5vdJpSPBquhxkP0/J6P4NBXwp6VKsheLbyWrBVnHXbu7HgHCreB8cpIPzsXLtfPsSe3WUfoqBjnLL5N6TkFXaOOopIiTstOo1aq8ff359FHH2XMmDEEBATQK64Xz4Q/4xDOPM1zPvuXOMvl+hk+H0R3GZwVsMRjgWfEsZYQHWym/AKwg2H3HixFRQRU10BGH6qrq/nDvHmYamt57e23yZg2DfOXX7a83oQJhN58U4viXXsxFRSe1/iLgXRP3DbtdZ+JOItvvUaMxlBXS3leNnVaDQpfPyoK8rCYTJibmnh34y4arTYW/n4eVceOkDZiNKcazCT2H8Dpwwe76iVJtMDl8Dl2Frw6S0QT8eRy8ySUOQt4/unhWKoM1K4/LVwberY00H2vBoOBqqoqAEJDQ3nkkUeYMmUKvr6+BFp98dpfh6W/L4pIpUchTqJtLtRn2N1Z1ZnjRcEpMDCQsLAw1OrmvR3z8vLIzs52zCEmcQ4bNgzA4UxzR6VSMWPGDLKyshyiW3p6OoMGDSIzM9PF3bZs2TJOnDjBNddcQ79+/fDy8urw63R3wrk/dxfYRGFQ7B13PnSZmLZlyxZeeOGFZsenTZvGm2++2e559u7dyzXXXON4Ljbvu/fee/n000/Pd5uXBJ6Estb6jwF8sfMUX+05zXubTjIqNYIF0/uw+nAZS/cWUaBpoEDTQJIqgN+OSyKwZDeT+6hJi48kOG0gH27J52RVA0eKaxxCXEfWbmvvEq5ccZ/hrBWCADXobqEnWelBwaWmVJ11p4lloJmzzjrUTu8SGvvbAb9gwYUmYjsjUoX2Eq45g91u54EVtewpsfLj3YGc9aPZBUHOLgTeU30KfILOHGsSBLv0aWCsFnqmjX/q7J6M1WfmkJ11oxm0wmsAV4edOKav0CdAcKb9fH7v32XKFfc5dqOlcs6OinHO4ltSSBI+Rh+2n96Or82X23rfxrRp0+jVqxcKhcLRn8LTGlKpZ+dzpX+GPSEKV84ClsNxptM7hC+mXkvdmp+RR6io+2k14fc/QNDYs410THm5mE+dApsNi1VoUP3uu++y+8AB/tq7D9GHDmHW6Ty63Zz30BnlnfXrfznvOS400j1x23hyn7VGrxGj0ZWVkrNrO6ePHabJZKLvNZMxVFcTnZJKwcH9FB87wocrV1Gi0fHI5DHYamtIyOiHOj2DU/sPcuCnHyjPPYFMJkcZHNKh9SXOncvhc9yZZZ3uuLvc2ivWGQ9rqP+1FFN+NQHX9XQcd96r2FTdZrOxf/9+hg4dyp133glAYGAggcebXIS3+p1lGPZXYG2wEDYzpZNe4ZXPhfoMn29ZYmvjRUFL7GNWWlrqaD0gnnMXwMRAAKVSybhx41rdm7i2RqNxHMvMzESv15OTk0NsbCxHjhzhf//7HzfeeCNPPfUUPj4+5/Q6nZ1womBWWFhIZWUlq1atcghs7k46o9G90qnjdJmYVl9f7/ENUSgUHUqwGT9+PHa7ve0LrzC+2HmK5fuL0TWYHaWXJ6vq+WLXKbBDjdGCyWLDDqw7XkmQn4J5E4TGvRtOVHKwqJrDJTUU7PqJFW8/zW+eeAbih7H6SDl5VfWoQ/zRNZj5avcp3tt0EoNZ6GE1f2KaQ5QTn0ucH1fcZ7il3mPioyYXVj0BlcchZw3ED4HGWkHwEpvyGWucJvTC0UPNagZznePMy1tNfHnEwgfX+3FNsi+rnffRcyQUbD373GmcILLJYOyTZ51mYvBA+jQYMd+1z5smVygzdS/1FMtZB90N934PBQfa/TZdaVxxn2M3OssJ5iyMGY1GBgYNpC6hjjVvrUE3QMekSZOQyWSo1eoWv33rSGiCRPu50j/DnvDUO83ZcSb2QnM42OQyLKXCFxo+8fGO8kxzfgG+6b3w69uP6rFjMJaWsmLFCn53//1MTU4mwg7V3ywnFFC1sF5nEThxUqfNdaGQ7ok7n3B1PA16LVWnC1yOx6SmU3BgHwOnzqAcBdv//i43TRzP7NsFoezIxnXYALz90RQX4aMMIKFPP6JTUtm1fInHnm0SncvF/By314nVmWWdbe2hvT3U/PurMGbrMBfXw56zZaLiXu12OycPZFN7pJz//PQpny77nB+WrCBlQDp+fn7ExsbSpDA65gKELinOjxLt4nL9XewsNjmXcpaWlro4zJwdbaKLS61WExIS4vi5rfnFcSqVCqVSyYEDB1AqlRQWFlJcXExFRQWff/45w4cP55VXXqGwsJCAgIBz6g3n7IQT154xYwarVq1y2ZPzawM6pW9gl4lp/fr1Y+nSpTz33HMux5csWUJGRkZXLXvl4OGX2+rDZSzfV4zVZqdXdBDRIb6U15gAOFF+9mbs1mHxlNc0UlGYzc//e42rRo4mJ2wE02kiu7yO1MhAooP9WHe8gvUnKijWG4kO8kPXIAQJSKWbEq3iHjSgShOCCL57BCJSwD9MENKsZqg8Btoc8PLDUZYZmggNVUJIAABOiZ01xY4fd5XKeX6jmSdG+PDQYB8sMrnTJuSgOYlLqaczXv5nwgcizu7VWfRzL+V0f00i7kLh/s88rydx2dPZTjCbzUZ5eTkJQQkYdxrZtXUX995xLwBRUVEeU51EpBJPiQuBi8h1xj3m7EzTf/UVNStXEnjNNYTdNoegqddSHaAEnQ5/vZ6v330X3yNHSLt1Dl5eXigiws+7hLNd+07q2eVrdDbSPXH7aC2EwBNDr78RXVkJhupqvH188A8OJWvTOqxNTZgtFioaLIwfP54vV/2Mj48PutJiTA11FB7aT8CQUajiE9AVnyZcHUfFybwWe7ZJXDl0ZfnmueyB/iqqV+RhqTrrkGnYW461wYJXgKK5qGYXqjY83f6Wl5dTe6Scb5cs5+OfP2PeuHuINgTh4+NDXFwcMpmsmUgYODwWL6WiSxx4EheetgIL3N1ZokPLPQzHk6OttLSUmpoax8/uYzQajUO8EucXcRay1Go1hYWFKBQKRowYwYMPPkhFRQUHDx5sNq4juO/Zk8DmPvfgwYPPaS1nukxMe/bZZ5k9ezYnT55kwoQJAKxfv56vvvqq3b0hLkU6UgJ5PjgHDohM7x+LzmDm4OlqivQGFHI53jJBiugdE8y7G/JYdaSMsb1UjE8K5LNP3iUoUMnwe59hS6nwWzc9JoidhdX0igliztAEVEE+/HiozCGuhQcIQQKSI02iQ+x4B0r2QsURGHIfRPURBLWAKCFp024H5BCRCqkT4Oi3QtCAuUFI7hSxC+VDVpudKD8L/50dxB19vQCb642D3BsMVYBMSPsc8wch4KBwO2iyhXm8fASRT6Qlwaw1mo2Rvrq7Ujnf3mruVFZWYrFYOHjwIG+99RZz585l3Lhx5OTktNn4VyrxlOgM3MMHWkvTNBcX07B7N+H3P0Di4sUANGzbCnY7XiHBqB55hLq6OioLC3nttdeYPHkyUUVFBGzchCEqCtUjj3TbUIH2cKXeE3c2rYUQeCIkKoa0q0Y6eqWFREVjrE2kqqgQfW0do4ePZlB0OPWaSsLV8YSr46nX6agoOEnykFGMu+dB8nfvdOnT1t6ebRKXJ11ZvnkuezAe1mCpMqCIVLrsyWqwuIh+lioD1SvyaNI14psQRMBVMbD7uON6MXAgq7GQ139ZxKwp13P/7feh7KMiLi6uRSd8VzrwJC48bQUWdLQHm7uTTUzX9DQ+KysLjUaDSqVqFlzgXPKZlZVFr169SElJYe7cuZw6dYrevXsjk8mazXu+aaZtlclGRER0eE53ukxMu/7661mxYgWvvvoq33zzDf7+/vTv359ffvml0yNJLyQXqgQyJTKQ6f1jXYS7lMhAnr8+k5NV9Ty34ignymvpFx/KwIRQ7hqRyJNfH8JstXGkSEflrz9QUZjNyhUr2NAQg7W4FICHxiYTqCwB+9nAg9uvSuRkVT1JZ9aSkOgwI+eD2SA404Y9KBzLWiGUeWpzzlzkJbjRovpA35sAu+BcK9wmONdsTWC3U1RjY3VOIzPTvbmrn0wIJVCqwHimjNPbD8y1OBxtTUbY9b4g1F31oBBmULAVLAahn1uakDzn0sfNU8iAMy1dO/ge4O3zfLMkLmfaU4JZV1dHbW2t0KD9D3+gX79+/OEPf6DKIjQEPlV7itSI1BbX6GxhT6J74h4+ID4XUzmdRTXd4k8w7BYaCweNHeMIHQi5cRYBo8dQtHAhBSeyeWPrFtaWlzNkyBB6Xnc9CpXqgrjRLneu1Hvizqa9IQSig01fXsLJfbtJHnw1ManpNNbVERYby+acAtat28iN2koseh1+vr4OcW7o9TfCqpUAhMWoXUQ7yZF25XMpiEcue3AS1kQHmiieOTvGBNHNiE+MktBZqS4BBM6BA+999gGDBg9i4Zuv4uvrS0JCAgqFAonuQVtiWUd7sLmLc8OGDSMrK6vNtZ3Hic8zMzPZu3cvr7zyCvn5+Wzbto3k5GROnTpFRESEx32dS5rp+QpwHaXLxDSAGTNmMGPGjK5c4oJzLiWQ5+pma0m4S4kM5KVZfXl3Qx4F2gbGpQupnEmqAGqMFsy1GsZdM5nxd0+h91XjePd/B7CdqetOUgUQrvQR5pXhcL95Eu8kJFxoTYxKm3xWtBIZ9yfBGfb1vYKIJgNqS2Dtc+DtC6Yz4pjdBjI52CzUm+1M/6KB6kY7d/U/8+vJahbCCmxnXGGTX4S8NYJQJ7rajDoo3g0WIyjDhUCDqD6uPdDE/mfi3lqjpWsjpOas3YWWRLO2SjCbmpqorKwEwMfHhwkTJvDggw/i5+fH9rLtZJDBt7nf8ueIP3f63iQknHEPHxAfTYWnqFmxkiadnphnngYg/P4HXB7r1vxM/YYNhN58E41Hj5C77BtWV5TzY2Ulfxw6lJSUFGS/7uq0UIHuwJV4T9zZtDeEQHSwBYSGgh38AgJQBgVzbPN6Tmt1LP55ExNHDqepWkdEXLyLOJc0cCjxmQNYvXp1ywtISHQynnq1tda/zV3083cT3SwWIbhLDBwQ+fe//01jVT3mfRqi+yVj3l6Jl5TU2W1oj1jWHrFJo9GwZ88ejEYj6enpDqFsz549HDp0CIPBwLRp01pc27kfm1j62dTUxLZt29i7dy933nknoaGhyOVyWkN0w2m1Wr799lv8/f0ZNmxYqyLZuQhw50OXimkAZrOZyspKbDaby/FLJfq4o5xLeuW5utnchTt3Ua5A08DBomr++UsuA3uEsvZYOfVl+dSePIB8+DUsmnczi7aeokhvdBSnFWgaHPPpGsyOfU3vH8tzK45ysqqhw/uU6Ca0V4wSRTf1QMEZFj9EKL+UeQnil6kGTGeulXkLJZvxQ7AW7+fWLyspqLax9X4lAT5nfsF6+4HNKvRBEyk7JBx39F0DkEGTSVg/qg/MeNNV9HPuf9aWS829V5pEt6Ml0aytEszy8nKsViv19fUEBgby7LPPng0cqDxTZnEOPWudBTSpp5pEe3Bv/C8+L3/1VaH0/syNgSm/AFPWUWKefc4hjPlm9kWxeze+mX2p9vOjaMBO/v1VFlNjY7nlqqupAGpWrsTbbpfKOzvAlXZPfLHoNWI0htoaGhsaiElNZ+CU6QBoqyp5/aW/khAfz+uvvMyRn74nMDz8Iu9WQsJzr7b6XWUY9lVgNVgIu97zl7XOgluwB0ddeXk5ZrOZV155hXvuuYeePXvCkVqUBVYwV9Oga3RZsyXaG8zgEpbQcutXiUuAlkSz1sQmcYzBYHAkd44YMcKjeNWaKCcKa5s3b0aj0RAeHs7x48f529/+xpgxY+jXrx85OTmOcVqtluzsbIcI5zyvUqnk0KFDNDU14e3t7UgSbYm23HnO+z7X9FBnukxMy83N5YEHHmDHjh0ux+12OzKZDKvV2sLIK49zbejv7hYTRTldg5nwAB9UgT74eMtJUgWAHRoNDZSu/Ds2Qy2NI6ayaOsp+sWHMCUjmn0FGqCJpbuLCA30c+wlPMDHMXd2eR1KXy/6xYd09lsgcSXQXoFJFN0KtwqiFTLBeWa3QUA0mOvPONXkEBwHiSNg7JM8cdtE1pxs4ttb/RmUGCa4zNQDhb5ruT8LDjWAX14Ck9Z1TUUgYBfmNtVBz1GthwyIyZ7gWRg8l/5qElcMBTUF6E16xsePbyaatVaCqdfrMRgMHD58mAcffJCPP/6Yfv36oVKp8Pf3Z3av2WRVZjG71+wO78lZQJN6qkl0BOdeaYCjfDPsttsBPJZ/mrKOYjldhHbfXur79ydfoyU5MpL/u/kWgnNyqGAyITfcQNCUqRfxlV0+SPfEnYdY4olMRsmJLPpdM9kRVvDtnkNUaHVs376dhlN56EqK0ZUWExYTJ5VwSlxUPPVqsxmasDfZsBmaPI4R+6SJ4QSeBDGTycRrr73GkiVLmDhxIj179iTmqiQC42Uo4gOxFNe3qz9ce4MZXMIThoW2Oa/ExaMl0aw1sUkck56ezoABA5pdN2zYMJRKZbNSTk/ilkajwWAwkJGRQUxMDFOmTCEmJoZHHnkEtVqNWq1m+/btAJw4cYKDBw9iMBiorKx0CTEQ3WlGoxF/f/82+7215c5z3vegQYNanas9dJmYdt999+Ht7c2PP/5IbGwsMln3bdzdmpvN3W3m/tzZ1eYcQFBW08i0fjH87ppUpvePxWazseJfz9KkOU3sLc8TERnlGJekCmBvgfChrG20sOxAKboGM8/PzHTsa3r/WHbla8mrqudIcQ3j06MuwDsjcVkhCky562DVE0KfNPfSToDASEEI0+QKfdAsBpDJBAdaZDqc3ilcZ7dBzWkobKK6x1TWFsJrU0O4oY8M4gYLzrKsFaDNA29/kPsJ4yxC80t8Q6HnSCEdNHWiEIJQuE1wvx34H4x7quXXIjnPuhUdLYtcW7iWTUWbuDH1xnaXUZpMJjQaDTU1Nfz+97+nZ8+e9O7dG71dz8bTG5kin0JicCJZZLHh9Aa8vL3aNbe494wIIfFPfA2SI02ivYipnE06Pd7hYY7yTdGFJopsTTq9o8da0NRrabJa0WX2pWHzJkaUFHN1hIrEiHD8Zt0AQMTcuY5ePK2FG7R2rrsg3RN3DrrSYtZ//B6aolOEREUT1zsTQ10tutJivAKCMJvNvPTSSwwdOhSdOgZDbQ3IZC32YNvz/XJ6tzM5VEKisxDdXQAybzlypec/x1sKJwCorq4G4Ouvv+a///0vzz33HKNGjSIoKIjY2FjoI1znn94+Z2Z7gxmcr6vV1LZrbokLi+i8UqvVQHPRzF1scg8ZEMeIrjGNRuMSJiCOFVM5xXXcnWpiSWhycjIpKSm88cYbyGQyJk+ejEqlYvPmzRw6dMhxv2w0GikpKUGv1xMaGorBYHAEGriXlJ4PHQ1haIsuE9MOHjzIvn376N27d1ctcUXgcJsZzIQrfdAZzKw7VgEIpZbOrraUyEDClT6U1hhJjQzkruGJjt5mn3zyCQfXf8d9v/sTpn6TuH6gGk2d2TG+ur4RyHesW1xt4MZ3t5OkCmDehFRHH7bVUgjB5UlHmuufL6JoZTEKZZzOa2pyYdPr0CD0jMLLBxRKIbUzVA26k0I/M2QItW52mvRF6H96lc1v3ocqLgmyvhOEuj0fwaGvIHEUxA8FhZNjMiAa5F6gHuzqIKsrA2O1kO7ZGpLzrFvR0bLIjjq/7HY75eXl2Gw2nn76aerq6vj8888JDAxki24LK/OFZtcPZAj9qH7I/wG73N6uvUglnRLnjQxHWad7/zQ4W/5pyi/AO1xwpvkk9cQ8cyb//c9/KM3L4zcTJhIdHETs3fcgT4gHt35T7mEHrZ3rjuKadE/cMUT3WS83oStn5zZ0pcUofP2o1WhQ+PpRciILhZ8//gk9uW5QXyLDQtGVFhOujmfC/a3/zjy2ZSNypOABia7HxdEFNOwtxy8jgqAx8SjiA6ldf9ohVNXvKhN6AaaHEYi6WemlKDIcPnyYhQsXcvtNc7jzzjvx9/cnJiamxT10pEdbSzhfZ9xZ0KH3QOLC0NGeYe7Xi2OcSz6zs7MB1zCB0tJSNBoNO3bsICwszGM/NZPJxOrVq8nIyGDy5MnExcU5xDm1Wo3dbqempoaIiAiUSiU1NTVERUURFRVFdnZ2myWd54KzIFhbe/6CcJeJaRkZGQ6LnkTLuPcvm9wnmjlDE+gXH8I763OZ3j/WxdXWLz6E1PxAHhqb7BDSampq+PDDD+l/9Vj2ho7Du7yOEWeENFEcCwtQQAOc0jZw05B4Dp6u5mBRNcfKaklSBTB/YlozB925BidIXAQ60lz/fBk5X3gMim2+ZtYKIQwAhB5pfqGCmBYcD5NfgLx1sOdjkCtAJudEaS23LTfyyY0nSfL5HKr7ne11duQbQbA7vUvohRbRGwIAnwBIuUZI73R2lpUeFK676jcw5L6ufQ8kLis6Ko51xPlVUFPA8v3LGRQ8iM0rN/PLL7/w7rvvkpCQQGxsLNeGXotcLndZ+/rk65ncc3KzeTy551rbuxREINEewm673SW901nsaiZsTb2WujU/Yxp2FVuzT/D3v/+de26+mQh1LD1uvgXf5CRH42vn8b6ZfQkFj8me7gJea8LblYp0T9wxxIABcBW6eo0YjaGulsa6OvyCgkgaOJiy3Bye+ff79OvZg1SZiSqZHGVwSLsEsoyx17SZHCoh0Rn491dhbbBg0RixNTYhD1Tg1ysM//RwatefdhHaDPsEU4VXgMLRJ00Uwrz7hFBmFH6XWCwWRicNYf74+/Hx8UGtVrfqem1vKWe7X1PfiPOeQ6LzcXeMtYUnp5ZGo3EEB2RkZDBo0CCHkLZ3714KCwsZOXIkKpXKIboB2Gw2SkpKyM3NpampiSNHjrB8+XLUajW///3vAVfxbtSoUY4wGPd9iOWk4n7c+7N1RmqnVqtt+6I26DIx7W9/+xt//vOfefXVV+nXr1+zWN7g4OCuWvqyQuyL9sWuU0zuE81dIwS32Tvrcz2GFmzOruJISQ2bs6sYnx6F2Wxm74kCxj/wDGvzjWgtEOJtp198iEugwNTMGI7vzqastpExSh+u6R1JbmUd/eNDWnSinWtwgsRF4EKWLYrJnc5uOOd95KyB0n1CuaXoUPMNgZ+fhpoiofRTJkfb0MS0/xnw8ZKREmIVyj7Lj8B/b4CYAcK1cCb10wbVpyAWGP4o9J0pCG7OJadS6aZEC7RXHDsXcerH4z+y8uhKDIkGxo4dyzPPPMOkSZOIiYkRGpsKrU4oritmXf46oonm/r73o1AoXEo4P8v6jMLaQsDVgdba3iXX2pVNZzm43AU0Z9yFrbo1P1O69GsKDhzg8a++YlBmJg/HxSNb9g16S5Mj/dN9fOCZfmvtWd+TO+5KR7on7hiiwOVJ6NIWnUJbUszAydNIGjiU/65cxaYtW/nN3MVE28xgt7dbIBs286Zm/1tISJwrlioD9TvLQAaBw2Nd3F+KSCVeAQoM+yuwN9mQecuFfmbp4c1KLK0GCzZDkyC+nSnzNB7WULe7FH1FMU0ZSnx8fBgyZAiTajPw8/UhLi4OLy+vFvdlPKxBER9IADHt6qHWHhQqKSH0YtGakFRaWoper6e0tJS0tLb/fvdU9rlq1SrKy8vx9fUlNTXVMU9mZiaFhYVoNBpKS0uZMWOGYx+Ao9/Z9u3bWbNmDd9++y033HADERERHD9+nKioKEcPNDGl09M+3L988uS2O5fUTvf37fjx4+0a1xpdJqZNmjQJgIkTJ7oc747NVttyeK0+XMa6YxXMGZrg6JumM5iZ3Ce6mdBVY7RgNDfx4+FSxvZS8fPitzitSOCQJYaBKfEUVxt5ZHwKR4pryKuqJ/WMWNcj1JfjwJyhCUw7k9xptFiRIWvRdXauwQkSF4GuKlvsSPmoeO34p+CXF6EiCziTWGaqEf6dwWSFmf+ro84Eu38TSEh0Ioz9I2z9hyCa1ZeDtxJiB0B4CjTWQq3wTR29Z5zdi1hyCnDv91LppsR54d7kvy1hzWazEWWNIoII4nzi6NGjB/fccw/h4eEEBga6zLmnfA8V9RU86P1gs/X2lO+hoLaApOCkDoUKSEEEVy6m/ALKF76E+aTQnqGrHFzOqZ0A/hMn0VBezgsff4zdZGLh1KnEBwdTD470T2eCpl5Lk16P8dBhmsrL27XX1sS9KxXpnrhjhKvjPTrLxDLPiLh4lKGhvPzQPSxc/D9+97vfcfs99134jUpIOGE8rMGw/4yrTKlo5v7y769yCGVyf2+HqOVeYhl2fYrDreYVIMzj319FubaCJrU3jzzyCD179uS2224jYHAsaRP6tyoKi460AGI8JoJKXH60JiR1pCeYJ1Fuz549FBUVYbcL0fPOopxKpWLkyJFs3rzZIYQ5ry+Ka6WlpaxcuZJRo0bx0ksvceDAAYdTTkzoPHDgAP7+/i2+PtEBN2PGDI+v6Vx6n7m/b3369Gn32JboMjFt48aNXTX1ZUdbDi930cpdXHMmRKnAhgxNvZkFr/6T3Z+/zoS7Hsc7JY2YEH9GpKi4KinCZe6UyECXsgyAh8Ymuzx6orXgBIluQkvlo5pcwRGmyT17LmsF7P1ESOhUhoG3LzQZm88pV/DQdw3sLTGz/t5gkkNlEBgllGYGx8Hm10GpAr9g8A+DYXOFuYs/FJxpJ1ZBzJm+M2LJqfgoIXEeOItTrbm+REfZQL+BnNCcYNvH29hr2Mv6H9YTEBDg8i2hOGdGRAbHq47D6ebrZURkcEx7rN2OOGcHneRIuzKpW/Mz5vwCfFKSz9vB5cnhJh5r0umxnC7ClHWUoLFj0Pn7EXjzzSTt3s1vY2MZMnkK1t27XdI/nfFNTsI7LIymsrI299ode6WJSPfEnUN0Sirhx+IZev2NbPjyU/7x1TeoI8J48803L/bWJCQcpZzIPDfyV0QqCbs+pd1zOT/WeTViHxDMa88/z759+3j00UcBSL1hIIEhIS3O4zyHc282955pEpcXrQlJKpXKpbeZ8z2pu3jmSZQzGo1YrVbsdju+vr7N1sjLy6O8vJzKykoiIiJcxDSVSkX//v359ttviYuLY8mSJeTl5aHX6zly5Ag7duygb9++GAwG0tPT6d27N7/++qvH1yc64LKyslx6uTmv1VKKaEuuPff3LSLi/EuVu0xM6+xmcZczrTm8PLnW3K93vuau4YnUGCwcOHiQXd/8k+uuu44333iRNVmV6Axml+RPT3x7oAS7zIv5E9OkxE6JtmmpdDJrhSCkqdJcryncCiX7hcRN+5lv2r38wGpCCByQY7IruKYHTE0LY3SSD1jNEJEizFd6EMb9WeiXVrBVCCtQRghzN+jBguBMExFLTiUkzhP3Ek9Pri/xGn2jnl9yfqEipALtDi3aQ1qef/15FAqFkKKFZ8FrePRwVp8+27jduYRzTPyYdu/1XMs7C2oKWHl0Zbuvl7h4OJdCno/w5HC45QuNokVHmKM8c+IEQm++iaCp16LVaqmurkZWWclTV19N8o2zsa76kZoVKwi5cZZjH+bCU45HRVpqu/faHXuliUj3xJ1Dxck8dKXF7P3hOypraglT+vObG6ez/4dvm4UVSEhcaBSRSsJmnhXLWmv43565RLeaGDjw2WefsXTpUl555RWGDh1KTk4OSmXb84pzOfdm64yeaRIXj5aEJJGWnGvOxzMzM9FqtQQEBLj0V/P398fb2xt/f39mzJjhsR+ZXC53lGw6I35W582bx+OPP05cXBy+vr4AHDt2jIqKCrRaLXK5nEGDBrUoZqlUqmYlpO2lNddeW+/budBlYhrA1q1bWbRoEfn5+Sxbtoy4uDg+//xzkpKSGD26+zT8bM3h5cm15n69+zX3Dovmf39+mQiVik8++YTIyBC8vLwcfdfE4IGle4vQNZipMVoo1tVxpxquSY9C12DmZFW9i+tNChuQ8Iin8lFNriCYyWTQd/bZ3mU73hGeB8XC6Z1QVw42K4T2AF0+2Js4UGYm2NfC7f288QsKFRI5o864zFY8CjXFwnxFvwphAqGJZ0tMB98Dv2Zf6HdAopvQnhJP8ZoxsWMYFzqOyNpIXv7Hy9x1113cOetO1Go1p+tPOwS3TcWbgM7vZ3au5Z1rC9fyY/6PnboXia6ho6WQLbm+6tb8jPlkfjPXmLsAZjAY2LdtG3fffTcvTp/OoLyTyKKjhe9AZDLhUZxz/S8QG0vd+l8ISEtt9167Y680Z6R74vOn14jRFB07QmlBAab6eh4YM4wgm9VjWIGExMWmMxr+WywWysrKOHz4MH/729944IEHuPnmmwlpw40GzcU8d7dbW9dLXL605FxzPp6VlUVOTg7gWsqZmppKZWUlI0eOJC0tzeH0UqvVlJaWkpqa6ggHcBbampqa+NOf/kRSUhJ33HGHS1nnuHHj0Gq1aLVaYmJiiIuLc9nb9u3b6du3r8t85yp8nUv55/nQZWLa8uXLufvuu7nzzjvZv38/JpMJEJInX331VUdyQ3enPX3JpvePRWcwo2swk1dZx/tLV6PT6Rj/yF+pxZ9I4Iudp1i+v5hJfaJZfbiMfvEh6Axmdp3UklNRj7fcxp1qyKus40SlgfAAn1YFu84mX1Pf6XNKXAA89UzLWgH566HJDEe/Fcozxd5ltWVQXwZmA2AXEj0BvH3ZVdDI+E8NvDzBlydH+oJRC8hAr4SyQ4LwFjdEKNk8Egvak0L/NXHdE6uAVNcyT4luQ1cnV7anxFO8pp+iHyEhIVx33XX06tWLp556iqioKMpMZbyy6xUKawuZlDiJG1Nv7JJ+Zh1JG3VmSs8pGOuNrGd9p+9J4sLjLKA5u77ERM6gqde26BpzFsCsVisFBQU89thjKJVKhlxzDZF2O76ZffEFTHm5+KSloXnvPWHOiZPgWJbwSPvLN7tjrzQR6Z64cwhXx5M8cRp/vnUOD15/LcpaLb4BAcQk98JQV4uutLhFd5qutJicndvoNWI0QZHRF3jnEt2BjopXnsY4Y7PZKC0txWq1kq5O4dn7/8Ts+28lODiY8PDwNvdTv6sMw74KrAYLYdenNOvN5k5np31KXDxaEqKcj4tBACAkgG7evJnMzExHgEFeXh55eXmUlJRQU1ODSqVCr9cDNAssOHr0KNu2beM///kPzz33nKNKw5mxY8cSERHhIsKJbagOHTqE0Wj0KNJ5orVSzq5wn7VGl4lpL7/8Mu+//z733HMPS5YscRwfNWoUL7/8clcte9nRnr5kKZGBYIfl+4tpqNVz0zWDKZUvpsIayOrDZcyfmEaN0YKpycaeUzpWHSljRr9YklQBnNYbkMsgJtgPaKBAY3CEEjjT1WEDa49WdMm8Ep1IS8KZ2DMtcxZs+TuUH4XoflBXJjjRctdBTanQ56y+4kz6JiCTg5cPVJ+iSNfIzK+M9IuW87ur/IV+alazMGbMH6DyOCCD1IlCqWe/m4XHsJ5n99d7huBMcy7zlOg2dHVypVjaKaZrQnPnV1JIErf2uJWqqioAnnnmGRITE4mMjCQkJIQlh5Y4ggTmpM/pEtHvfEgKSeKBfg/wB/5wsbci0Qk4C2jOolndmp/Rf7WEht27iXn2OVRtCFilpaU8++yznDp1im+//ZaEkyepKyhEt/gTfFPTsJwuou6n1VhOC1+4hTz4IBzLwqdnYrN9dFexrC2ke2LPOAtc7iKYp3NNTU088vs/0iSTc/v8P7Bv+VdoS4ppqNZRkn0MZVBwi+60nJ3bHA62ITNv6toXJtEtcRej2hSvsnVUr8zDZrI5xjhTUVFBaWkpubm59DGomeg/EHmOgfC0IOo2FwNQt7mYoAHRnp1kZxzFNkMT+h9Ogh0CRwgpo55EvPaIfxKXBp7EpNYEJufzosMsMzOTadOmOdI7xQRN0dFlMBg4dOgQNpuNuLg4Ro4c6RjnTFZWFl999RWLFy/mpptu4i9/+QsymczjnloSuQYMGIDRaHQpQW3ttZxLkmdX0WViWnZ2NmPHjm12PCQkhOrq6q5a9pLnZFU9X+w6BXa4a0SiI71TdJMdKa7xXGopA2PZSVas+pq7P3mHN++fwE9Hyh3iV4i/Am8vGdo6E+YmGwWaBuZNSOVwcTUHi6rJiAkCGrh1aDzTBgg3Je+sz3Ws1dVhA1P6RvNUl80u0SmIwplBI4hcmbNc+6FlrYBjK86WX8q9ob5KcKfp8gSBLKQHmOvB20/om2Zroq7Jm2lfNuDrDT/eG4NfgLeQCieTC2LckPvO7mHzG8IeCreCvlA4JpaZRqQA2WceJbobLZU2dqZjrS3BzmQyodFoOHHiBOnp6YwdOxY/Pz+ioqIoqClAb9Izucdk5vS+9IQ0iSsPd9eZ7yOPYMovoEmvxzs2FvMZx5gngUt0k1muHs7nP//Ed999xxtvvME111yDLL03pn37MJ/MxzctjdCbb8I3s68QUuChRLO7l2+2B+me2DPOApe7CObp3BOPP8bevXtZuWwpoaGhBISGYzGZSB85Bk3RaQy1NS2603qNGO3yKCHR2XRUjKrfUoxVb8IrzLfZGJ1Oh1ar5Xe/+x0lRcV89eA7KOU+xIZF03hEi+FABfQCw4EKvGVeHkW7wBGxeAUosBosGPadSRk9kw7qyYXWlvgncengSUxyP9ZS2EBhYaGLwywrKwuNRuMILhBFL1Fc0+v1GAwGamtrPe6lsbGRr776CrVazW233eZwsbW0z5ZwLh9ta9yFLuVsjS4T02JiYsjLy6Nnz54ux7dt20ZycssJklc6qw+XsXyf8G2CWGoplljuytdySifYLedPTHPpY3ZDRhjvPPIGNqsVs18o/aKCmD8xyDHvXSMSyamo41hZLaogXx6fJAhjR0trqao3sy1Py7VDXffRlWWd7iSrpD5slzyicGbQuiZ4imJW5iwo3Q+lhyB9KlSeAPVACIwETR6oUiBIDXGD4eQGsDSAlw//yO/D6dpytt/vT7RPPZjOrOftJ/RLc3bEiXtQDxScae7BBxLdFvfSRucwgM7qTdZaLzK73U55eTnHjx/nlltu4emnn+auu+5CrVYjk8lYW7iWTUWbuDH1RklIk7ggeCqbrFvzM/XrNxA4cQLe48e1KHDVrfmZ8qVf01BZydWjR/PHhx5itlyOrLQM3+Qkwu9/AN3iTwgYPYagsUI4hvjong7uLOSJpaDdLa2zLaR74rM4O85aE7jcz23cuJF33nufawf3JxIrOTu3kb9/N8jAUF2NMiiYIxvXoQwO8ehOC1fHO467f4YlJDqKJ2eXJzGqtTLOwLHxjkfncw0NDVRVVfHss89y9OhRPvjzP/AzetGjT0+CR8UB0GS3QkMFykHRLYp34n4sVcLfltibC36SC+3ywF0Y8yQmuR/Lyspi7969FBYWMmPGDMdxZ2eap3FiuadKpWLatGl89NFHFBcXU1tbi1wuB1yTP7Ozs4mKiuK6664jLy+PyMhIhyAm9k1rS/Q6dOgQMpnMpQS1tXEXupSzNbpMTHvooYd4/PHH+eSTT5DJZJSWlrJz506efPJJnn322a5a9pLF2X1205B4sDcvrewXH8Lm7CoKNA28+H0WyGDdMeGbhB0fPUdNVRkZD73JjtONDHHSvzZlV/LhlnyuGxDL8OQIpvePpUhn4P7Fu9HUNyKXQZIqAKh2pHl2dVmnxGWIGDagyT2boOl+Xj0YKrIEIU1fKAheAF7eYGmE4z8Iz5tMgByD0cRdY1K4KU5Dpne+cM7bX3ClWYyCq62+yrN4J6V0SrSC6CIbnzC+03qTtdaLTKPRoNVqefzxx0lJSWH27NnExsbi7S38Z/RcQwEkJDqToKnX0qTXY63x/A2yiHLSZCqLilAOGkRCQgJzU1KwrlhJ+ZEjxDz7HKaso1hOFwlutLFjXPqiyRM896SSyj1bRronPou746ylskxn8QsEp860qVP4/S2zMNTWkDRoCBljJ4BM5iLGSc4ziQtB/c4yDPsrsDZYHAme7sKZpcpA9Yo8LFVGoHkZp396OP7prr3PLBYL5eXlfPjhh6xYsYJXfvsXhoy5ihhbKCFD1A7RLWhcPKw+TNC4eBQKRat7VUQqCbs+pdkxyYV2+eDu1PIkJrkfy8zMpLCwkMrKSlatWsWMGTMc58VgAVE4E49v3ry5mSMsPDyc8vLyZsEBFouFnJwc4uPjuffee0lISCA6OrpdzjJ3BgwY4CKcXUpiWVt0mZi2YMECbDYbEydOxGAwMHbsWHx9fXnyySeZP39+Vy17yeLsBHv+eleV1bnEcnN2FT8eLsUOXN9fzZyhCej2/ciSJUu49qEF9BkzyiWN82RVPc+tPEqx3ojBbGVC7yiKdAaeW3mUIp2RmBA/rs2M4fZhcRzfvZnZg+KYdqa080I40iQuQ9wTPNvjHDNohQCCpkawWwH4YJ8ZPy8Zt/n8gE9ibygrAv9wmPUu1JbA1n8IZZ6Jo4Q5JBeaRAdwFq/OxQnmXB4KeCwVFa8ZEzUGr1ovnn/+eaqqqvj222+Ji4tziaQXhbiCmgJe2/0a2JHKPSUuOL7JSXiHhVGzYiXY7XiHhXkUtrR+vizcuRPdihV8escdpIwZi/7ECUdpqHvpprNQFvLggx7Xlso9W0a6Jz5LR8st7XY7Go2GlHg1f5l7L8a6Wk7u293sOnfxTUKiS5G5PdK8Z5rxsAZLlcEljKA1xMCB+vp6li1bxoMz72Zc4AAim4JRTU/tghchcblwLmWNKpWKGTNmsGLFCkpKStizZw/Dhg1jz549jmuOHTvmcK55crxpNBr8/f0ZMmQIw4YNc5Rv2u12Fi5cyKeffsq8efOw2WzIZDKioqL44osvGDRoEIMGDbokyjC7mi4R06xWK9u3b2fevHn86U9/Ii8vj/r6ejIyMggMvDLK/ZxLMJv1N/NAe51gNUYLTTahY+TOk1qm9g5jo66CQeOnU5cymYraRnYX6lxKRA0mK/Fh/iSpAli6t4gNJyqprDMR4OvNYxNTuf2qRCwWC8eBh8eltPkNhoSEC+4hBCAEAzg7x4x6qDoOci9Awc85Rh5d1cjDw/y5x1ovBAzEDoTBdwkinEEL2AVXmrt4J+IpEEFC4gznmmgp4twfDfDYK21t4Vq+zf6WquIqIosj+fHHH3nrrbfo27dvi0laawvX8n3e9yCDML+wLglLkJBojaCp19Kk04PMVdgS3WVNw0fw1n8/Y9OmTbx91134r9+AOSKCmGefc0nldBbh2iOUdee0ztboDvfEHaEjopeutJjXXniejfsP8tfH51Hw63ZShl5Nv2smY6ir5djm9SCj1eABCYmuIHB4LF5KhYtI1lIJpacST09UVFRgMpnw9/fnm2++wc/iTbjWl/Bhnt3AzrRWTipx+dNRp5ZzWWhcXBwajQaj0ciqVasoKSlBLpczYMAAVCqV41rR8ZaZmekiuGVnZzNo0CAAfvrpJwCKiop45ZVX+M1vfsPEiRPZtm0bffv2ZevWrVRXV3PgwAF+//vft3u/7mWelxNdIqZ5eXkxZcoUjh8/TmhoKBkZGV2xzEWlvT3HnEW3tpxgJ6vqOV5Wi5dMhpcXlOrrWfDFFt669U7ufzyBtceqXEIKwK1ENKeKyX2iKdYbsFjtyLChqTN30iuW6La4hxC4hxSA0CPN1gRAlkbGrcsamJCq5J/zr4PiXULZpzZHKOvUF0L6NBh0d+tuNGcRz5PYJiFxHngqy3Qv0ZzScwo1VTUMCRtCXEocH3zwAZMnTyYmJqbVefUmPbWNtehNegpqCiR3msQFxTc5iZhnnm52vG7Nz1Qs/ZoNO3fyry+/ZN68edz76DyaNm/yKKC5zymek/pNdYzucE/cGXhK71y5+CPe/uQzhmekk9KvP4FKpeO8rrQY7PZmZZ4SEhcCT2WS7sdaK6V0F790Oh15eXm88MILvPDCC0RHRxMZGUlYWFi79uMpUKC9SELclYdzmeWwYcNQKpUYDAYKCgqIjIwkPj6eYcOGAbBnzx4MBoMjhGDPnj3s3bsXEBxqosNsz5497Nu3j7KyMj799FPGjBnDX/7yF3766ScMBgOVlZWMGTOGrVu3MmbMGMdecnNz2bFjByNHjiQtzbMW4l7m2RZtJZdeSLqszLNv377k5+eTlHRl/hHRXqdZRxr9rz5cRpHeiFwuQx3ix+5v/kp9WAzrh2cSXVvlcMGNT49yjBHLNd9Zn8u6YxXMGZoAgL/Ci7SoQKknmsS5417embVCKO80aISSTv2ps6KauQGQU2VSMH1JPfGqYL756714j5sniGeb/wbhKdDvZsj7BZC17ThzFvEkJDoZd2ebJwdZhCyCyRGTOX78OAlDExg/fjyxsbGOBqzuiGWhc9LnOJxvYb6SO03iwuDc10wMAHA+FjB5CvrSUl58911GjhzJiy++SGhEBGT06dCcEh3nSr8n7gzce6mZTCYWvv8hwf5+TO+TRMHB/Uy47zcuY5TBIS7im4REe7gQ4pG4hiI+EEtxfbO1nMUv8/AIioqKePTRR6mqqkImkxEaGtpuIQ3OL1DgXIU4i8bQ4bUkLgyZmZkYDAYMBuF/IzGdU6lUOgIIQHC8KZVKDhw4gFKpbOYM8/f3dwkbMBqNfP311wQGBvLuu++Sl5dHRUUFVqsVo9HIkCFDGDJkiKMfm1qtZtWqVdTU1AAQFhbmUQQbNWpUhyrnOtqTrSvpMjHt5Zdf5sknn2ThwoUMGTKEgIAAl/PBwcFdtfQFob09xzyJbmJgwENjkx3C2MmqenQGM1MyoglRKtD+upKNJ7Yx/rfPolD4tinIua8THuDT7hJUCQmPOFxoWijeC1UnoPcMqCsDXQHYzFCyHwbdCeHJUH2awhIdUb5mvrkjlODKvfDdIxCRAvWVkDZVKA0tPSjMq4w4G3jgqZyzpfLPC4VUZnrF4NwfrSWXmPs1FouFiooKXnjhBTZs2MDGjRvp1asXvr6+LY51ThaVAgkkLjSeAgDEY006PRovOaHjx/N6UhJXX301ERER5zSnRMe50u+Jz5WWkj11pcU8/OBcissree6eOSibTIILzQl38U1Cor10RDw6V+FNXMM7348mXWOztUTRy7tPCMUlJSxYsICTJ0/yv//9j+TkZKKiojzO2xLnEyhwrkJc/e7yc1pPoutxFskAlEqlI2jAOWRArVaTk5NDjx49HM4w0bFmNArBGaJjzcfHB6PRyOjRo4mPj0ej0aBWq/Hz88NoNKLVah3XimJXYWEhFouFkJAQRo4c2Wki2Ln0kPOEVqs9r/HQhWLa9OnTAZg5cyYy2dnujHa7HZlMhtVq7aqlLyruvdRSIgV3mHgMcAQGAA4xbfXhMoezbGRoLaPfXMj1s29h8s130y8+xCGOtYS7uNeektKO9HyT6IZkzgJtHhz/Hgw6wC4keeoLITwJkAm90A58gb36FFXaWqIDZeya64+XwgKabLCeKQcSSzo1uYI4lz7t7PNVTwiPcGmVc0plplcMS08s5fv879E36llw9QKP1zj3UHt4wMOUl5ezbNkyvv/+e9544w169Ojh+IPXXXjzlCx6vj3dJCQ6iqe+ZuLPurIyVn3zDeOMRibNnUtCQsI5zynRcbrrPXFbuAtivUaMJmfnNmr1eho1lcy9eRaDBw1Gc7qAxvp6dKXFDhdadEoqRceOEJ0iNWaX6BgdEY/O1bUlzi0PUmA8VIUi3vVvLUWkEq9r4jl5IJs3XvorP//8M//+978ZPHgwsbGe/95zFvYI7bz+1+csxMnavkTi4iEKTVqtlkOHDmEwGBg2bBgGg4H09HQyMzNZtWoVpaWl+Pj4uPRPGzZsmEP4UiqVxMbG8t1339GnTx8GDBhAVFQUarWaHTt2YLPZCAwMpLa21tF7TVxbdMGJTjTRbekugmm1WrKzs9tdttlZaZ/Hjx8/7zm6TEzbuHFjV019SeOprNP5GOAIDHhobLLj2PT+segMZkoqtVx//22ERKlJnPl7Ptyaz01D4h0JoJ5EsJNV9Xyx6xTY4a4Rie0SxzpSfirRTVGlCS602jIIioWM68FYDfoCUPgLZZs1pyE8hRdWl/Pd9jJ2zvXHSy6HkEQw1YJvsBA6UF8lzJm1ArJXC+KaKg1+WiC42yJ7ey7ndHaHhfS8UK9cQCozvXKQAXY83viJwlhGhNDHaErPKWi1Wg4fPszChQu5+eabufXWW4mMjHSMcRfezjdZVEKio3gqv/RNToKp11K35mcQe6AlJ8EDD7B44UIWHD/Ov318GapWuwg6rSGFCnQO3fWeuC3ckz1zdm7j4Po1hKb04nePzkNht3JsywaaLGZqqyoJV8c5XGgFB/dTUZBHwcH9JA0cetFeg8TlR0fEI0V8IN75fs3EsPauUbv+NE26RqHUM901uKi8vJy6oxVEW0J4fM5vmTFjBnFxcS3+fnYW9vzHXvw2Pn6poRd7CxKtIApOYmgACOWRYqCASqVi5MiRAI5HZ+eYc6nowoUL+eKLL7j77ruZO3euQ0irrKwkKiqKkSNHOkQz57UBlz5pLYlgJ06c4ODBg8CFLdvs06flNhftpcvEtItdv3qx8FTW6X5MZzALf9gBL/6QBXYYlx5JTnkdR46dQB6eQPT4eymuFy6qMVh4Z32uw+HmSaxbvq8YwJHyeS77lJBoxsj5Zx/TJkPuOiFsoPQgBERCj1F8+c1KXvqugufG+hDgIwdkYNRBYzVE9RaEtL2fQOHWs/M5BCo7yOUQP8RzKaWzO2zk77vwhXrgYpeZSnQac9LnEOYb5hC9nJ1l7sJYY2MjRZVF/P3vfychIYHnn38etZv4kBGRwZaSLZyqOeUIGOgKF1p7ylMluictlV/qv/qKmpUradLpiXnmaWw2G+uXfs3zr7/OtGuu4b7fP463d5fd+km0QHe9J3bHU8iAM2nDR/HYS69ylc2Xfz/xf+hKi2lsaEBzugBVQk/XoAG7HezQWF/PruVLpN5pEl2Cpbi+RTGsPbTkgtPpdBQWFhKSHsbsOTeh7KMiLi4Om85EQwtlpefTF60rsJQ0XOwtSLSAc4N+MYBAFLpEgUyj0ZCWluYidrmXT1ZWVrJr1y6WLl3KkCFDmDlzpqN8s7KyEoVC4QgWaClcoLW9hYSEANC7d29kMtl5l212lPa0u2iLLr2j2rp1K4sWLSI/P59ly5YRFxfH559/TlJSEqNHX5nJO+7llp6cZOFKH7789TTrT1SgazAjl8nIqajjeEEJiRFKXvv4M05WWx3JnTqDmaV7i9A1mEEGk/tEu4hg/eJDSIkMJEkV0G5xrL093yQuMzq7z1faZOGfJveMi2wvGPVgs0DpIXbk1/LA1xXclunNC+PFXlJ2sBggqo8gnoX1FIQ0Ta4gwolhBpmzYNiDrqmg7kjuMAk3zkVgche7lmYv5fu879Gb9MxJnwMIrjKbzUZ5eTl2u5033niDmpoa5BFyPs762GW9Y9pjFFQXUFBTQGJIIg8PeLhLhC93oU+ie9Fa83/n8kvn6wQXpt3hwiwoKOB3Tz5BpLc3f500qVmvrvauJ3H+dMd7YncOrl3NsS3rMdTVMuG+3zQr83z3/UXsOXyEPz7xRwDC1fGEx6opOZFFuDrOIZbpSotBJiNj7AQAqXeaRJdxvgKWJxdcQ0MDhw8f5pZbbuE3v/kN9913HwkJCSgUCmoPl7VYVuo816WQquzf9/yFCImuQXSYGQwGh5Amlk+6Bw44i1vuc+Tk5PDVV1+RmprKxo0bMZlMZGVlOZxpGo2GvLw8l1LO9u4NzjriIiIiLtsvnbpMTFu+fDl33303d955J/v378dkMgFQU1PDq6++yurVq7tq6UsCUUTTGcysO1YBnHWS9YsPwWefjFqjhbSoIAYmhFJbdJxl7zxEzKOvkN4jiulDBOFtfHoUm7IrySmvo8ZoYXehjjlDE1xKOY8U11BVb2JC7yip/1l3p6v6fO35GPZ+JDgqw3pCYy01ei03fKphUIwXn84KQCazg1wBMhk0GcGgF64FiMoQxDVRSHPeY2v7dHaHXQI3DhIXFk8CVacITGLJp91VaKuoqGDdunWkpaWhVqtJTk5mWdGyZutN6TkFvUlPbWMtepPesc/OFr6kEIPujSM8QK/HOyysWUmn6Egrf/VVar5bQZNeT9httzuura2t5YMPPqC8ro4ljzxC79tuB1oWzdzdbpK41nl093tiB2fcZGKYgHOZ56a1P/PSq39lTHoKUTazw8Um9kRzdqXl7NzGyb2/0u+ayfQaMdqR6inSlgNOQqK9tFUS2tGAArPZTF5eHr/97W/x9fXl+uuvR+Udgnl7JV79VZec+6w1FKquSUKVOH889UubNm2ayzm1Ws3mzZsxGAxkZ2c7xu7du5fCwkKuuuoqsrOz8fb25scffyQoKIigoCCH6CUmcxoMhg6FCngKD+hoz7RLiS5N83z//fe55557WLJkieP4qFGjePnll7tq2YuOQ0RrMLPueAVX9QwnMVxJv/gQx/kPt+RjMFvJVIfw0qy+qHysxKVMBr9gjtlieXdDnsNllhIZyJHiGk7pDPSKDmLO0ASm9491cbxJJZsSDrrMyWUHmx3sTYAMUq6hcd+P/HVyADek2fH1toOXD8QOAGUk5K0VSj2/vg8a9UIQQd+bBCFNPbBjexTddunXd/JrkrjU8SRQdYbANKf3HML8hLJPUQgbpRpF0eEiHnvsMfpP6M8/3/wnvcJ7McWr+XpJIUksuGoBiw4t4ru871xKSDtT+JJCDLo3ovusSad3iFxiTzQXgcuO8CWG/azIZjabqTx9mvvvv59JkyYxadIkR6lyS6KZb2ZfQp3WlZI8O4/uek/szsCpM1yEr3B1PMNvuo2Ghgbuvvd+ooIDmTkog8b6etZ//B6aolOoEhKZOPcRF1HMWYQT53BGSvrsHli0RmoPnu5w0mZn0pGAApvNRlFREX/4wx8oLi5myZIl9O7dG/m+WsccwRN7uMzTUbHuXNNHJa4sPPVLcycvL4/s7GzS09MZNGiQQ9zKycmhqKiI/Px8UlJSmDNnDsnJyS4ONpVKhUqlIjMzky1bthAYGIharT7n/V6snmmdQZeJadnZ2YwdO7bZ8ZCQEKqrq7tq2YuO2NNsckY0c4YmoGsws7tQx5HiGsanR7H6cBlZZbXY7XauTg5n1aFSvv/7H7Aaa0m8723w8eGno2VYmmz8dLSMd+4Y7BDJxLJPcZ0vfz3NrnwtL83qK5VsSgh0Zp8vUcRSDwRk4BcCRi1NVXn8b0cJ14wYylzvTchkcuH6lEkw5SXh57AeULwPyg8JQppfiFAemn3m2/eO7FF0stnlQAupXZ1d3ipxSeBJoOoMgcl5jkWHFrH0xFLW6Ndw4O8HCFIFoZis4IDxAMMZ7nE9T6EFF1r4kvqpXfmIwpgpvwDvcMFt5kngCrv9dsd5EBIiV61aRU1NDWPGjGH8+PEuPf/cEzrFOUMBlZNoJiV5dh7d9Z64NZzdYxYvBVcPv5pJmekE0wRA1elT2KxNaIpOkbNzm4so5i6guTvR3IMNJK5MGo/rsJ9oBDqWtNmZuDvJ3MUs5+dVlmo+XfQJmzdt5t9//ydXX301oaGhWPr7uMzhTEfTRM81fVTi4uMuVnUG7v3S4GyZpbOI5rxefHw8y5cvR6FQ0KdPH0pKSlzGAY7y0FWrVlFSUoJcLqe0tNSlb1pLr8dTmefF6pnWGXSZmBYTE0NeXh49e/Z0Ob5t2zaSk5M9D7qMEZ1iogNNFMC+2HXKpcfZ9P6xLNtXRLHeyDf7iinasozCNau5e8HfyQ7qSaPFSo1RuJE4XlbHuxvyeGvOQOZPTOOd9bmO8IHp/WPZla8l78y6F1tM89QbTuIyRpMLq54QHlVpoC+EYDWYa/ndqgY+2lfNwcidJIR7ATZhjKXhrJA17W/C2C1/F/qlWS3gHyakeHbUNSdenz4Dfs32fE1XlbdKXFQ6S6BqTXia0nMKm45u4pdPf0FfpOevH/4VZYaSa5NbFhAuhV5ml8IeJC4MLomaLfRKU50R3TTvvUdRcjKPPvoo8fHx3HLLLdiKitE4udncEzpbEs2kJM/Oo7vdEzvjLHQ5O8ZA6HVmNJlIHD6G/y39mv0/fMuRjeuISelFaHQMmtMFLuJYS7g70Ty51SSuPPz6hKMMtHV5SWRrbi+XPmZVBqpX5GGpMmLRGLHVmpAH+2IurEFXW40504/r0scTPlvOxPirHSnhrZWSdqTs01JlwGqw4Ncn4rIoE5VwpbU+Zx3FWcgSnV7iMdFB1tL8Wq2WdevWcdVVVxEZGcmYMWMc14uPopAmpnnGxcV57LnmqfzTU5mn1DPNAw899BCPP/44n3zyCTKZjNLSUnbu3MmTTz7Js88+21XLXjQ8pWy+sz6XdccqXHqcpUQG8tINfflwSz7XZqrYZhmMb5//4/E/PswXO09RXG0gv6qBEr0RU5ONAs3ZpJTp/WPRGcxCEAHw0qy+DgHrYuPp9UtcxmStEMSwkHhQBEBgFKRN5h/v61m09xj/nuZL3wgbhKeAQQfKiLNJnSKqNJi9SEgA3fEOpE4Uwgw6iui2s1iAFsQ0KahAohVaE57C7GHMCJrBsgPLSJydiE+aD/OGzmt1vkuhl9mlsAeJC4+zwKV57z0Xl1rdmp859dUSHi0pxmw2s3jxYgICAtC0Ua4piWZdT3e7J3ZGFLoMtUJlRcrQqx3iWIVGy51PLOCtv/2VygA/lKGhhEbHkDRoCAC6kiJiUtLa7HsmOdG6J4oIf4J7dX0T/Pa6vep3lmEqqkMRHUCTxoilpA5FXBBkBrO1ZBf+1kD6ZKYxVTmDnuMzXMa2JNi11bPNfZ+Nx7QEDI2RSjwvQ5zTNjvSg8wTWVlZjt5nM2bMQKVSNRO3cnNzWbVqlSONUxTI5s+fT2pqKrNmzeKqq65iyJAhLkKc2CdNo9EQFRXlmF/Ek2jnjFiCCpdGkMb50mVi2oIFC7DZbEycOBGDwcDYsWPx9fXlySefZP78+W1PcJnhqW9ZS73MxqdHEeJtYfnWLO65fhyj+j8EQHiAD+uOC+Jbv/gQPtySz0NjhW8sRecXwLrjFYQH+DB/YtolI1xJfduuIDS5oM2D4DghafPkL2C388OObJ5cWszvxkQyb1wg+AaCty/IvSA49mzYgDulBwVnW+nBcxPT2kNnlrdKXHIU1BSw9MRSkMGc9DkdLmtsSXgym83sz99PPvn848t/YIowMTNjZpvzXQq9zC6FPUhcXNwdZX4TJvKfJUvYW1jIV199Rd++fT1eJ3Hh6W73xM70GjEaQ20N5SdzqdVUMXDyNMLV8VitVl796FPMjUZ0u7dTWVeNKqEHDdXVVJzMa9ZfrTUkJ5pEV9KSO6yZACYDmVyGT48g/HqFUb+lGJ/hUeytzOKxBX9g4MCBLF68mIRhffHy8nKZqzPKMy+n8AKJ5ogik0ajaVaa2VEyMzMpLCx0CFvjxo0jMzMTg8GAwWBwCGk1NcKXHGlpaezcuZM//elP+Pj4cPvttxMTE+PYgyjEFRYWotfrSU9PZ+jQoR7dbS050q5UOlVMO3z4MH379kUulyOTyXjmmWf405/+RF5eHvX19WRkZBAYeGWWAKZEBjYTtpyPOZdBJqsCuOvOOykqq0L1wTeM6i9c7yxIpUQGMj49yjGXoxdbn2iH2PbO+txOK6s83zJNT69f4jJlz0dwbAXIvMA/FGw2bLYm3tlcw+RUX96eaBfCBUw1IJNDQOTZnmWeBC3JNSbRAVpK8Pw+/3uwQ5hvmENEam/fME/Ck91up6CggJfffJnGwY3M7DeTBdcsOK99Skh0Nq0lajo7yux2OyXYWX/qFE888QS33HKLx+vaO7fE+dOd74mdCVfHowwOoU5bhTI4mPwDe4lOSeU///2SPfv2MW/SGBq1FcjlcsJi1SQPGtZisICExMVAdIdZqgzUrj8beOAugPn1CqOpvAG/XmH4p4fjmxbK0aNHefjhhwkNDeXNN98kLi6umZAGoIgPxDvfD0X82d8JHQ0T6IiLTeLSxdm55Yxz6Sbg0o/MUzjAjBkzXK4HqKyspLKykuzsbEwmEyEhIYwcORK73Y6XlxeBgYH84x//IDQ01OFCy8zMdEkALS0tdVl38+bNLqKapzLOtmgpzbMr+sh1Np0qpg0aNIiysjKioqJITk5mz549REREkJGR0fbgK4SWRClRDNM1mNn/42cc+3Uz9/3lba4fnNBsjiKdodkc7kKbc/+0zhCxpDJNibPIQK4A32CwWrAHRFFaWs7HM/0ID1LipVCA2SxcY2sCbyWkTWxZLJNcYxIdoKUET32jHmSu7rLz6Rum1Wp5/vnn2b5iOw+Pfpibh9583vuUkGgPHRGx2puoqdFokMlkrFixgj59+rgEDrS0rpTW2bVI98RnEd1l+Qf2Un4yhy/+/S/eWvwlk/r2oneCGrPRQHhcAlffOKfNkk4JiYuFu3jWLHyguJ4mXSOW4nr808MpLi5m3rx5VFVV8c0339ArKgnjljLwII65j/W0XmtIKZ5XPs6lm1FRUWRnC61vxo0b59EN5i7KZWVlodFokMvlNDQ0EB0dzaxZs1CpVBw+fBidTsf69etJShLuSzZv3uwypziXc8hAS33eOupIaynN83JwuXWqmBYaGkpBQQFRUVEUFhZis9k6c/rLgpZEKVEMO7jvV77/+C1Gz7yTxQsfd5w/WVXPcyuOkldVjzrbn5OV9egMZp6/XlB13Z1fnV1WKZVpdkNaSsAcNlfogaYeSGPBHm58cQnzegcyo6cZmSpNKO3UZIMqHSqOQn25UA4qpWhKdAItJXguuLq5a6ytvmEtuceMRiOff/45S5cuZeHChfzpgT/h6+vb4hhPx6SeZRLnSlsilrPo1Z4STa1Wy7x583jkkUe4+uqrHZ/lttb1zeyLYvdufDP7nu9LkvBAd7sndk/U9HQ8OiWVnd8soVBTzYjeqUzJ6AUy8FL4EN+nL+Hq+BbnkZDobDoqQLmLZ+5OMOfzOp2O7OxscnNz+de//sXIkSOx7tK2KI55KtF0rBMf6OKI80Rnp3hK4tylh3PpZlRUlCOJUzzn/AjCl2xbtmxBq9UyePBgDAYDGRkZGI1GcnJyiIuLQ6VS8d///pfnnnuOO+64g4SEBIeY1h6HWWf1eWspzfNcXG4Xmk4V02666SbGjRtHbGwsMpmMoUOHerSyAuTn53fm0pcM/eJD2JWvdaR6wlm32oS0UF69+ykSUnrzwX/+5TJu9eEyTlY1oA71p9FsxWq3g73ldTq7rFIq0+yGtJSAqUqDzFnYjnzL7W+sYtOeLJ7vG4LMLwLsdig/LKRzyuQw5D5AJghyLYlzEhIdoCO9wNyvdRe9PLnHbDYbO3fu5C9/+QvXXXcd8+fPdxEf3McU1BTwyq5XKKgtcJlH6lkmca60JZA5i16qRx7xKLjVbdmKbvEnBN99D/M/+pCVK1fyyCOPoFS2/EeP+7qmrKNYThdhyjpK0Ngx5/WaJJrT3e6J3RM1PR1PGz6KerMZi6aMmwf2wWaz0WQyERAa7ggdaGkeCYnOxlmAor+K+l1lYIfAEbEeBaS2yijF8w0NDVQVV5GYmMi6devo0aMHAQEBWPrLsBosWBssWKoMbQYNiMdq159uUyjr7H5pnS3OSZwfYrnjyJEjXcosRVQqFZmZmezZsweAYcOGkZWVxbFjx2hqaqKurg6z2cyAAQMYO3YsERERqNVq3nvvPf74xz8yfvx4Ro8e7QgWABxzue/Bee3O6vPWUprnubjcLjSdKqZ98MEHzJ49m7y8PB577DEeeughgoKCOnOJS54jxTWc0hnYnFPFkeIapvePdbjVGmqrefYvz9B3+Hh+OaHFx8enWRmnrsHMT0fLGRgfyrj0yE7tiyYh4UJLvcw0ubDqCZ7+bDsrNupYcksgw9V2aKgCUx2oeoFCCeP+fDZQ4MwYNLnCc6msU6ILaKtPmSiE6U16wnzDyIgQyqmc3WOVlZWsWbOGqKgo3n77bUJCQlzmdh+ztnAthbWFJAUnSS40iU6hrfTM9rjRdIs/wbB7Dx9nZfHVnj288cYbXHPNNR1aVwom6Fq62z1xS4ma4vPolFSeefS3LNuwmf+7+ToS+2TiF6BEX1ZKnVZDxck8kgYOlZI5JS4YzgKU8bAGw74KALwCFM0EpPY6tcxmM8uWLePjjz/mn//8J4mJiY77DEWkEi+lgoa95R7XaM8+W6Kz+6VJYQaXFu0pd8zKyuLQoUMADmFLq9Wi1WoJCAjg9OnTwFnh7bPPPuOll14iKiqKb775hr179zrWqKyspKSkBLlcjlKp9FhK6i6uXeqiV1fR6Wme114r3JTt27ePxx9//Iq+cfDUH010phXrDCzfV4zOYOau4Ymcyj7CMHUEY697iFd/ymH5/nx0DWaen+laxnmyqp7wAB8XEQ6kPmYSXUBLvcz2fMTi77fyt43VvDgtljl9zSD3hqZG8A+HWz5t7jzLWiEIaWdcbRISXUFbfcpEsUvfqG/mLlt0aBEjI0bia/Bl7ty53HPPPSQnJ7c5t3M5pxQ0IHEhaEtsAwi//wF+LS/n9Q0buOWWW/jDH/7QJetInB/d6Z64pcCAcHU8vUaM5pOFz7J49RoGJPUg0NeX2JQ0ht90m0tZZ2vzSEh0Ni4CVH8VVoMF7J5TO6tX5GGpMgrjWhCtTBX1rPnv9zz20nwGDR5MdHQ0ERERLteci0h1MYIFpDCDi4+zWNXekkuDwYDRaMRgMAAwduxYsrKyUKvVhIWFOeY9fPgw//znP7FYLDz//POOMenp6YAgpvn6+pKUlNRiKenl0M/sQtDpYprI4sWLAcjLy+PkyZOMHTsWf39/7Ha7x8a4lyPvbsjjh8Ol/HS0jHfuGExKZKDDmebjJae2sYmvdp+m8MgePnt2Lt6vvM3EqweA+PLPPLqLcqKopmswMzkjWupjJtE+zqXM0sMYs8VGkJ+ceeNieHa4SSjnTL5GcKZFpIC+sPk6zi43qcRTootorU/ZN9nf8PHRj5nbdy5Tek4hzC/MxV225PgSPtv6GcPDhvPofY+Snp7u8t8i57ndHXBSOafEpYbX0CFUXXcdGRUVfPTRRy2WD0pcGnSHe2IRXWkxB9esApmMgVOmE66OJ2vLJt5e+h2Bvr78/u47UGAnOiUVkMQziUsDRaSSsOtTPJ4zHtZgLm9A7uvlkrbpzoEfdvLoq38kKkTFokWLUKvVHtfxlAx6Pkj9za5M3MWqlgQrZ9Ft2LBhrFq1ioICoTVJZWUlGo2GjIwMx89KpZLY2FimTZtGYmIiM2fOJCsri+zsbIeYFhYWRk1NDREREc1KOkUuh35mF4IuE9N0Oh233HILGzduRCaTkZubS3JyMnPnziUsLIw333yzq5a+YBRoG7BY7eRV1vPFrlOEK30cvdJWHCwBoKFGz+f/+CM+0amcCh0EwF3DEx3XvrM+F53BzLpjgrVYdKCtPlzGuuMVzBmaIJV4SrSPlnqgtXdM5iyKNizGENKH0dNv4+bag6A9CcpwGPYAlB4Urq0rEwQ153WkxE6JC0BLPdIyIjL4x/5/UGuu5eOjHzMkZojLuCk9p7B87XK2fLIF7SAtC/9vId7e3i2KZosOLZKSOiUuWeqzczi+dAnjRo3ins2br2i305VCd7gnFsnZuY1jWzZgt9vQFp1i6PU38uaiDyirrmXBrTfQVFdDTbWevT98R0hUjBQyIHFJY6kyYDVY8A73x1pjcknbdKaiooL5//k/GqyNfP7eF/Tq1cshlHsSuzz1JDtXUUzqb3ZlIjrNxD5mzj3S4KyIptVqycnJcSRqajQagoODycvLQ6/X4+/vj9FodMxhMBiQy+W88cYbBAcHO9YCIUjg2LFjBAcHk5GR0apQ1p1LO52Rd9XEv//971EoFJw+fdqlIe6cOXP4+eefu2rZC8qtQ+OJDfZjXK9IsMPSvUUcKa5h/sQ0klUBwo3ED2+gkFm59vHXefiaXoBQ0jm9fyz//CWX97ecpMZgYc7QBBcH2vT+sc2OSUi0SuYsGHR3+8osc9fBZzMhMNIxRrfzSybMe5PnF75CdNkGwbUmk4NBB5tfB/VASJ8GQbGQPl0q55Q4b8Tyy4KagnMaL5Zmfpb1GXLkBPsEM7fvXMfxtYVrAfA3+nP4/cN4B3gz60+zCAgIcBkvXicypecUbky9UeqRJnFBMOUXUP7Kq5S/+iqm/AKX45r33nM5BvD87x/nhXffxWf/fklIu0zoDvfEIr1GjCZj7AQi4ntQdfoUaz54Fz9jHdcP7EOE3EZNZTlyb2/K8nIEB9sZdKXF7Fq+BF1p8UXcvYSEK8bDGhqPafFJCCLw6lj8+6scrjJLlVBK19DQQHV1NZOvncKijz5gzLTxyOVylzka9pZjPKxxHPPvryJgaIxLuaen69rCojFiNVjw6xMh9Te7wlCpVCiVSrKzs8nKygIgNzeXzz77jNzcXIdzraKigqamJoxGI5mZmQwdOpSIiAh0Oh02m43Gxkb8/f0ZOnQoAQEBXH/99SxatIiKigo2b97sENnGjRvHsGHDCAkJoaqqyrEHidbpMmfa2rVrWbNmDfHxrt84paWlcerUqa5a9oKiqTPj5SWjf3wo0/vHOnqdAcSHK2k8+gvGwoP85uVFLHrqBuBsSaeuwUxuZT1NVs+RnVK6pkSH6Yg7bMc7ULhN+Pne7zFnrWb2E/+kssHOc5MjkdWfAOxgawKZDCqPC840pQqyfxIEOKmcU+I8aasHWluIYldGRAbHtMccDjNRnIvwi+D+H+6n9LNSdEU6HvnnI/x2wm9dxusb9ehNegpqChw90aTSTomuxJRfQN2anwmaei2+yUnUrfmZmpUrwW7HOyzM0cfMOdVTPPbjjz/yz7VruWf0aBJvuvmivQaJjtEd7olFwtXxTLj/YXSlxfz4n7c5lZfLwKREFLYmvL0VpA4bjt0uI3//r8L9xRmkFE+JzuBc3F2tjXHucSaec07XtI+JYcvqDUQbgrj7httJGZSOt7d3i3OIOPckE9dXxAcSgKvA1tbraczSYjqmJWBojFTieQWiVqspLCx0lAxv3ryZ4uJiLBYLs2bNAkCr1aLX69HpdIBQEvrTTz/h7e0thB2mpDBs2DBqamqYPXs2ffr0IS4ujh07dqDX6x1jQBDPwsPDKS8vx2g0OvbhKclTQqDLxLSGhgaPEe06nQ5fX9+uWrZLce9tJgpnzr3ONmVX8tyKowzrGUq/YSNQ9unJn39zh2MOMVRgckY0twyJF/qmnXG1gRQ0IHGBGDnf8WivyuGhe29j+8k6frgrlIzESCg5DZYG8PaD+CFgaRRcbJUnBHea5EqT6ARa64HWXvQmPdtLtjOn95xmYtjcn+ey8/hONIc0zHtyHr2G93KME0s8kcGmok2E+YZJAppEl2PKL6B84UuYT+YDgkgWNPVamnR6kLkma4o/+2b2RfPee2gzMnnggQcYdtVVvL9uHT4+Ps2EOYlLkyvxnrgtwmLj+GjDdiy11bz14nNkbVqPubGRsJg4olNSadBrSRo42HG9lOIp0RmcS8lja2M8NeL3PxNWYKkz8eXr7/G75/7Imzc+zW2qu/Dx8Wk2vyJSCWcSQ3ETxZzDDQKJJdhtrbZej19mBN4yL8mVdoVSWlqKXq+ntLSUsLAwLBYLXl5ehIeHO9xkGo2Guro6NBoNe/bsQalUkpqa6kj0VKlU1NfXM27cOPz9/fm///s//Pz8MJlM+Pr6otVqXcpI/f398fb2xt/f37EPKWygZbpMTBszZgz//e9/WbhwIQAymQybzcbrr7/eZnz7pYp7uqYn99iHW/LZfvQk+7afRh6dxpxxUyjSGXhuxVEeGpvM9P6x6AxmagwWQvwV3DU8EcDF1SYh0eWkTRb+aXJZ+dId/HdfHf+e5su1STYo3ApxQ6AqW0jwLD0A3v5w9FuhV9r5utLOJShB4orkfB1gS08sZVnOMhReCsL8whzJnWIftFmxs6gtqeWGD26gOrCalfkrkcvlPDzgYYcrbnz8+GYlne691CQkOou6NT9jzi/AJyX5rFiWnETMM083u9Y3OQmmXkv5wpeoyzvJvcXC/cfSpUsdf7B5cq9JXHpciffEraErLeaF/1vA1p27mDt+BLm7dqBOz8AvIIBeI0aTs3Mb1RXlVJzMI2ngUEAKIpDoHNpKy/Tk9GppTEuuMEWkEi+lgrVfruCJLxYwKmkI06+ejK/VG0uVwaNDrH5XGYZ9FVgNFpegA+NhjWOMIj4Q/fcnQQaBw2NRRCrbfD0KlT/KicHtfXskLjOcm/xnZWVhMBjo0aMHY8eOdVyjUqmYMWOG47wn0evVV1+lsLCQt99+m8rKSsLCwigrK6OpqckRNCBeP2zYMIcQ52kfEq50mZj2xhtvMGHCBPbu3YvZbObPf/4zWVlZ6HQ6tm/f3lXLdin94kPYla/Fjp0b/7OdpIgA5k1IdQkIeGBUIuvf/B0V5YXE//YTagwWPtySz64CLQazlQm9o6gxWFh1pAy5DHIq6nhpVl/JkSZxUajdvYQ+vhWsuj+W6WneYKoF7EJZp9UMNguYmsA/AvrOFgQ19cDzW/RcghIkJDxQa67Fjp24gDiX5M7v8r7DUGtgzStrePDBB5k6dCoamwaFj6KZG86TYHa+5acSEi0hCmjtcZKJLjZTTi7VsTH0iVTx6sMP06PHWXeC83wSly5X4j1xa/zwvy9474uvGN0njczYSDRFhehKi+g/aRrh6njJhSbRZXhykjnjyenV0pjWXGGn/DT8/tuXiQ+N4V+/eZnIPnE0HtOCDLyUiuZlmXa3xzM4i2XGwxoM+4VAOi+lAsXEHm2+HokrG+cm/86ClnuppUqlIjMzky1bthAQEEBgYCCbN28mMzMThULB3XffzZgxYxzXR0VFYbFYUCqVhIWFuYhkUrBAx+gSMc1isfDYY4/xww8/sG7dOoKCgqivr2f27NnMmzeP2NjL04F1pLiGUzoDRXoDRTojx0prSVIFMH9imqMENPfnxVTm7OfO59/nkF2w7kcH+9E/PpSkiACW7i0iMtAXL5kMuVxGdkUdqw+XSWKaRNfh7gQ78/zXxiS27zVwR0wi08MKhPLNxlrBmWY1C2P9IyBYDZOeF3qm6QuFx7TJ574fsURUKhWVOE+CfYPx8/JjWOwwhyA2pecUbFYbG97awIYNG3jiiScICgoiiCAXYaw1V1xnlJ9KSHjCNzmp3Q6yujU/Yz6Zjz5OTejDD/PPgQOJiIjo8HxSKejF5Uq9J3ZHV1pMzs5tBKvjeOaNt1AFBzJ72ACUygAMNdXY7FB+MgddabHDhSaGDvQaMVpK9ZS4ILTl9HJGER+Id74finjBNCE61azJfrz09l9p8rbz8cJ3yZwtiMJeSgXWBgv1v5Ziyq8mdFYqIIhyihglPnGB+KWHua7hLJb1V2FtsICsffuTuPJorTeZJ5FLLO00Go3odDoqKyuRy+UcPXoUvV7Pli1b6NWrF9OmTaOyspIDBw4waNAg6uvrqa+vJy0trV3CmVTm2TJdIqYpFAoOHz5MWFgYzzzzTFcscUERhbJ+8SEAqIJ8+HpvMUkRAY7SzNWHy1i0ZCVZH7/GM08/zf2P3uEIGlh3vILJfaJBBpP7RDMuPZIPt+STXV5HenQQ/eJDeGd9rqP3moREp+LuBMtaQeH6j7jx3RIiQoKY/9oMyD0JJzdAYDTY7YAdguMEUS3jBkE8C+spzNGSCNbe8s2OBCVIdHvEkkv3kAGAOelzCPMNayZ67fpxF998+Q0vvvgikyd3XPhtb/mpezmoVB4q0VmY8gto0ukpGTiAm7/4grdGjWZ6Tg6mcxDEpFLQi8uVdk/cEjk7t3Hol5+oN1lIV4UyuGccEdExRCb2xG4DzelCNEWnObhmFRPuf9gxRgodkLiQdMTpZSmup0nXiKW4Hv/0cIyHNeh3FaErsfL000/z6KOPMnr8eGRngjQUE3tgqTLQVNGApcroSOVs2FuOd7ify1wt7S1sZorHcxLdg46KVnv27GHfvn3Y7Xa8vLyIiooiLi6O1NRUNm/ezNNPP83QoUOZOHGiw32mVqvJy8sjPT293WWbUplny3RZmeddd93Fxx9/zGuvvdZVS1wwVh8u49MdBfh4y+kbF0KQr4KkiAAAvth1ijClgv/uKKTwx/8wYOgIXnzxRby8vByOtfAAH3QGM+uOVTBnaALj06NICFc6wgzce7FJSHQqovilHgib36A2KI0bvqzDZrOz6g4lCu0JsNugoVL4J6ZiNFRBWBJo8wShrC0RTCrflOgCxJLLPeV7KK4vBlovvVy8bjFfvvYlfYb34emnXftQdbbY5V4OKpWHSnQW+q++onT5ch4qKiIoJIRRFjPV339Pk06Pd3iYo6yzPY4zqRT04nMl3RO3RK8Rozm8ayd12gKuGzoAW6MRbfFpajSVxCSlokpMolZb6ZLgKZV7Slxs2pvkCeDbN5yPvnyHq1NH0y88kQEDBjiENBFFpJLAsfHUrj+NRWNEOTCSAGJQxAcKQloHkjoluh8dFa2MRiN2u53Q0FBSU1MZNmwYKpUKjUbDwoULiYqKcvRTE+fMy8sjOzubQYMGubjfOuqKkxDoMjGtqamJTz75hF9++YUhQ4YQEBDgcv6tt97qqqU7nen9Y/nf7lOU1ZioqK1E4SUHwGYXCt+tVjtNJgPB055g8vh+/GdTvotjTfw5XHk2ZMA5vMA5FVRCotMRRbDNb9C05zNu/8ZKblk1G779jB4Vn0PJfiFowIEdZHKwNYEuF2qLICK1bYFMKt+UOEdaE7lE15noTMuIyGDRoUVM6TmlmXhlsViIMcagTlTzyr9f4e/7/w52GBU3imPaY+hNejYVbXJcf7546r/m/Cghca7YsfNMYQFFtbX8OPcBoq66GlNAAE16vcNlBrTLcdaR0lKJruFKuid2Rizt7DViNHUWK//38efcN3M6Ud42jI1GbFYrVpOZsrwcUoeNYOiMG12EMyl0QOJiYzyscSnLVEQqXUQu53TNjz5fzMuL/8786homjr0Gq7aR+jPXiXP591fRmK3HUlqPpbwBhcrfMYe7I+1ckkclrmxaEq1EoUutVlNaWup4BMH9nJqayrRp0wDhvzezZ8+mrq6ONWvWYDAYUKvVrFq1isrKSkJDQ+nRowcGg8ElxbM9rrjWBLfuSpeJaUePHmXwYCHyOicnx+Wcu4p/qZMSGciIZBU/HC6lR7iSAfGh1DVaOFhUTbXBQu2RdSgik/GLSaYaf9ZszUdnEHpOLd9XjM5g5vnrM1t0nXlKBZWQ6HQyZ5F9/ASnSr/j4/kTGT50IDAQfvyj0CdNRK4AuRdEpEF0JviHugpkLZVzSuWbEudIa44u55LLMfFjWHRoEctylrGleAsRfhFE+EWQEZEBQFlZGZOunsQdO+9g6amlfJ/9PcggrzqP4vpiR3KnsyB3PuWZ7uWg55tOKtE9aKuHmSm/gMW7dvGzXs8bM2+g5569mBITUT3yCKb8ArzDwlxcZpLj7NLnSrondkYs07RabfzxjX+AzcaoIYMo2i2EKngpFASGhWOsq8UvMFASziQuORTxgcj2ybFUCAKaYmIPjyLXL7/8whPP/IlJvUbx+4w7sByrxgKO63D+WQYyLzneUcpWe591pH+bRPdGFLoKCwvR6/WOx/T0dEaMGOHiZMvKyiIvL49nnnmGpCThHkMU0hQKBbW1tfj4+HD69GmUSqXHgIO29gGC4CaJa10opm3cuLGrpr6giP3SZg5Uk6Q62yPtya8PUWdqwlZ0EO3qfxE2/l4C1CmcrGzA1GSjxmAhxF8hTGI/O4/UF03iYlFmCUQRGMHGe/yIVB6AVU/AjDeh+jSOeCEvXwhNhLpS6DkapnkoSZHKOSU6mY44uqb0nMKe8j0c1R7luO44MpmM7SXbKdpSxH/+8x8+++wzQkNDmSKbgt6kd3GmiWLZokOLpPJMiYtGWz3MND/+QHJpKf93/fXM/8c/HMIbCC4zpl7rOKaSHGeXBVfKPbE7osts+dZd7Nm3j8eum0xoYCD1sXFoS4oIV8djqK0lJqUXA6dMv8i7lZBojqW4HnuTDUW0spm45d9fhaXKwOHVu7njyTtIT+vFf/7wJgGNPsiDFFgqDPj1iXARw8SfPSZ6uiEldUq0B41Gg8FgID09ndTUVI4cOUJFRQVRUVGAa7qn0WgkICCAt99+m7y8PFasWEFcXJxDSBszZgz19fUOZ5sonLVXFHMX3KRggi4U0y53RPFLDBCAs/3M3lmfS05lHQZ9JSXL/4ZfYn9Crp6NTCajrtHiKAOtMVqID/Onxmjhi12nWHfMdR4JiQuCJpdVH73K4++uZul9ifTKGAeGKsFhtudjiMqA+nJoMkNYIpjqIW4IDJvrGO/iRJPKOSU6GXdHV0tOMfH4vZn3sr1kO3sr9lJcV0xVURV/m/c3hg4d6vgWLikkiQVXLXCMHRN/NhJcKs+UuJj4ZvZFsXs3vpl9m50r3befY9k5pE+axI0P/9ZjiaYUKCBxqRCujqcpOp5//PvfzJ50DVOnTqGxvh6rxQJAcGQUva4eJaV1SlyyOAtnovDlLHJpfs5j109bCPYLZPmKb4k65UP9r6XUbSrC3mQn8OrYs+OchDFJJJPoLLKyshw9zkBwN5tMJkwmE5WVlQAolUpqa2v529/+xhdffEFQUBA2m43Kykri4uKIiopCo9FQX1/vEL3CwsIcAlp7RTH3MlQpmEAS0wDPrjExFGByRjRzhia4JG72iw8hNcKfjZ+9gUzuhWrmnwE5vt5yLFYbA+JDCFEqWL6vGFOTjWK9kZsGxzNnaILUF03iwnFGBDt4JIu7XvycjBg/+pIDhhBQRoL+NGT/JAQN+AaD3AjhqWBpgJHzz5Zwik40gxaUEYKIJjnSJLqQtYVr+Trna/aU7+GZ4c+QFJLE1uKtvPrrqxibjNze+3YWXL2AgpoCVmWv4v2H3sff358vvvgCuVxOQU0BS08sBRmMUo9ie+l2sMOc3nNICkmSyjMlLgpieWeTXo/5ZD66xZ9gKS+n5tvleIVH4K2OHV665wAAaZ1JREFU5bZPP6WsvJx1D/+W8oUvEX7/AwSNHeMyjxQoIHGpYLVaCQwM5KapkxnfIwZ9WSmVhfnYbHbkchnBqih6jRhNzs5tRKekUnEyTxLWJC4pWnOHNTU1oY0wMWLaWGa/cB+xqT0wWnXI9smxGq34qgNQxAdSu/60FCIg0ak490gTXWmZmZksW7aMxsZGFAoFgwYNcpR7btiwgffff5/09HR8fHwAyMjIcMw3cuRIFycanHWVGQwGAJd0z/Y61aRggm4qprmLZ57SNJ1DAVIiA3lnfS5L9xahazDza4GWw3t20VCSS/wdrxCuUuEtl9Fks5MRG8xLs85822wX3Gkh/gruGpEolXdKXFiyVlC68RNmv19GWEgQKxdcg6+8DsKTIetbsJoRGjsITkrih0JYD0FgKz0IaZOF46IDzaCRyjslLghiKWdhbSFrC9eSEZHBgq0LqDXXEh8Y73CQJYUkceK/J8g+ls2nyz9lRfkKpvgJwQTf538PdsjT53FMewxkEOYXJolmEhcN0VEWOGECPinJmPML0H34AZbiEpDLeUenY2t5GZ/95jfYS4oxHjkK0ExMkwIFJC4Vjh07RlBQEE89/jv2//AdFrMJm9VKkCqSlMFXMXDqDEdftaJjR6iuEHpKSb3TJC4mnlI0PR374x//yMmTJ1m8eLGjpM5SXI/NZMPL34vAsfFYiuulEAGJTse9R5p78mZ4eDgGg4GysjIUCgWff/45MpmMe++9l0OHDrk42Q4cOIBSqXQ40ESBTBTODAZDs3RPqXyz/XRLMc1dPPOUpukeCiCeK9A0cLysFkJi6P34p/RK6oEq0IcdJ7X0ig7ipVl9HaLZ8zO7r+VR4uJjSp3GbY+9h97QxLanhqKqPQpRfaDfzUKCpzZXENKiMqDnKBj2oDBQqXIt4RSDBTS5zc9JSHQBSSFJPDP8GUep5yu7XqHeXE+AIoBBkYMc19XV1RESEsILL7xAfWK9o+9ZRkQGScFJJAYnMi1pmsOZJpVxSlxM3B1ldWt+xmaHmq+Xst1bwaLjx/jjQ7/hnkWLqNuyFd3iTwi//4GLuWUJiRb5x+uv8ewLL/HOM3/G11hHraYSudwLu81GQEgoE+4XvrgQ+6o5O9MkJLoKT6KY+3ExYMBqsOClVKCID6R+SzGWCoMj1fOjbz7jnXfe4S9/+YtDSAMhsEDuK8dutmEprpdCBCS6BFHoUqvVHDlyhJycHNRqNZMmTWLTpk1ERERgNBqxWq3873//Q6vV8rvf/Y7GxkZKSkpIT08nMDCQ/fv306NHD4+lnKKrTKPROMQ29/W7c/lme+mWYpq7eNZamubJqnq+2HWKGoPQ/2HXkRz0G5cQNuo2TIoAcirrQBaEl1zGwB6hDiFNChyQuJhYrVZKzQHc+9gzxGl3kGnfACYDlB+BI99AY7UgpCkjYNLzZ11o0LLrTErrlOhk3HujuT8XXWT3Zt4LQJR/FPur9rO2cC13p93N3ry9BI0LYs7VcyiuK2ZP+R4yIjLYXrKdgtoC+qn6MSZ+jEu/NAmJi4V7eEDQ1GspX/gSBmMjTx7+lVFXXcXr7/0HENxo7o40CYmLja60mINrVlFQUsbTL79GeoyK+tws7GERKHz9sNvtBIZHMOLm2x1jwtXxDida0sChF2vrEt0ET0mc7sdF4cuiMWLYV4F3pD/WGhMyHzmWKgM/vv8Nj7/0ODffMJsXX3zRMYelykD9lmJsJis+MQEOwU5ypEl0Ns7lk5s3b6akpITNmzcza9YsfHx8KCgoICMjg8jISGJjYxk5ciSPPvoomzZtorKykvDwcLZu3Up1dTU+Pj4uTjR3gcxTqaZUvtl+uqWY1pp4JuIIIDCYWb6vGKPZiqXJQvkXz9JUpyVsxK1Y7WC12fFXyLlpcDx3DU90jPdUOiohcSGw2+1899139O3bl1mzZhFhHwtf7BUEtMAYKN0PDZWADCwG15JOT7gHEEhIdBLuKZotpWqOiR9DfFA8S7OXMj5+PBPiJzBhwgR8e/limGzgl7W/cFXMVeRV5/HizhdReiux2Wwg65p9txSQICHRFvqvvqJm5UqadHq8w8Mw5eRSZzbxfI8eXDNxIvoPPiBo6rWC8CYhcYmRs3Mbhzas5a3VGwgKUPLin55Am3eC6vJSvLy8UKdnMHHuI1JPNImLRktOMfegAcXEHuh/OAmAV5APch8v/AdEcvJwDnMff4zM6DTenPwUVm0j8jMON+NhDZYqIz4xAYTOSgWQ+qVJdCm5ubno9XpkMhkWi4UtW7ZQUlJCVFQUsbGxqFQqIiMj8fPzIywsjPj4eLRaLTqdDpPJhJ+fH337Cu2n3AWylvqitbdfmoSA/GJv4FJFFMNqDEIip5dchm7Tp5gqTjLg/pdITohBLoNGi419p6oJD/BxcaBN7x8rBQ5IXBQ+/fRTbr31VtavX09ERIQggI35A4T0gEF3QINGuNA3GAbd3XbZphhAkLWii3cu0d2Y0nMKN6be6Ci/zIjIID4wnoyIjGbXri1cyy+nfiGvOo+/PvdX9u7dS9zgOBptjVQYKjhadRR/b38qDBUU1xfTV9WXOelzumTfoui3tnBtl8wvcQUjA+x2kAmpnmvqamlosjI5JgZl1jH0Xy2hbs3PF3uXEhIe6TViNNvKqynV1/B/D93PmBtvwVvhg91mQyb3Yuj1N0pCmsRFRRGpJHhiDxSRSixVBmrXn8ZSZXA57rg2Wolc6Y3dDk26RizVjdh9ZNw+ZCaL73sD7xr7GQFNmEcRH0jg1bGEzkpFEal0uN2MhzXN9uG8toTEubJjxw4MBgNeXl7U19ej0+mw2+3k5OQwevRoVq9eTUFBAfv372fPnj0MGzaMESNGMGjQIHx9fR3jPCGWfWZlZbXruIRnuqUzTaSlUsyTVfXoDGYm94kGGRRqGtAd30ndnhWEjX8AY0gyM9MiGRAfyonyWnrHBDcTzdrjfpOQ6Gw2bNjAvHnzuPbaa/ntb3971lVWsh/qSmH3R2AxgsxL6JOmjGh7UlFsk3qlSXQy7imax7THKK4v5pj2GPFB8S7ur4yIDBRyBTvW7eD4f47z2FOPYe9nh2JhrN6kZ1DUIJTeStLD03mo/0Nd5hoTxT+pB5tEa4jpnb6ZfTFlHSVo6rWE3XY72IXzn7/zDo8dOcJbySkkentjqW/Ar38/KaVT4tLFT8n9j/8BVUgwsuJ8dn37NUGqKKpOF2KzWak4mSeVckpcMrRU8uk4f6gKq96E3WrDp084WzQH6JWexl8eW4CP1Qu5v7dLj7UAYgh2mqe1fmltrS0h0R5GjhyJRqPBaDQSGhrKoEGD+P777/nwww8JDAzE19eX2tpaZDIZRqPR4T7bvHkzVquVqKioFvuetVT2KfVL6xjdWkxrqRTz3Q15rDpSxox+scwcqGbpniIMuTvxTxlG0FU3YrHZCAtQEB7gw7wJqVJPNIlLgqxtq7n95jmk9ExgyZIleHl5nXWV2ZqE9M6GSvD2h7SpEJrYvnROqVeaxAXCWaQS3V96k54w3zCyNFkUFRWR+34uIRkhHB10FHOVGQCFXIHJZmJvxV7uzby3yxM73UVACQlPiCWdPklJWDUaR2mntaaGQ6tX86ecbKYlJjJNpcLL3w/l1cNRPfywo8RTFOOksk+JS4Hy8nJyjx6h7sQRBoQpMdbWcHLvLuL79EPh44tvQCDRKakXe5sSEg4U8YHITyiwaIwOd5ozgWPjadI3YjPZ+POiF/jyl2/Y++N2vPW+mKrqCLw6VhjTgmjWWr80KZhAojNIS0sjIyODQ4cOER8fT01NDV9++SWNjY3Mnz8fmUyGQqHAarXS2NjITz/9BEBqaipDhw5ttVSzpb5oUr+0jtGtxTTRTdYvPoR31ucyvX8suwu0/Hi4FLPVzsbsStYcLae+oYHQa+bipfDDWy7DYrXz1a9FeHnJ0BnMhCt9pKABiYtKfX09/3nzZeRNjXz/7I0EBwcLJ9QDoXArBMUIwQN2KzQZwdIAw+YKzjTJcSZxESmoKWDpiaUggznpcxxCmt1up8nWxI7iHTRYG7DarJjNZsKGhBFzawyVjZXIkRPsE8zdfe6m2lQNso65xaTeZxJdypmSTp+eifiOH0eTXo9+yVLqzWbm5eYQExjIx+8vouHNv2MzGPEKCUa/5CuwQ9jtt1O35meqv1kOgO8jj1zc1yLRrak8XcgNM2+gurqaB4cPwMfbGy+FD5ZGI8a6GmLT0tGWFEvONIlLCktxPU1VRpqqjChU/i7Cl6XKgKW4ntAbUvnXm2+z+Oev+MukeUTlKbDUCMKbKISdS8iAFEwgcS546leWmppKZWUlSqWSf/3rX+Tn53PXXXfh4+ODQqFAqVRSV1eHwWDg9OnTACiVymaCmNQLrWvo1mKaWIr5zvpch0Nt2b4izFY7chlUGyzoNn+Gd2gMQQOmAhAZ5EtFrQmdwczYNBU1BgvL9xWjazDz/MzW7ZBSwqdEV9DY2EhZWRnz//wcj81eT9LkucIJTS7seAcqj0PZIbDbQBEA4Ukwcr7kOJO4JFhbuJbv8793lL7l6fPIq87DYrNQZ67DW+7N4KjBlJaUggyi7o3C7iVcrPBS4Ofth0wmY8HVCzosjrUUeCAh0RmE3XY73mFhDmeZKb8AU24uX/28hnKLhe/HjKXhzb9jra3DL6MP2KFmxQqQyfAOD3OUe0plnxIXmxeffprdhw7zyMxp+Pgo8PHzJzyuB1aLmRE330ZIVAw5O7fRa8RoxxhdabHjmNRHTeJi4N9fhbXBgs3YhEVjRP/DSQKHC0aK6hV5WKoM7Nx2nGc+fpU5/abz8NA5yAMV+CQEdVmAUUtYqgwYD2ukMINuiLPIJfYrAxg3bhwajYZNmzZRVVVFeXk50dHR3HHHHfTq1QsvLy8MBgN2u52YmBjGjRtHXl4e4LlE031uic6hW4tpIqJDbXr/WFRBPry1JofqRgvVx7ZRu2sZYRN/Awi/V6024Y84U5ONo6U1xIT4YzvTTLgtpIRPic7GYrHw1FNP0bdvX2688UZUI8780aXJhVVPCEmd5gbBkeblA0njYMpLUiqnxCXDlJ5T0Dfqz7h4oLC2EH9vfxobGx1CWu/K3iyet5ieT/VEFnX2l+1A1UCGxQ5zuNE6Ko5Jvc8kuhLf5CQXR5lvchJBd9/DtceOMTYkhJ411Vgqq1DEqYl59jnhojP/PxAFOMmRJnGx2blzJx9/8y1Tx47mTy++xN4fvqM05zglJ47Se+Q4hxNt+E23uYzL2bmNIxvXeTwnIdEZWLRGag+2nKapiFQSOCKW6hV5mIrqkMlleCkVwtgqI7JwH57/2+sMje/La9c+CTLwDvfDS6mgYW85XkrFBXOXST3Wui/OIpcogqnVan766SeKi4uprKyksLAQs9lMcnIyiYmJ+Pr6YjKZALDZbERERFBaWkpqaiqlpaUe15F6oXUN3VZMc3eJieJWkc6A2WbDoC1Du/qf+KeNIHTo9cjlIENGjdFCVLAvDSYrSapATlbVMyA+lLuGJ7a5prNoJyFxXmhysR7+lrc2afjXv/7F888/72rZzVohONKsJrA3CcesZqHkc9UTMONNSVCTuCRICkliwdULAKHsMswvjIyIDF799VVKG0ox6Ay88NgLKHsq8U/0d4yTISM1PNVFNOuoOCb1PpO4EIi9zw4j+//27jw+ivr+4/h7N/cNSSAJcl8BuQVBVEAFQWlViie1CoigFlTAelCrgD2wXljUarUV9Neq1CpatQWUcnggyCV3BAwSkASSkBty7M7vj5iVJSHshr1m9/V8PPYhMzs7+2Hn3Xl8+2Fmvvrq7/+n0dYwJQ6+QDHnD1TJkneVPHmK45lo6b/+tZ+rBX5UWlqq2267Ta0y0nXriKFa/vLz6j18lPJzvlNFcZHyc/af9rN1V6mdfLUa4EkndhXK2H1C0ukbUGVrD6vqYJnCk2MU1SlJMb1TVVN4QhHfxqioq0WvPvuy4r86oXBLpCIy4hR/QYZqCk8o/NtoWRMiVLLi9M06T+IZa6Hr5CZX3fPK/vvf/2rjxo0yDEOlpaV688031aJFC3Xu3FkRERHq16+f9uzZo9zcXMXE1I6NN2/erP379+vYsWOS6l99xrPQvMPq7wL8pe4qsf9sPexYtyrriO59a7OKSo/r6JI/yBqToHOumanEmAjFRYWr2m7IZjdktVgUFxWmzLQE/WJQOz02pqdLt23WNe24xRNny9i+RO+89oJ+8/un9fMR/fTIXaf+q69dOlEk2aprZ+6MjJfaD5Fadvtxhk8gwHRI6qCR7UdqZ8FOXdPpGjWLaKb/PvZf2WXX0FlDFW6t/fcfiyzq2ryrbsy8sd7n7+hzB88/Q0ApXbZU+954Uz+/b6be3LZN8Zldlf7Io7JaJNkN2Qvy/V0iUI/NZtPRo0f1y1/+Ur+efJtyd25TWUG+tq5YpvZ9+iksIkIt2rVX4fcH9eU7b6nw+4NOn09u1VoXXHsTt3jCa6K7JytuQHqjDSj78RoZNrvCk6McV6VV7D+mGa88qv1f71VHe5oSrbGKSI9T4vC2Or41XxVbjqrqUJnKN+SpfEOujm/1/jk6okWsEoe35RbPEHRyk2v16tXKz6/Nm8ViUXV1tf7v//5PFotF1157rWw2m0pKSrRhwwYlJydLkiorKxUTE6N+/frpwgsvVL9+/dSjRw/l5+c77Q/eEbJXpjV0ldgra75V8fEa1ZQVShapxZhZSmneTFf2zNDBogrtPlyqo2WVKiivVI9WSfrF4HY0xuAXn5e10ZR3jmpQt1Z65fIqhW1aKMWm/jiZwBfP1V6JVsdikS6658f3WvX1dcmAS5bvX643d7+panu19i3ep6KsInW6v5MqYyrVNrytvi//XgkRCerarKu/SwVcEt6tu2bu3aOqsDC98otfSAWFqjp4sN4z0UrXfKrCha8qeeJtShg6xJ8lA9q0aZPsxyvUKTZC3YeM1ieH96vkyBFZw8LU7aJhap5+jroOvpjbOeE3ESkxSuya0ug21phwWcKtspVWqXxDrmrKq3Tvc7P01sYPdf3V18pSZchitSiybYKqD5apfEOuLFFhMmrsssZFKCYzmavF4HX5+fn66KOPHI2vli1bymq16r333lN+fr4mTJig+Pgfew5lZWU6ceKE0tPTlZycrPPPP99xh1Lz5s21Y8cOVVRUKCsrSxLPSPOmkG2mnXxr576jZfr7l9+porJGMuyyhkcq/db5slrDVFlj15acIu05UqqEqAidqLYrzGpR39bNaKTBL/Lz81Uekaz+gy7U3//0mGILvpAqCqTN/1e7QUW+VFnu/KHKUmn1H6Uuo6Rj+2ufpdblcl+XDjipmzAgJTpFS/cv1fge45USnaKy6jKdqD6h+O7xikuOU1yPOB2pOKJeqb3UN7avthds16pDq9QuqR23aSJg1N3OefKEA6XLluq3r7+uL3Nz9caECWp5/Lgqtm9X4cJX1W7hQqdnohUufFUV67+SJJpp8Kvdu3dr1MiRuqT3uRrRtb2KsvcoLDxCFqtVx4uLlbdvr6Nxxu2cCFTHswpVmV2ssObRiu6WrBNZx7Tg1Rf0j0/+pSdufljnW7uqOrdc4S1jFd21ucKToyVJ1fnHZSuqVHhytBJPmQGUSQLgDTt27FB+fr5SU1PVo0cPvf322zp06JD27Nmj3/3ud+rdu7c2b96sqqraCyUMw1Bubq4Mw1CXLl2cHvVT9wy2zMxMZWZmqqKiwrFveF7INtNO9p+th/XPr3JUnHdAR99/Qqk//ZUi4ptLktITo/RNXqmqbHalJYape0aCuqcn6heDz/yMNMDTjh49qoMHD6pDhw5asmSJEhMTJV1Ue+tmbErtlWnLH5Vkl2SRLNbayQcsVim5049XrtX9F/CjugkDLLLo+7LvtatwlzLiMlRRVCFbuU2RbSMV2T1SNsMmq6wacs4QHSg9oHMqz1Fms0wmDkBAqGua1RQeU9n//le7ctQVyv3tYyr5Zo8+2LZdU9PSdHGLlkr86U9lO1akmmPHVLrmU6emWfLE25z+C/hDRUWFJk+eLLvNpv6tWspWXa28b2tniLNYrUpt296pcVZ3OycQaEpWHFDN4XIpzKKqb8O19LOP9dt//0m3XzZO0x6ZqbI1B2snJrBYVLbmoJqN6azE4W1VfbRCEakx9a5IY5IAeEuPHj1UUFCgwsJCfffddyouLpbVatXDDz+sSZMmaceOHerXr5/WrVsnSbJaraqurlZ6enq9CQVOfgZbXWMtNjaWq9O8JKSbaXWTEKQmRCraUqM9S/4go6ZKYQk/XjKcXVChDilxslikwvJqjel7DjNxwi/Ky8s1c+ZM7d27V8uWLfuhkdaAiqM//MGQ4tOkE8VSdDOp13W1kw4Mu99XJQONqmuGpUSnaP6m+SqpKtGJ6hPKeSFHthqbOj7cUTbDJkmyWqz69NCn2le0T1X2KkWHRfuzdMChdNlSFf3rHcUPv0zxwy9TTeExHXvzTVV9m62atm30Xr9+Cv/iC1V9950iW7dWWPNmqlj/lQoXvurUTEsYOoQr0uBXdrtdv//97/XZZ5/p+SfmKerAXpUdK5AsFqWc00atz+2lviNH8xw0mEJ4SoyqD5UpvEWM4oaco6ObKjSq36Wa+7P7JEnNxnRWyf9yVLmvSFW55Tq+NV8RPzy3rKFmGZMEwJsOHDig4uJi7dmzRx988IGuueYanXvuufrqq6+UlZWl5s2bKyYmRtXV1QoLC1NKSopatmwpqfaupR07djhNYiAxg6cvhHQz7T9bD+sf6w7IZrfrm/eeU3Xh98q49WlZo368dLfGZuhQ0XFde15rJcdFMhMn/ObJJ5/UO++8oz/96U9KS0v78Y38PdKSu6QjO6VvlkldL5cObZQMu3T8mJTeSyo+2PitnXWTEvQYwyyf8JmTZ9PMP56vF7e+qJx3c1SWVaZ2v2oni8UiqXbCgRqjRidqTig+Ml4Fxwu0r3iflu9fzm2e8LuEUVeo5tgx2YpLVPXdflXnHFRNcnPN2rdPd7RrqyE33KD8/KOq2rNXx958kyvQELBWrVqlJ598UpMnT1b/ju319be71LJ9R6V3zqSJBtOoux0zqkOiqg+XqeLEcRWtydLN907ULz65SjWHylXyyXdKm9pPEakxqtxXpMj0uDM2yU7XZAPORn5+vpYsWaKysjKFhYVp0aJFqqmpUWRkpLZv367ExERZrVYdO3ZMVqtVERERSk9PV8uWLZWVlaXY2Nq+xebNmyX9eEXaqY01eEdINtPqnpGWdbhEJSeqdWTzJyrbulzJo6YqsmVHx3bNYsKVEh+lPq2bMdkA/O7555/XPffco2nTpjm/seM96ehuqfq49P1GqXCfZPzwnmGXzukvdRnZ+K2dO9778ZlrXLkGH8guztbirMXaW7hX+0v3S5JKdpbo6L+PKvWnqUrokeDY1vgh0IfKDyk+Il7npp6rXim9uM0TASGqYweFN2+u4vfel1FdLUtYmOZ89pmWFhfr1nXrVTl4sCLbtlPlrt2yFRdzBRoCUlFRkdLS0jRr1ixdP3K4Nr33tmISEjX4unHq0HeAv8sDXFZ3O2Z4crTKDxfphr/fq74Z3fRUxh9lbxGnmtwKWeMjdezf+2Q/XqOYnqmKH5zBc9DgF1999ZVyc3Nls9m0ePFilZSU6Pbbb5fFYpHdbldRUZHT9ikpKbrwwgu1d+9eZWZmOl11dvKtnRITD/hCSDbT/rP1sN7ZeFBllTWy/9B0iO87WvF9rnDaruREjapthsb0jaORBr+7/PLL9cQTT8hqtTq/0aqv1KKbVLBHOlEkHS+UZJGsEVJGH+n8Sae/2qzuirS62T15lhp8ZPn+5fr33n+rrLpMhgzZq+w6+NJBxXaOVdrP0uptnxiZqFu63yKLxaKR7UeqQ1IHP1QN1Ff5bbYqs/fLEhMje0WF3ss9rLeLijSnZZp6xMer4G+vKqJjR1kiIxXWLMnf5QL1VFZWatOmTWrdurUmjrtRyxY8obKCfIWFhytv316aaQhIpZ8dUuKFMU5NsOqjFao6VCp7pU1VR8t1/3+e0Pa8b/TIpb/UiaxjimyToLhBtXcZVWzIk2GzK24QjTT4V1hYmD7++GNlZWXppptuUkZGhmOygVNVVFTo+++/V1ZWlvr16+eYWIBbO/0jJJtpo3tnqLCiSm+vz1ZxaYViOw9UfI9L621ntVjUNS2BWzsREF588UVFRUU5r8zfI636o5S3vXaigTrh0dK510hDf9X4bZtckQY/Gdl+pL4r+U7rDq9T/vF82Ww2pd+YrrjucbJYLU7bnhN3jl68/EUaaAhIpcuWqnTFChnl5fqm8oTm5OXp6sRE3dCypQybTcaJE6r+9lulTLpNCaOuOPMOAR+y2+165ZVXNGPGDC1dulSWA3tVUXRMsliUfE4bZulEwDq+9aiOxzeTeqeq7MvDqjpcrpqDpTKq7JKk59b+n5ZsX65nf/KwBrTuJVvBcZ0orVTC0DaK6Z2qqgMlqjlS8ePdHIAfdO7cWdnZ2QoLC9Nll12mrl27qrq62vG+xWKRYfwY0tjY2EYbZtza6VvWM28SfDq1iNfsq3qoZPkLKly6QNaoOKf3oyOsigizqGtavJ66oQ9XpSEgNGvWrP7KNU9J32+Sao5LtpP+BcNikVI6n/n5Zz3GSP1u4Yo0+MyB0gOSap+XlhiZqKKqIpXvLVdNeY2SBicponlEvc9c0vYSSdJfvv6LsouzfVku0KjKb7NVU3hMkW3aSJK+q6rWuVHRmt26jaxxcYrp21fWxEQ1v622kVa6bKkqvyXDCBwbN27Ur3/9a40cOVLDhg1TZUWZZLGqRZv2+un0B3lOGgKWJTZC1fnHVfblYVVszFP1t8WORtoX323SE2te0bTBv9C1PUdJ4RYpTLJEhSuidbwiWsQq+YZMJQxto/jBXDQB/1i5cqXeffddZWVl6YILLtCIESMkSYZhyGKxKCwszNFIi4yMdNziefIz0eBfIdlM23e0TDff/7hy1i9VdKf6l67HR4YpJiJMgzqk0EhDYMrfI61+Ujq06Ycr0k66kscaLnW/2rUGWd3snkw6AB9Zk7NGUu0z0z7+7mMV7izUvj/sU/mucseEA3UssmhQ2iDdmHmjlu9friV7l2j5/uX+KBtoUOmypSpdtkw1JSWqstt1QWys/t62rWJsNoUlxCvlttuUuX6dWv7yLsesn6XLlvq7bEBS7e1Cd955pxISEvSbe6dqybzZOlFeoYjISLU+tyeNNAQ0W8FxHd+Rr6oDJYrunvLj/6u1SB1T2+p3l0/X/UNulyKtskSGKSyx9u6O6oNlkmonFEj8YfZOwB+++OIL/f73v9eePXsUFRWlmpoax3uGYchm+/Guo6qqKtlsNh05ckSbN2/Wjh07/FEyThGSt3nOfW2Z3nx2tuJ6XKaEXvVnN2yZGK0re2ZweycCT90zzirypZ3/lqoqfnjDkCJ/eGB7WIRrV6UBfjC0zVBJtc9M+/7I9zr454OK6Rij5hc2r7ftTzv+VH8Y8gdJckw2wKQDCCQJo65Q0b8/0CsbNujrEyf0TKtWtf+anJYmo7JKlTu2OyYbqLvFk1s9ESieffZZbdmyRe+//74OrvtcOTu3KbV1O6V17KwO/fr7uzygUTG9WijimFW2okqFp8ZKdimvLF97Cr5T/1Y9NP68sbUb1tgV2SZB8UNbq/pg2Rln7aybDTSmdyqNNnjV4sWLZbfblZmZKUlOzbQ6YWFhio2Nld1uV2VlpQ4dOlRv4gH4T8g107btz9M/H5+usKSWSh71S6f34iLD1C4lVt3SEzW6dwZXpSHw1D3jLHO0lNRaOvjVj+8lZEjj3qjdhts2EaByy3J1+7Lb1SGhg3L+kiOjxlDbqW1lCXO+Kq1ZZDNN7j3ZsdwhqYPu6HOHr8sFGhXVsYPWffednsk/qvHNk2W1WGSJiVHiqJEKb97cqXEW1bGDou66y4/VAs5uvfVWJSYm6ic/+Yn2t06XJMU1T9Gh3TuYeAABL7Z/S4VvLpetpErHvz6i49WVmvivWSquLNXqyX93bBeeFqdmYzorokWsYjKTz7jfutlAJSlieFuv1Q/k5uZq/PjxSko6/eREYWFhGjBggHr06KGPPvpI+fn56tKlC7d4BoiQaaZ9V1Cu33+So0+2fqeoToMU32uErBHRTtu0S4nVlT0ztHhDjjpsPay7h3NlDwJMjzFSRYF0/Jh0vOikN6zSOef9eNsmEKBe3/W6dlTs0PJ3lqt8e7nazmjb4HPSftLxJ0w4gIBW+W22dj71lO79Jkt9Y2I0vUULyWpVs+uvU9zFQ1S5Y7u/SwQaFV5TpV4piTp2+JA69B2gDn0HKHvLBpUfK1Bap87+Lg9oVMmy/Yo9YpGq7TIMQzM++r32FOzXuzc/r3Br7f/FtTaPUvzgDBW9t1fxQ1u71Eyru3LtTFewAWfriiuuUNu2p2/YxsXFqXXr1qqoqL0T6Sc/+YnjeWkIDCHTTHtn4yH964t9sttsanbJeFkszo+LC7PKcUWaJG7xRGCqu3Vz62I5ph9K7iJ1GS6df7vfygJcVV5ZLrvdrugu0Wo7s60SeyfW26ZlTEtddM5FfqgOcN3Rv/9dkxctlCQ90+ochVssUkyM0n/9a+W/+KKK/vWOJHE1GgLW/o3r9c3nq2U7cVyxiUnqOvhi5e3bq6K8XK5MQ8CrOlSqWEvtXUTPfLZQH2Wt0stjfqte6ZmObcLiI1X2xWHV5JbLXmV3qZkW0SKWK9LgE/369Tvte4mJiTIMQ1VVVcrKylJsbKyGDRvGTJ0BJmSaadl7duvgX36p1Kt+pdjEC5zeS4oO19jzWusXg9upU4t4rkhD4MrfIx3aKKd5vOsaaXW3d/KsNASwwwWHVbKvRPHd4hXVO6re+wkRCSqvKdfn33+uIa2H+KFCoHFVBw5o/8z7VLx2rXpGR+ve1BZqEV47nApvXvvsP56PBjPoOvhiSVJFaYm2rfzYaV3df4GAZZdklYpPlOofX/9bDwy5XVdmntRoCLfKduyErAmRUrhF4akxfisVaIjdbj/tezabTT179lTnzp31/fffczVagAqZZtq7z/5a4UktFd2+fge42m4oOS6SZ6Qh8C1/VDq44cflsOgfG2mb/692Hbd5IoDt/etele4vVebTmfXeax3XWgUnCmSTzalfDASSovffV9kXX8gm6YEWLZ1moY3q2rX2vzwfDSbSoe95ik1IVNfBFyu5VWtdcO1N/i4JOLMfmmlhljAtm/CqUuNOmcjIYigiLdbliQeAQFJVVaXY2Fh16dJFXbpwoUSgCplmWmXpMbWauEDWCOcrIS7slKzMk27vBALW1n9K3/zHeV1Sm9pGWqu+tctMPIAAV7S9SG3vbStrlPOt9jFhMRrWZphkkWRIN3a70T8FAmew8z//1aRv9+l36RkanpDw4xsREYo85xz/FQa46Zu1nzmuSKOBBrM5XHJED655Qr8dca9axqc41ltiwxXZLlHhzaMVPzjD5YkHgEBgsVjUq1cvxcTEcDWaCYRMMy1t5BRFJDsPcidc2E5zru7pp4oAN32xwHk5LFJq3Z8r0mAqqZelKrGf83PSIhShSb0maWT7kUw6gID34NavlRgWpoGxsY51MYMGKbprVzUfN86PlQHu4ZZOmNnUJXNVUVUh6ynPwY7t29LRRAPMJiwsTCkpKTwbzSSsZ97E/1544QW1b99e0dHRGjRokNavX+/2PuK7Ow8UftavFY00+NRZ5/hEqfPy6Celob+S+t3CFWnwCU+ci8/5Wf0rd27odoPu6HMHjTR4nScynFNZqQWtzlFCWJgkKe6yy9T+tUVKf/jXiupIhuF9nsixJMctncmtWnu4QqBxnsjwwaLDWnjd4063d1qbR+nErgKVfXlYJSsOqPpohSfLBhw8dR4+WUJCgvr3788VaSYS8M20xYsXa+bMmZo9e7Y2bdqkPn36aNSoUTpy5EiT99ktLV7zbzz97BmAp3kkx7bKH/+ccI7Uf0LtZAPD7mfSAXidp87FlvAfny8VrnBN6zuNWzrhE57K8IPnnKPM6GjHcmwv/mEOvuONcTHgS57K8FNXPaTuLTo5lqM6Jan5mM6KG5AuGVL5hlwd35rv6fIBr52Hx48fryuvvFKpqTzfzywCvpn2zDPPaPLkyZo4caLOPfdcvfTSS4qNjdWrr77apP1ZJC2dwWWT8C1P51hX/8mzBQJn4PEMS3p3zLtckQaf8VSGRzf78SqIxGuuYcZO+JQ3zsWAL3kqw0M7DnT8OTwjVs3GdFZMZrISh7dV/OAMxQ1IZ9IBeIU3zsOXXnopTTQTCuhnplVVVWnjxo2aNWuWY53VatWIESO0du3aBj9TWVmpysofr+ApLi6WJIVXl0uS/jnlAhUUFHix6sBUXV2tiooKFRQUKCIiwuffX1pae4uiYYTeFH3u5vh0GS6sjqxd0fYCKfk8KcRy7O8MS6GbY0+ei63HrQpXuP5w8R+UWJMYUudjMuw/nsxwaXjt0Cnp2msVfc/dKpNURo59JlQzLHlwPFFY6P1iA5i/MyyFbo49eS4u/uH/20V2TlLK9e1VouNSwfEfdiqpb5yqT14XRMiw/3gyw9XV1ZKkiy66SD179gypMbHk/xx7IsMB3UzLz8+XzWZTWlqa0/q0tDTt3r27wc/MmzdPc+fOrbc+a8FtkqT+T3u+TriutLRUSUlJ/i7Dp9zN8eky3PWp73/404fSXfzLhT+FWo49eS7eNHOTJGm0Rnu+ULiMDNdqSoZHfr2l9g87tkuP1X8fvhFqGZY8OJ7o2tVrNcI9oZZjT56LL15w/Y8Ld3m0TLiBDNdqSoafeuopr9QI95xNhgO6mdYUs2bN0syZMx3LRUVFateunQ4cOBBS/0M/VUlJidq0aaOcnBwlJiae+QMeZhiGSktL1apVK59/t9mQ4Yb5O8MSOXYHOa6PDJsLGW6Yv3NMhl1Hhhvm7wxL5Ngd5Lg+MmwuZLhh/s6xJzIc0M201NRUhYWFKS8vz2l9Xl6e0tPTG/xMVFSUoqKi6q1PSkry28kmkCQmJvrtdwjVk4W7OSbDjfNnhqXQzDHnYs8iw75Hhj2P8YTvMZ7wLM7Fvse52LPIsO+RYc8z83gioCcgiIyMVP/+/bVixQrHOrvdrhUrVmjw4MF+rAxwHTmG2ZFhmB0ZRjAgxzA7MgyzI8M4WUBfmSZJM2fO1Pjx4zVgwAANHDhQzz77rMrLyzVx4kR/lwa4jBzD7MgwzI4MIxiQY5gdGYbZkWHUCfhm2o033qijR4/q0UcfVW5urvr27aulS5fWe+jf6URFRWn27NkNXloZSvgd/Otscsyxq8Xv4F+ci88ev4F/kWHP4HfwL8YTZ4/fwb84F589fgP/IsOeEQy/g8UItflsAQAAAAAAgCYK6GemAQAAAAAAAIGEZhoAAAAAAADgIpppAAAAAAAAgItopgEAAAAAAAAuCupm2gsvvKD27dsrOjpagwYN0vr16/1dks+tWbNGV111lVq1aiWLxaL33nvP3yXBTaGeYzJsfmSYDJtdqGdYIsfBINRzTIbNjwyTYbML9QxLwZXjoG2mLV68WDNnztTs2bO1adMm9enTR6NGjdKRI0f8XZpPlZeXq0+fPnrhhRf8XQqagByTYbMjw2TY7MhwLXJsbuSYDJsdGSbDZkeGawVVjo0gNXDgQGPq1KmOZZvNZrRq1cqYN2+eH6vyL0nGkiVL/F0G3ECOnZFh8yHDzsiw+ZDh+six+ZBjZ2TYfMiwMzJsPmS4PrPnOCivTKuqqtLGjRs1YsQIxzqr1aoRI0Zo7dq1fqwMcB05htmRYZgdGUYwIMcwOzIMsyPDwSkom2n5+fmy2WxKS0tzWp+Wlqbc3Fw/VQW4hxzD7MgwzI4MIxiQY5gdGYbZkeHgFJTNNAAAAAAAAMAbgrKZlpqaqrCwMOXl5Tmtz8vLU3p6up+qAtxDjmF2ZBhmR4YRDMgxzI4Mw+zIcHAKymZaZGSk+vfvrxUrVjjW2e12rVixQoMHD/ZjZYDryDHMjgzD7MgwggE5htmRYZgdGQ5O4f4uwFtmzpyp8ePHa8CAARo4cKCeffZZlZeXa+LEif4uzafKysq0d+9ex3J2dra2bNmi5ORktW3b1o+VwRXkmAybHRkmw2ZHhmuRY3Mjx2TY7MgwGTY7MlwrqHLs7+lEvem5554z2rZta0RGRhoDBw40vvzyS3+X5HMrV640JNV7jR8/3t+lwUWhnmMybH5kmAybXahn2DDIcTAI9RyTYfMjw2TY7EI9w4YRXDm2GIZheLlfBwAAAAAAAASFoHxmGgAAAAAAAOANNNMAAAAAAAAAF9FMAwAAAAAAAFxEMw0AAAAAAABwEc00AAAAAAAAwEU00wAAAAAAAAAX0UwDAAAAAAAAXEQzDQAAAAAAAHARzbQA0r59ez377LOOZYvFovfee++s9umJfQDuIMcwOzIMsyPDCAbkGGZHhmF2ZLhx4f4uAKd3+PBhNW/e3KVt58yZo/fee09btmxp8j4AbyDHMDsyDLMjwwgG5BhmR4ZhdmTYGc00D6uqqlJkZKRH9pWenh4Q+0DoIccwOzIMsyPDCAbkGGZHhmF2ZNh7uM3zDC655BJNmzZN06ZNU1JSklJTU/XII4/IMAxJtZc+/va3v9Wtt96qxMRETZkyRZL02WefaciQIYqJiVGbNm10zz33qLy83LHfI0eO6KqrrlJMTIw6dOigf/zjH/W++9RLIA8ePKhx48YpOTlZcXFxGjBggNatW6dFixZp7ty5+vrrr2WxWGSxWLRo0aIG97Ft2zZddtlliomJUUpKiqZMmaKysjLH+xMmTNCYMWP01FNPKSMjQykpKZo6daqqq6s9+KvC18gxOTY7MkyGzY4Mk+FgQI7JsdmRYTJsdmQ4gDJsoFHDhg0z4uPjjXvvvdfYvXu38fe//92IjY01Xn75ZcMwDKNdu3ZGYmKi8dRTTxl79+51vOLi4oz58+cb33zzjfH5558b/fr1MyZMmODY75VXXmn06dPHWLt2rbFhwwbjwgsvNGJiYoz58+c7tpFkLFmyxDAMwygtLTU6duxoDBkyxPj000+NPXv2GIsXLza++OILo6KiwrjvvvuMHj16GIcPHzYOHz5sVFRU1NtHWVmZkZGRYYwdO9bYtm2bsWLFCqNDhw7G+PHjHd85fvx4IzEx0bjzzjuNXbt2GR988IHT3xfmRI7JsdmRYTJsdmSYDAcDckyOzY4Mk2GzI8OBk2GaaWcwbNgwo3v37obdbnese/DBB43u3bsbhlEb1jFjxjh9ZtKkScaUKVOc1n366aeG1Wo1jh8/bmRlZRmSjPXr1zve37VrlyHptGH9y1/+YiQkJBgFBQUN1jl79myjT58+9dafvI+XX37ZaN68uVFWVuZ4/6OPPjKsVquRm5trGEZtWNu1a2fU1NQ4trn++uuNG2+88TS/EMyAHJNjsyPDZNjsyDAZDgbkmBybHRkmw2ZHhgMnw9zm6YILLrhAFovFsTx48GDt2bNHNptNkjRgwACn7b/++mstWrRI8fHxjteoUaNkt9uVnZ2tXbt2KTw8XP3793d8plu3bmrWrNlpa9iyZYv69eun5OTkJv89du3apT59+iguLs6x7qKLLpLdbldWVpZjXY8ePRQWFuZYzsjI0JEjR5r8vQgM5Jgcmx0ZJsNmR4bJcDAgx+TY7MgwGTY7MhwYGWYCAg84+eBLUllZme644w7dc8899bZt27atvvnmG7e/IyYmpsn1uSsiIsJp2WKxyG63++z74R/kGGZHhmF2ZBjBgBzD7MgwzI4M+wZXprlg3bp1TstffvmlunTp4tQdPdl5552nnTt3qnPnzvVekZGR6tatm2pqarRx40bHZ7KyslRUVHTaGnr37q0tW7aosLCwwfcjIyMdnejT6d69u77++munBw1+/vnnslqtyszMbPSzMD9yDLMjwzA7MoxgQI5hdmQYZkeGAwPNNBccOHBAM2fOVFZWlt58800999xzuvfee0+7/YMPPqgvvvhC06ZN05YtW7Rnzx69//77mjZtmiQpMzNTV1xxhe644w6tW7dOGzdu1O23395od3fcuHFKT0/XmDFj9Pnnn+vbb7/VO++8o7Vr10qqnbUjOztbW7ZsUX5+viorK+vt4+abb1Z0dLTGjx+v7du3a+XKlbr77rt1yy23KC0t7Sx/JQQ6cgyzI8MwOzKMYECOYXZkGGZHhgMDzTQX3HrrrTp+/LgGDhyoqVOn6t5773VMMduQ3r17a/Xq1frmm280ZMgQ9evXT48++qhatWrl2GbhwoVq1aqVhg0bprFjx2rKlClq2bLlafcZGRmp5cuXq2XLlho9erR69eqlxx9/3NF9vvbaa3XFFVfo0ksvVYsWLfTmm2/W20dsbKyWLVumwsJCnX/++bruuus0fPhwPf/882fx68AsyDHMjgzD7MgwggE5htmRYZgdGQ4MFsMwDH8XEcguueQS9e3bV88++6y/SwGajBzD7MgwzI4MIxiQY5gdGYbZkeHAwZVpAAAAAAAAgItopgEAAAAAAAAu4jZPAAAAAAAAwEVcmQYAAAAAAAC4iGYaAAAAAAAA4CKaaQAAAAAAAICLaKYBAAAAAAAALqKZBgAAAAAAALiIZhoAAAAAAADgIpppAAAAAAAAgItopgEAAAAAAAAuopkGAAAAAAAAuMivzbR58+bp/PPPV0JCglq2bKkxY8YoKyvLaZtLLrlEFovF6XXnnXf6qWLAGRmG2ZFhBANyDLMjwzA7MoxgQI7hDr8201avXq2pU6fqyy+/1Mcff6zq6mqNHDlS5eXlTttNnjxZhw8fdryeeOIJP1UMOCPDMDsyjGBAjmF2ZBhmR4YRDMgx3BHuzy9funSp0/KiRYvUsmVLbdy4UUOHDnWsj42NVXp6ukv7rKysVGVlpWPZbrersLBQKSkpslgsnikcbjMMQ6WlpWrVqpWs1uC5u5gMh5ZgzLE3MiyR40AVjBmWOBeHEjJMhoNBMOaY8URoCcYMS5yLQ4lHMmwEkD179hiSjG3btjnWDRs2zEhNTTVSUlKMHj16GA899JBRXl5+2n3Mnj3bkMQrQF85OTm+iJLfkOHQeAVzjj2RYcMgx4H+CuYMGwbn4lB4kWEyHAyvYM4x44nQeAVzhg2Dc3EovM4mwxbDMAwFALvdrquvvlpFRUX67LPPHOtffvlltWvXTq1atdLWrVv14IMPauDAgXr33Xcb3M+pnd/i4mK1bdtWOTk5SkxM9PrfAw0rKSlRmzZtVFRUpKSkJH+X4xVkOPgFe449lWGJHAeqYM+wxLk42JFhMhwMgj3HjCeCX7BnWOJcHOw8kuEmt+E87M477zTatWt3xs7gihUrDEnG3r17XdpvcXGxIckoLi72RJloolA4DmQ4+AX7sfBWhg0j+H87swiF48C5OLiFwnEgw8Ev2I8F44ngFwrHgXNxcPPEcQiIG5ynTZumDz/8UCtXrlTr1q0b3XbQoEGSpL179/qiNMAlZBhmR4YRDMgxzI4Mw+zIMIIBOYYr/DoBgWEYuvvuu7VkyRKtWrVKHTp0OONntmzZIknKyMjwcnXAmZFhmB0ZRjAgxzA7MgyzI8MIBuQY7vBrM23q1Kl644039P777yshIUG5ubmSpKSkJMXExGjfvn164403NHr0aKWkpGjr1q2aMWOGhg4dqt69e/uzdEASGYb5kWEEA3IMsyPDMDsyjGBAjuEWT9xv2lQ6zYwKCxcuNAzDMA4cOGAMHTrUSE5ONqKioozOnTsb999/v1v3tXJPcmAI1uNAhkNLMB4LX2TYMILztzOjYD0OnItDR7AeBzIcWoLxWDCeCC3Behw4F4cOTxwHv9/m2Zg2bdpo9erVPqoGcB8ZhtmRYQQDcgyzI8MwOzKMYECO4Q63JyBo3769HnvsMR04cMAb9QAAAAABjzExAAChy+1m2vTp0/Xuu++qY8eOuvzyy/XWW2+psrLSG7UBAAAAAYkxMQAAoatJzbQtW7Zo/fr16t69u+6++25lZGRo2rRp2rRpkzdqBAAAAAIKY2IAAEKX2820Ouedd54WLFig77//XrNnz9Zf//pXnX/++erbt69effXVM95vDAAAAJgdY2IAAEJPkycgqK6u1pIlS7Rw4UJ9/PHHuuCCCzRp0iQdPHhQv/71r/XJJ5/ojTfe8GStAAAAQEBhTAwAQOhxu5m2adMmLVy4UG+++aasVqtuvfVWzZ8/X926dXNs87Of/Uznn3++RwsFAAAAAgVjYgAAQpfbzbTzzz9fl19+uV588UWNGTNGERER9bbp0KGDbrrpJo8UCAAAAAQaxsQAAIQut5tp3377rdq1a9foNnFxcVq4cGGTiwIAAAACGWNiAABCl9sTEFx66aUqKCiot76oqEgdO3b0SFEAAABAIGNMDABA6HK7mbZ//37ZbLZ66ysrK3Xo0CGPFAUAAAAEMsbEAACELpdv8/z3v//t+POyZcuUlJTkWLbZbFqxYoXat2/v0eIAAACAQMKYGAAAuNxMGzNmjCTJYrFo/PjxTu9FRESoffv2evrppz1aHAAAABBIGBMDAACXm2l2u11S7axEX331lVJTU71WFAAAABCIGBMDAAC3Z/PMzs72Rh0AAACAaTAmBgAgdLnUTFuwYIGmTJmi6OhoLViwoNFt77nnHo8UBgAAAAQSxsQAAEBysZk2f/583XzzzYqOjtb8+fNPu53FYmHgAAAAgKDEmBgAAEguNtNOvoydS9oBAAAQihgTAwAASbKe7Q5sNpu2bNmiY8eOeaIeAAAAwHQYEwMAEDrcbqZNnz5df/vb3yTVDhqGDh2q8847T23atNGqVavc2te8efN0/vnnKyEhQS1bttSYMWOUlZXltM2JEyc0depUpaSkKD4+Xtdee63y8vLcLRvwCjIMsyPDCAbkGP7AmBj4ERl2z8GHPtXBhz71dxk4BTmGO9xupv3rX/9Snz59JEkffPCB9u/fr927d2vGjBl6+OGH3drX6tWrNXXqVH355Zf6+OOPVV1drZEjR6q8vNyxzYwZM/TBBx/o7bff1urVq/X9999r7Nix7pYNeAUZhtmRYQQDcgx/YEwM/IgMIxiQY7jFcFNUVJSRk5NjGIZhTJ482bj33nsNwzCMb7/91khISHB3d06OHDliSDJWr15tGIZhFBUVGREREcbbb7/t2GbXrl2GJGPt2rUN7uPEiRNGcXGx45WTk2NIMoqLi8+qNpyd4uLikDgOZDi4hUKOPZFhwyDHgSoUMmwYnIuDWSBlmDExmiqQcuwtjCcal/PgGiPnwTX+LqPJQiHDhsG5OJh5IsNuX5mWlpamnTt3ymazaenSpbr88sslSRUVFQoLC2tSQ69OcXGxJCk5OVmStHHjRlVXV2vEiBGObbp166a2bdtq7dq1De5j3rx5SkpKcrzatGlzVjUB7iDDMDtPZFgix/AvzsXwBcbEwOkxnkAw4FyMxrjdTJs4caJuuOEG9ezZUxaLxRGkdevWqVu3bk0uxG63a/r06brooovUs2dPSVJubq4iIyPVrFkzp23T0tKUm5vb4H5mzZql4uJixysnJ6fJNQHuIMMwO09lWCLH8B/OxfAVxsRAwxhPIBhwLsaZhLv7gTlz5qhnz57KycnR9ddfr6ioKElSWFiYHnrooSYXMnXqVG3fvl2fffZZk/chSVFRUY6aAF8iwzA7T2VYIsfwH87F8BXGxEDDGE8gGHAuxpm43UyTpOuuu67euvHjxze5iGnTpunDDz/UmjVr1Lp1a8f69PR0VVVVqaioyKn7m5eXp/T09CZ/H+BpZBhmR4YRDMgxfI0xMeCMDCMYkGO4oknNtBUrVmjFihU6cuSI7Ha703uvvvqqy/sxDEN33323lixZolWrVqlDhw5O7/fv318RERFasWKFrr32WklSVlaWDhw4oMGDBzeldMCjyDDMjgwjGJBj1+3q1l2S1H33Lj9XEhwYEwO1yDCCATmGO9xups2dO1ePPfaYBgwYoIyMDFksliZ/+dSpU/XGG2/o/fffV0JCguM+46SkJMXExCgpKUmTJk3SzJkzlZycrMTERN19990aPHiwLrjggiZ/L+ApZBhmR4YRDMgx/IExMfAjMoxgQI7hFnen/0xPTzdef/31Jk8fejJJDb4WLlzo2Ob48ePGL3/5S6N58+ZGbGys8bOf/cw4fPiwy98RKtP2BrpgPQ5kOLQE47HwRYYNIzh/OzMK1uPAudh1OzO7GTszu/m7jCYLpOPAmBhNFYzHgvGEe3IeXGPkPLjG32U0WbAch1NxLg4dnjgOFsMwDHeabykpKVq/fr06derkzsf8pqSkRElJSSouLlZiYqK/ywlZHIem47cLHByLpuO3Cwwch6YLlt/O7Ld5BtJxYEyMpuJYNF2w/HYHH/pUktT68SF+rqRpguU4+AO/XWDwxHGwuvuB22+/XW+88UaTvgwAAAAIBoyJAQAIXW4/M+3EiRN6+eWX9cknn6h3796KiIhwev+ZZ57xWHEAAABAIGJMDABA6HK7mbZ161b17dtXkrR9+3an987mwasAAACAWTAmBgAgdLndTFu5cqU36gAAAABMgzExAAChy+1nptXZu3evli1bpuPHj0uS3JzHAAAAADA9xsQAAIQet5tpBQUFGj58uLp27arRo0fr8OHDkqRJkybpvvvu83iBAAAAQKBhTAwAQOhyu5k2Y8YMRURE6MCBA4qNjXWsv/HGG7V06VKPFgcAAAAEIsbEAACELrefmbZ8+XItW7ZMrVu3dlrfpUsXfffddx4rDAAAAAhUjIkBAAhdbl+ZVl5e7vSvb3UKCwsVFRXlkaIAAACAQMaYGACA0OV2M23IkCF6/fXXHcsWi0V2u11PPPGELr30Uo8WBwAAAAQixsQAAIQut2/zfOKJJzR8+HBt2LBBVVVVeuCBB7Rjxw4VFhbq888/90aNAAAAQEBhTAwAQOhy+8q0nj176ptvvtHFF1+sa665RuXl5Ro7dqw2b96sTp06eaNGAAAAIKAwJgYAIHS5fWWaJCUlJenhhx/2dC0AAACAaTAmBgAgNLnUTNu6davLO+zdu3eTiwEAAAACFWNiAAAgudhM69u3rywWiwzDkMVicaw3DEOSnNbZbDYPlwgAAAD4H2NiAAAgufjMtOzsbH377bfKzs7WO++8ow4dOujPf/6ztmzZoi1btujPf/6zOnXqpHfeecfb9QIAAAB+wZgYAABILl6Z1q5dO8efr7/+ei1YsECjR492rOvdu7fatGmjRx55RGPGjPF4kQAAAIC/MSYGAABSE2bz3LZtmzp06FBvfYcOHbRz506PFAUAAAAEMsbEAACELrebad27d9e8efNUVVXlWFdVVaV58+ape/fubu1rzZo1uuqqq9SqVStZLBa99957Tu9PmDBBFovF6XXFFVe4WzLgNWQYwYAcw+zIMPyBMTHgjBzD7Mgw3OHSbZ4ne+mll3TVVVepdevWjlmKtm7dKovFog8++MCtfZWXl6tPnz667bbbNHbs2Aa3ueKKK7Rw4ULHclRUlLslA15DhhEMyDHMjgzDHxgTA87IMcyODMMdbjfTBg4cqG+//Vb/+Mc/tHv3bknSjTfeqJ///OeKi4tza19XXnmlrrzyyka3iYqKUnp6usv7rKysVGVlpWO5pKTErZoAd5BhBANyDLMjw/AHxsSAM3IMsyPDcIfbt3lKUlxcnKZMmaJnnnlGzzzzjCZPnuz2oMFVq1atUsuWLZWZmam77rpLBQUFjW4/b948JSUlOV5t2rTxSl2Aq8gwggE5rtXrtV7q9Vovf5eBJiDD8AbGxIB7yDHMjgyjTpOaab5yxRVX6PXXX9eKFSv0xz/+UatXr9aVV14pm8122s/MmjVLxcXFjldOTo4PKwackWEEA3IMsyPDMDsyjGBAjmF2ZBgnc/s2T1+66aabHH/u1auXevfurU6dOmnVqlUaPnx4g5+JiorivmUEDDKMYECOYXZkGGZHhhEMyDHMjgzjZAF9ZdqpOnbsqNTUVO3du9ffpQBNQoYRDMgxzI4Mw+zIMIIBOYbZkeHQZqpm2sGDB1VQUKCMjAx/lwI0CRlGMCDHMDsyDLMjwwgG5BhmR4ZDW5Nv86yqqtKRI0dkt9ud1rdt29blfZSVlTl1cbOzs7VlyxYlJycrOTlZc+fO1bXXXqv09HTt27dPDzzwgDp37qxRo0Y1tWzAo8gwggE5htmRYfgTY2KgFjmG2ZFhuMVw0zfffGNcfPHFhtVqdXpZLBbDarW6ta+VK1cakuq9xo8fb1RUVBgjR440WrRoYURERBjt2rUzJk+ebOTm5rr1HcXFxYYko7i42K3PwbOC9TiQ4dASrMeCHLuu56KeRs9FPf1dRpMFy3E4FRl23c7MbsbOzG7+LqPJAuk4MCZGUwXrsSDHrst5cI2R8+Aaf5fRZMFyHE5FhkOHJ46D21emTZgwQeHh4frwww+VkZEhi8Xi7i4cLrnkEhmGcdr3ly1b1uR9A75AhhEMyDHMjgzDHxgTA87IMcyODMMdbjfTtmzZoo0bN6pbt27eqAcAAAAIeIyJAQAIXW5PQHDuuecqPz/fG7UAAAAApsCYGACA0OV2M+2Pf/yjHnjgAa1atUoFBQUqKSlxegEAAADBjjExAAChy+3bPEeMGCFJGj58uNN6wzBksVhks9k8UxkAAAAQoBgTAwAQutxupq1cudIbdQAAAACmwZgYAIDQ5XYzbdiwYd6oAwAAADANxsQAAIQut5tpklRUVKS//e1v2rVrlySpR48euu2225SUlOTR4gAAAIBAxZgYAIDQ5PYEBBs2bFCnTp00f/58FRYWqrCwUM8884w6deqkTZs2eaNGAAAAIKAwJgYAIHS5fWXajBkzdPXVV+uVV15ReHjtx2tqanT77bdr+vTpWrNmjceLBAAAAAIJY2IAAEKX2820DRs2OA0aJCk8PFwPPPCABgwY4NHiAAAAgEDEmBiAuw4+9Km/SwDgIW7f5pmYmKgDBw7UW5+Tk6OEhASPFAUAAAAEMsbEAACELrebaTfeeKMmTZqkxYsXKycnRzk5OXrrrbd0++23a9y4cd6oEQAAAAgojIkBAAhdbt/m+dRTT8lisejWW29VTU2NJCkiIkJ33XWXHn/8cY8XCAAAAAQaxsQAAIQut5tpkZGR+tOf/qR58+Zp3759kqROnTopNjbW48UBAAAAgYgxMQAAocvtZlqd2NhY9erVy5O1AAAAAKbCmBgAgNDjUjNt7NixWrRokRITEzV27NhGt3333Xc9UhgAAAAQSBgTAwAAycVmWlJSkiwWi6TamYvq/gwAAACECsbEAABAcnE2z4ULFzqm+F60aJEWLlx42pc71qxZo6uuukqtWrWSxWLRe++95/S+YRh69NFHlZGRoZiYGI0YMUJ79uxx6zsAbyLDCAbkGGZHhuErjImB0yPHMDsyDHe41Ew72WWXXaaioqJ660tKSnTZZZe5ta/y8nL16dNHL7zwQoPvP/HEE1qwYIFeeuklrVu3TnFxcRo1apROnDjhbtmAV5BhBANyDLMjw/AHxsSAM3IMsyPDrpszZ47mzJnj7zL8y3CTxWIx8vLy6q3Py8szwsPD3d2dgyRjyZIljmW73W6kp6cbTz75pGNdUVGRERUVZbz55psu77e4uNiQZBQXFze5Npy9UDgOZDj4hcKxIMeN67mop9FzUU9/l9FkwXIcGkOGG7Yzs5vTy6wC6TgwJkZThcKxIMcNy3lwjdPLrMx+HFxBhhs3e/ZsY/bs2f4uo8k8cRxcns1z69atjj/v3LlTubm5jmWbzaalS5fqnHPOaXJT71TZ2dnKzc3ViBEjHOuSkpI0aNAgrV27VjfddFODn6usrFRlZaVjuaSkxGM1Ae4gwwgG5BhmR4bhaYyJAfeRY5gdGcapXG6m9e3bVxaLRRaLpcFL12NiYvTcc895rLC6gUlaWprT+rS0NKdBy6nmzZunuXPneqwOoKnIMIIBOa7V67Ve/i4BTUSG4WmMiQH3kWOYHRnGqVx+Zlp2drb27dsnwzC0fv16ZWdnO16HDh1SSUmJbrvtNm/W6pJZs2apuLjY8crJyfF3SYBbyDCCATmG2ZFhnA5jYsB3yDHMjgwHL5evTGvXrp0kyW63e62Yk6Wnp0uS8vLylJGR4Vifl5envn37nvZzUVFRioqK8nZ5wBmRYQQDcgyzI8PwNMbEgPvIMcyODONULjfT6rz++uuNvn/rrbc2uZiTdejQQenp6VqxYoUjnCUlJVq3bp3uuusuj3yHmbR/6CNJ0v7Hf+LnSuAqMoxgQI5hdmQY3sKYGHAdOYbZkWGcyu1m2r333uu0XF1drYqKCkVGRio2NtatgUNZWZn27t3rWM7OztaWLVuUnJystm3bavr06frd736nLl26qEOHDnrkkUfUqlUrjRkzxt2yTauuiYbARIYRDMgxzI4Mwx8YEwPOyDHMjgzDHW43044dO1Zv3Z49e3TXXXfp/vvvd2tfGzZs0KWXXupYnjlzpiRp/PjxWrRokR544AGVl5drypQpKioq0sUXX6ylS5cqOjra3bIBryDDCAbkGGZHhuEPjIkBZ+QYZkeG4Q6LYRiGJ3a0YcMG/eIXv9Du3bs9sTuPKSkpUVJSkoqLi5WYmOjvctx26pVpZr3N0+zHwZ/47QIHx6LpzP7bnTqb57bx2/xUydkx+3HwJ7P/dru6dXda7r57l58qOTtmOA6MiXEmHIumM/tvd/ChT52WWz8+xE+VnB2zHwd/Cpbfbs6cOU7/NRtPHAeXZ/M8k/DwcH3//fee2h0AAABgOoyJAQAIfm7f5vnvf//badkwDB0+fFjPP/+8LrroIo8VBgAAAAQqxsQAAIQut5tppz5cz2KxqEWLFrrsssv09NNPe6ouAAAAIGAxJgYAIHS53Uyz2+3eqAMAAAAwDcbEAACELrebaSerm7vAYrF4pBgAAADAbBgTAwBCgVknHPCGJk1A8Le//U09e/ZUdHS0oqOj1bNnT/31r3/1dG0AAABAwGJMDABAaHL7yrRHH31UzzzzjO6++24NHjxYkrR27VrNmDFDBw4c0GOPPebxIgEAAIBAwpgYAIDQ5XYz7cUXX9Qrr7yicePGOdZdffXV6t27t+6++24GDgAAAAh6jIkBAAhdbt/mWV1drQEDBtRb379/f9XU1HikKAAAACCQMSYGACB0ud1Mu+WWW/Tiiy/WW//yyy/r5ptv9khRAAAAQCBjTAwAQOhy6TbPmTNnOv5ssVj017/+VcuXL9cFF1wgSVq3bp0OHDigW2+91TtVAgAAAH7GmBgAAEguNtM2b97stNy/f39J0r59+yRJqampSk1N1Y4dOzxcHgAAABAYGBMDAADJxWbaypUrvV0HAAAAENAYEwMAAKkJs3kCAAAAgD88feNPHX++b/GHfqwEABDKXGqmjR07VosWLVJiYqLGjh3b6LbvvvuuRwoDAAAAAgljYgAAILnYTEtKSpLFYnH8GQAAAAg1jIkBAIDkYjNt4cKFkiTDMDR37ly1aNFCMTExXi0MAAAACCSMiQEAgCRZ3dnYMAx17txZBw8e9FY9AILNnKTaFwAAQYIxMQAAoc2tZprValWXLl1UUFDgrXqczJkzRxaLxenVrVs3n3w34CnkGGZHhmF2ZBie5usxsUSOYX5kGGZHhnEyt2fzfPzxx3X//ffrxRdfVM+ePb1Rk5MePXrok08+cSyHhzMBKcyHHMPsyDDMjgzD03w9JpZCO8cnz+IJ8wrlDCM4kGHUcfvI33rrraqoqFCfPn0UGRlZ7zkRhYWFHitOqg1nenq6R/cJ+Bo5htmRYZgdGYan+XpMLJFjmB8ZhtmRYdRxu5k2f/58xyxGvrBnzx61atVK0dHRGjx4sObNm6e2bduedvvKykpVVlY6lktKSnxRJtAod3JMhhGIOBfD7MgwPM3XY2KJ8QTMj3MxzI4Mo47bzbQJEyZ4oYyGDRo0SIsWLVJmZqYOHz6suXPnasiQIdq+fbsSEhIa/My8efM0d+5cn9UInIm7OSbDCDSci2F2ZBje4MsxscR4AubHuRhmR4ZxMothGIY7HwgLC9Phw4fVsmVLp/UFBQVq2bKlbDabRws8WVFRkdq1a6dnnnlGkyZNanCbhjq/bdq0UXFxsRITE71Wm7e0f+gjp+X9j//ET5WcnZKSEiUlJZn2OHjSmXIcbBl2zOQ5p9i/dXgAOa4ViufiXq/1clreNn6bnyo5O2S4VihmeFe37k7L3Xfv8lMlZyeQMuzPMbEUeuOJhp6Zdt/iD/1QydkLpBz7Uyieiw8+9KnTcuvHh/ipkrNDhmuFYobnzJnT6LJZeCLDbl+ZdrreW2VlpSIjI5tUhKuaNWumrl27au/evafdJioqSlFRUV6tAzgbZ8oxGUag41wMsyPD8AR/joklxhMwP87FMDsyHNpcbqYtWLBAkmSxWPTXv/5V8fHxjvdsNpvWrFnj9Wlhy8rKtG/fPt1yyy1e/R7Am8gxzI4Mw+zIMM5GIIyJJXIM8yPDMDsyHNpcbqbNnz9fUu2/wr300ksKCwtzvBcZGan27dvrpZde8mhxv/rVr3TVVVepXbt2+v777zV79myFhYVp3LhxHv0ewJvIMcyODMPsyDA8yR9jYil0c9zQ7Z0wp1DNMIIHGcbJXG6mZWdnS5IuvfRSvfvuu2revLnXiqpz8OBBjRs3TgUFBWrRooUuvvhiffnll2rRooXXvxvwFHL8g7pnp0lB8fy0UEKGYXZkGJ7kjzGxRI4bUtdoM+uz00INGYbZkWGczO1npq1cudJp2Wazadu2bWrXrp3HBxNvvfWWR/cH+AM5htmRYZgdGYY3+HJMLJFjmB8ZhtmRYZzM6u4Hpk+frr/97W+SagcNQ4cO1Xnnnac2bdpo1apVnq4PAAAACDiMiQEACF1uN9Pefvtt9enTR5L0wQcfaP/+/dq9e7dmzJihhx9+2OMFAgAAAIGGMTEAAKHL7WZaQUGB0tPTJUn/+c9/dP3116tr16667bbbtG3bNo8XCABAoOn1Wi/1eq2Xv8sA4EeMiQEACF1uN9PS0tK0c+dO2Ww2LV26VJdffrkkqaKiwmk2IwAhbk6S86QDAAAEEcbEAACELrcnIJg4caJuuOEGZWRkyGKxaMSIEZKkdevWqVu3bh4vEAAAAAg0jIkBAAhdbjfT5syZo549eyonJ0fXX3+9oqKiJElhYWF66KGHPF5gqGr/0Ef+LgEAAACnwZgYAIDQ5XYzTZKuu+66euvGjx9/1sUACALc2gkACBGMiQEACE0uNdMWLFigKVOmKDo6WgsWLGh023vuuccjhQEIYnUNtznF/q0DAAA3MCb2nadv/Km/SwAA4LRcaqbNnz9fN998s6KjozV//vzTbmexWBg4AKGKK9IAAEGOMbF3nNw4u2/xh36sBAAA17jUTMvOzm7wz/C9k5+ltv/xn/ixEgAAgNDCmNj7zuaKtLrP0pADAHhbk56ZBgAAAAAAgOA3Z84cf5cQcFxqps2cOdPlHT7zzDNNLgbuqbtKjSvU4Dfc2okg1uu1Xv4uAUCAYUzsWZ56LhrPVwMA+JpLzbTNmzc7LW/atEk1NTXKzMyUJH3zzTcKCwtT//79PV8hgMDBxAEAgBDGmBgAECq4Gq1xLjXTVq5c6fjzM888o4SEBL322mtq3ry5JOnYsWOaOHGihgwZ4p0qQ8TJz0MDAABAYGFMDAAApCY8M+3pp5/W8uXLHYMGSWrevLl+97vfaeTIkbrvvvs8WmAw4zZNmJanb+9saH91V79xNRwANNmubt3PuL777l2+KieoMCYGAASTplyJdvJnQu1KNrebaSUlJTp69Gi99UePHlVpaalHioJ7GruijUYdPMJbz0ZzZ7801QAAAYQxMYCzdfChTyVJrR/nalbAW+qafJ5u9rndTPvZz36miRMn6umnn9bAgQMlSevWrdP999+vsWPHerQ4eM/JDTgabghITG4AHzmbiQZO/uy28ds8UQ4Ak2BM7L66iQLuW/yhT77HF98FAKjlraZVoHK7mfbSSy/pV7/6lX7+85+rurq6difh4Zo0aZKefPJJjxcYjE69ksybz0rjVlIEnZObbFylBgBn7dRbQbnt0zWMiZvOl7Nv+qqBBwBm4s2GV6g01azufiA2NlZ//vOfVVBQoM2bN2vz5s0qLCzUn//8Z8XFxXmjRr3wwgtq3769oqOjNWjQIK1fv94r3+NN7R/6yPHy5/fDf0yT4zlJ9V+BKtDrCzKmybCf9Hqtl9MLgSdUMryrW3fHKxD2E6z8MSaWQifHCF6hluGDD33qeJ3NNggcZszwnDlzfN7c8sd3+pLbV6bViYuLU+/evT1ZS4MWL16smTNn6qWXXtKgQYP07LPPatSoUcrKylLLli29/v1NFaiNq0CtK9iZNcdAnWDJcF2Tyxe3ZJ76XdwS6l/BkuGGeLrZRfPMPb4aE0uBneNTrwALtCvCTlffyevgfYGcYU+jMRacAjHDDV0Jdromlj+aW419Z0PvmeXKNothGIa/i2jMoEGDdP755+v555+XJNntdrVp00Z33323HnrooTN+vqSkRElJSSouLlZiYqK3yw2KZpU3bgn19XEINGeTY6/8dsF+NVdDt396YAKDUM5xIJ6LT9cYa6hpFahXinmrqXa6xh0ZDqwMN4W/G111t4A2VoenbhOt+46T9xcox8FfAm48cZLGmlWBztfNtFDOcbCcixvjyybaqRMXNDahQVMmOzj573Ly58xwHLzFGxlurAnWWGMp0JtNntZY09CV3+nk9zyR4SZfmeYLVVVV2rhxo2bNmuVYZ7VaNWLECK1du7bBz1RWVqqystKxXFxc+3+cS0pKHOt6zl52xu/ePneUW9sHk7rfqqG/d93vUvfeyb9TnYbeq9tngPduvcLdHLuS4UbNa312BQeDWY2cEBt6b9ZB5+W63/CU9aGaY2+di+tc8MYFZ1Vf3T4b2s+5L517Vvv2tsbq+/LnXzotN/T3c2Wbk39zMuydDDcmq/8Ax58zN25wWle3fLrtA9FXXbp6ZBtXfosym00SGa7j8/FEA56bcL0k6e5Fbzstn+z3Y+uPDQPdqTXX/f0ac+pv4ep7Uujm2Nvn4kOzv6i37py5Fzq9d+ryyesa20+g2jVjqVvrz/RenbrfpLSy3LGOc7H3Mnzy+yfv+2SnWx9KGvoNTl3X2O/k8QwbAezQoUOGJOOLL75wWn///fcbAwcObPAzs2fPNiTxCtBXTk6OL6ITUNzNMRkO/Feo5ZhzcfC9yHAtMmzeV6hl2DAYTwTjK9RyzLk4+F5kuBYZNu/rbDIc0FemNcWsWbM0c+ZMx7LdbldhYaFSUlJksVhUUlKiNm3aKCcnxzSXpAZDzYZhqLS0VK1atfJ3aQHvTBmWzJcJs9UrNVwzOXYd5+LAwLm46chwYCDDTcd4IjAwnjg7nIsDA+fipiPDgcEbGQ7oZlpqaqrCwsKUl5fntD4vL0/p6ekNfiYqKkpRUVFO65o1a1Zvu8TERNMc+DpmrzkpKcnP1fiHuzl2NcOS+TJhtnql+jWHYo45Fzsze81k+Edk2DxCPcMS44mTma1eifGExLn4VGavmQz/iAybhyczbPVEQd4SGRmp/v37a8WKFY51drtdK1as0ODBg/1YGeA6cgyzI8MwOzKMYECOYXZkGGZHhnGygL4yTZJmzpyp8ePHa8CAARo4cKCeffZZlZeXa+LEif4uDXAZOYbZkWGYHRlGMCDHMDsyDLMjw6gT8M20G2+8UUePHtWjjz6q3Nxc9e3bV0uXLlVaWlqT9hcVFaXZs2fXu9QykFGz+YV6js1Wr2TOmr0p1DMsUbPZkWFqDgahnmOz1SuZs2ZvCvUMS9RsdmSYmutYDCPE5rMFAAAAAAAAmiign5kGAAAAAAAABBKaaQAAAAAAAICLaKYBAAAAAAAALqKZBgAAAAAAALgoJJpphYWFuvnmm5WYmKhmzZpp0qRJKisra/Qzl1xyiSwWi9Przjvv9FqNL7zwgtq3b6/o6GgNGjRI69evb3T7t99+W926dVN0dLR69eql//znP16r7XTcqXnRokX1fs/o6GgfVmtuZNg7yLBvkWPvIMe+Q4a9gwz7Dhn2DjLsW+TYO8ix75Bh7/B5ho0QcMUVVxh9+vQxvvzyS+PTTz81OnfubIwbN67RzwwbNsyYPHmycfjwYceruLjYK/W99dZbRmRkpPHqq68aO3bsMCZPnmw0a9bMyMvLa3D7zz//3AgLCzOeeOIJY+fOncZvfvMbIyIiwti2bZtX6vNEzQsXLjQSExOdfs/c3Fyf1Wt2ZNj/NZPhs0eO/V8zOT47ZNj/NZPhs0OG/V8zGT575Nj/NZPjs0OG/V+zJzIc9M20nTt3GpKMr776yrHuv//9r2GxWIxDhw6d9nPDhg0z7r33Xh9UaBgDBw40pk6d6li22WxGq1atjHnz5jW4/Q033GD85Cc/cVo3aNAg44477vBqnSdzt+aFCxcaSUlJPqouuJBh7yDDvkWOvYMc+w4Z9g4y7Dtk2DvIsG+RY+8gx75Dhr3DHxkO+ts8165dq2bNmmnAgAGOdSNGjJDVatW6desa/ew//vEPpaamqmfPnpo1a5YqKio8Xl9VVZU2btyoESNGONZZrVaNGDFCa9eubfAza9euddpekkaNGnXa7T2tKTVLUllZmdq1a6c2bdrommuu0Y4dO3xRrumRYc8jw75Hjj2PHPsWGfY8MuxbZNjzyLDvkWPPI8e+RYY9z18ZDm9yxSaRm5urli1bOq0LDw9XcnKycnNzT/u5n//852rXrp1atWqlrVu36sEHH1RWVpbeffddj9aXn58vm82mtLQ0p/VpaWnavXt3g5/Jzc1tcPvG/j6e1JSaMzMz9eqrr6p3794qLi7WU089pQsvvFA7duxQ69atfVG2aZFhzyPDvkeOPY8c+xYZ9jwy7Ftk2PPIsO+RY88jx75Fhj3PXxk2bTPtoYce0h//+MdGt9m1a1eT9z9lyhTHn3v16qWMjAwNHz5c+/btU6dOnZq831A1ePBgDR482LF84YUXqnv37vrLX/6i3/72t36szH/IsLmQ4YaRY3Mhx/WRYXMhw/WRYXMhww0jx+ZCjusjw+biiQybtpl23333acKECY1u07FjR6Wnp+vIkSNO62tqalRYWKj09HSXv2/QoEGSpL1793o0rKmpqQoLC1NeXp7T+ry8vNPWl56e7tb2ntaUmk8VERGhfv36ae/evd4o0RTIMBkOBuSYHJsdGSbDZkeGyXAwIMfk2OzIcOhl2LTPTGvRooW6devW6CsyMlKDBw9WUVGRNm7c6Pjs//73P9ntdkcAXbFlyxZJUkZGhkf/HpGRkerfv79WrFjhWGe327VixQqnTunJBg8e7LS9JH388cen3d7TmlLzqWw2m7Zt2+bx39NMyDAZDgbkmBybHRkmw2ZHhslwMCDH5NjsyHAIZvispi8wiSuuuMLo16+fsW7dOuOzzz4zunTp4jT17MGDB43MzExj3bp1hmEYxt69e43HHnvM2LBhg5GdnW28//77RseOHY2hQ4d6pb633nrLiIqKMhYtWmTs3LnTmDJlitGsWTPH1Ky33HKL8dBDDzm2//zzz43w8HDjqaeeMnbt2mXMnj3bL1PPulPz3LlzjWXLlhn79u0zNm7caNx0001GdHS0sWPHDp/VbGZk2P81k+GzR479XzM5Pjtk2P81k+GzQ4b9XzMZPnvk2P81k+OzQ4b9X7MnMhwSzbSCggJj3LhxRnx8vJGYmGhMnDjRKC0tdbyfnZ1tSDJWrlxpGIZhHDhwwBg6dKiRnJxsREVFGZ07dzbuv/9+o7i42Gs1Pvfcc0bbtm2NyMhIY+DAgcaXX37peG/YsGHG+PHjnbb/5z//aXTt2tWIjIw0evToYXz00Udeq+103Kl5+vTpjm3T0tKM0aNHG5s2bfJ5zWZFhr2DDPsWOfYOcuw7ZNg7yLDvkGHvIMO+RY69gxz7Dhn2Dl9n2GIYhuH6dWwAAAAAAABA6DLtM9MAAAAAAAAAX6OZBgAAAAAAALiIZhoAAAAAAADgIpppAAAAAAAAgItopgEAAAAAAAAuopkGAAAAAAAAuIhmGgAAAAAAAOAimmkAAAAAAACAi2imBZgJEyZozJgxjW5zySWXaPr06R793jlz5qhv374e3SdCExlGMCDHMDsyDLMjwwgG5BhmR4ZPL9zfBcDZn/70JxmG4e8ygCYjwwgG5BhmR4ZhdmQYwYAcw+zI8OnRTPOwqqoqRUZGNvnzSUlJHqwGcB8ZRjAgxzA7MgyzI8MIBuQYZkeGvYfbPM/SJZdcomnTpmn69OlKTU3VqFGjtH37dl155ZWKj49XWlqabrnlFuXn5zs+869//Uu9evVSTEyMUlJSNGLECJWXl0uqfxlleXm5br31VsXHxysjI0NPP/10vRosFovee+89p3XNmjXTokWLHMsPPvigunbtqtjYWHXs2FGPPPKIqqurPfpbwJzIMIIBOYbZkWGYHRlGMCDHMDsy7Ds00zzgtddeU2RkpD7//HM9/vjjuuyyy9SvXz9t2LBBS5cuVV5enm644QZJ0uHDhzVu3Djddttt2rVrl1atWqWxY8ee9tLJ+++/X6tXr9b777+v5cuXa9WqVdq0aZPbNSYkJGjRokXauXOn/vSnP+mVV17R/Pnzz+rvjeBBhhEMyDHMjgzD7MgwggE5htmRYR8xcFaGDRtm9OvXz7H829/+1hg5cqTTNjk5OYYkIysry9i4caMhydi/f3+D+xs/frxxzTXXGIZhGKWlpUZkZKTxz3/+0/F+QUGBERMTY9x7772OdZKMJUuWOO0nKSnJWLhw4WnrfvLJJ43+/fs7lmfPnm306dOn8b8sghIZRjAgxzA7MgyzI8MIBuQYZkeGfYdnpnlA//79HX/++uuvtXLlSsXHx9fbbt++fRo5cqSGDx+uXr16adSoURo5cqSuu+46NW/evMHtq6qqNGjQIMe65ORkZWZmul3j4sWLtWDBAu3bt09lZWWqqalRYmKi2/tBcCLDCAbkGGZHhmF2ZBjBgBzD7Miwb3CbpwfExcU5/lxWVqarrrpKW7ZscXrt2bNHQ4cOVVhYmD7++GP997//1bnnnqvnnntOmZmZys7ObvL3WyyWepdhnny/8dq1a3XzzTdr9OjR+vDDD7V582Y9/PDDqqqqavJ3IriQYQQDcgyzI8MwOzKMYECOYXZk2DdopnnYeeedpx07dqh9+/bq3Lmz06su1BaLRRdddJHmzp2rzZs3KzIyUkuWLKm3r06dOikiIkLr1q1zrDt27Ji++eYbp+1atGihw4cPO5b37NmjiooKx/IXX3yhdu3a6eGHH9aAAQPUpUsXfffdd57+qyNIkGEEA3IMsyPDMDsyjGBAjmF2ZNh7aKZ52NSpU1VYWKhx48bpq6++0r59+7Rs2TJNnDhRNptN69at0x/+8Adt2LBBBw4c0LvvvqujR4+qe/fu9fYVHx+vSZMm6f7779f//vc/bd++XRMmTJDV6nzYLrvsMj3//PPavHmzNmzYoDvvvFMRERGO97t06aIDBw7orbfe0r59+7RgwYIG/8cBSGQYwYEcw+zIMMyODCMYkGOYHRn2HpppHtaqVSt9/vnnstlsGjlypHr16qXp06erWbNmslqtSkxM1Jo1azR69Gh17dpVv/nNb/T000/ryiuvbHB/Tz75pIYMGaKrrrpKI0aM0MUXX+x0D7QkPf3002rTpo2GDBmin//85/rVr36l2NhYx/tXX321ZsyYoWnTpqlv37764osv9Mgjj3j1d4B5kWEEA3IMsyPDMDsyjGBAjmF2ZNh7LMapN7MCAAAAAAAAaBBXpgEAAAAAAAAuopkGAAAAAAAAuIhmGgAAAAAAAOAimmkAAAAAAACAi2imAQAAAAAAAC6imQYAAAAAAAC4iGYaAAAAAAAA4CKaaQAAAAAAAICLaKYBAAAAAAAALqKZBgAAAAAAALiIZhoAAAAAAADgov8HL6vYZJgRYfcAAAAASUVORK5CYII=", "text/plain": [ "\n", + " | group_name | \n", + "urban_center_id | \n", + "year | \n", + "prediction_osm_completeness | \n", + "
---|---|---|---|---|
0 | \n", + "East Asia & Pacific | \n", + "1 | \n", + "2008-01-01 | \n", + "0.000000 | \n", + "
1 | \n", + "East Asia & Pacific | \n", + "2 | \n", + "2008-01-01 | \n", + "0.000000 | \n", + "
2 | \n", + "East Asia & Pacific | \n", + "4 | \n", + "2008-01-01 | \n", + "0.000000 | \n", + "
3 | \n", + "East Asia & Pacific | \n", + "163 | \n", + "2008-01-01 | \n", + "0.000000 | \n", + "
4 | \n", + "East Asia & Pacific | \n", + "168 | \n", + "2008-01-01 | \n", + "0.000000 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
198657 | \n", + "Sub-Saharan Africa | \n", + "8591 | \n", + "2024-01-01 | \n", + "84.972565 | \n", + "
198658 | \n", + "Sub-Saharan Africa | \n", + "8594 | \n", + "2024-01-01 | \n", + "1.290307 | \n", + "
198659 | \n", + "Sub-Saharan Africa | \n", + "8597 | \n", + "2024-01-01 | \n", + "42.341833 | \n", + "
198660 | \n", + "Sub-Saharan Africa | \n", + "8600 | \n", + "2024-01-01 | \n", + "90.320593 | \n", + "
198661 | \n", + "Sub-Saharan Africa | \n", + "8603 | \n", + "2024-01-01 | \n", + "18.460269 | \n", + "
198662 rows × 4 columns
\n", + "\n", + " | group_name | \n", + "urban_center_id | \n", + "year | \n", + "prediction_osm_completeness | \n", + "
---|---|---|---|---|
0 | \n", + "high | \n", + "1 | \n", + "2008-01-01 | \n", + "0.000000 | \n", + "
1 | \n", + "high | \n", + "2 | \n", + "2008-01-01 | \n", + "0.000000 | \n", + "
2 | \n", + "high | \n", + "5 | \n", + "2008-01-01 | \n", + "0.000000 | \n", + "
3 | \n", + "high | \n", + "10 | \n", + "2008-01-01 | \n", + "0.000000 | \n", + "
4 | \n", + "high | \n", + "11 | \n", + "2008-01-01 | \n", + "0.000000 | \n", + "
... | \n", + "... | \n", + "... | \n", + "... | \n", + "... | \n", + "
198657 | \n", + "very high | \n", + "11681 | \n", + "2024-01-01 | \n", + "0.000000 | \n", + "
198658 | \n", + "very high | \n", + "11682 | \n", + "2024-01-01 | \n", + "4.177976 | \n", + "
198659 | \n", + "very high | \n", + "11683 | \n", + "2024-01-01 | \n", + "1.255929 | \n", + "
198660 | \n", + "very high | \n", + "11684 | \n", + "2024-01-01 | \n", + "0.204402 | \n", + "
198661 | \n", + "very high | \n", + "11685 | \n", + "2024-01-01 | \n", + "0.696673 | \n", + "
198662 rows × 4 columns
\n", + "\n", + " | region_wb | \n", + "difference | \n", + "
---|---|---|
0 | \n", + "East Asia & Pacific | \n", + "0.015981 | \n", + "
1 | \n", + "Europe & Central Asia | \n", + "0.036755 | \n", + "
2 | \n", + "Latin America & Caribbean | \n", + "0.017562 | \n", + "
3 | \n", + "Middle East & North Africa | \n", + "0.060674 | \n", + "
4 | \n", + "North America | \n", + "0.061085 | \n", + "
5 | \n", + "South Asia | \n", + "0.011416 | \n", + "
6 | \n", + "Sub-Saharan Africa | \n", + "0.050764 | \n", + "
\n", + " | shdi_2021_class | \n", + "difference | \n", + "
---|---|---|
0 | \n", + "high | \n", + "0.028980 | \n", + "
1 | \n", + "low | \n", + "0.034935 | \n", + "
2 | \n", + "medium | \n", + "0.019966 | \n", + "
3 | \n", + "very high | \n", + "0.037329 | \n", + "