-
Notifications
You must be signed in to change notification settings - Fork 2
/
conealign.py
205 lines (165 loc) · 9.39 KB
/
conealign.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np
import sklearn.metrics.pairwise
import networkx as nx
try: import pickle as pickle
except ImportError:
import pickle
import scipy.sparse as sps
import argparse
import time
from scipy.sparse import csr_matrix, coo_matrix
from sklearn.neighbors import KDTree
import unsup_align
import embedding
def parse_args():
parser = argparse.ArgumentParser(description="Run CONE Align.")
parser.add_argument('--true_align', nargs='?', default='data/synthetic-combined/arenas/arenas950-1/arenas_edges-mapping-permutation.txt',
help='True alignment file.')
parser.add_argument('--combined_graph', nargs='?', default='data/synthetic-combined/arenas/arenas950-1/arenas_combined_edges.txt', help='Edgelist of combined input graph.')
parser.add_argument('--output_stats', nargs='?', default='output/stats/arenas/arenas950-1.log', help='Output path for log file.')
parser.add_argument('--store_align', action='store_true', help='Store the alignment matrix.')
parser.add_argument('--output_alignment', nargs='?', default='output/alignment_matrix/arenas/arenas950-1', help='Output path for alignment matrix.')
# Node Embedding
parser.add_argument('--embmethod', nargs='?', default='netMF', help='Node embedding method.')
# netMF parameters
parser.add_argument("--rank", default=256, type=int,
help='Number of eigenpairs used to approximate normalized graph Laplacian.')
parser.add_argument("--dim", default=128, type=int, help='Dimension of embedding.')
parser.add_argument("--window", default=10, type=int, help='Context window size.')
parser.add_argument("--negative", default=1.0, type=float, help='Number of negative samples.')
parser.add_argument('--store_emb', action='store_true', help='Store the node embedding.')
parser.add_argument('--embeddingA', nargs='?', default='emb/netMF/arenas/arenas950-1.graph1.npy', help='Node embedding path for the first graph.')
parser.add_argument('--embeddingB', nargs='?', default='emb/netMF/arenas/arenas950-1.graph2.npy', help='Node embedding path for the second graph.')
# Embedding Space Alignment
# convex initialization parameters
parser.add_argument('--niter_init', type=int, default=10, help='Number of iterations.')
parser.add_argument('--reg_init', type=float, default=1.0, help='Regularization parameter.')
# WP optimization parameters
parser.add_argument('--nepoch', type=int, default=5, help='Number of epochs.')
parser.add_argument('--niter_align', type=int, default=10, help='Iterations per epoch.')
parser.add_argument('--reg_align', type=float, default=0.05, help='Regularization parameter.')
parser.add_argument('--bsz', type=int, default=10, help='Batch size.')
parser.add_argument('--lr', type=float, default=1.0, help='Learning rate.')
# Matching Nodes
parser.add_argument('--embsim', nargs='?', default='euclidean', help='Metric for comparing embeddings.')
parser.add_argument('--alignmethod', nargs='?', default='greedy', help='Method to align embeddings.')
parser.add_argument('--numtop', type=int, default=10,
help='Number of top similarities to compute with kd-tree. If None, computes all pairwise similarities.')
return parser.parse_args()
def align_embeddings(embed1, embed2, adj1 = None, adj2 = None, struc_embed = None, struc_embed2 = None):
# Step 2: Align Embedding Spaces
corr = None
if struc_embed is not None and struc_embed2 is not None:
if args.embsim == "cosine":
corr = sklearn.metrics.pairwise.cosine_similarity(embed1, embed2)
else:
corr = sklearn.metrics.pairwise.euclidean_distances(embed1, embed2)
corr = np.exp(-corr)
# Take only top correspondences
matches = np.zeros(corr.shape)
matches[np.arange(corr.shape[0]), np.argmax(corr, axis = 1)] = 1
corr = matches
# Convex Initialization
if adj1 is not None and adj2 is not None:
if not sps.issparse(adj1): adj1 = sps.csr_matrix(adj1)
if not sps.issparse(adj2): adj2 = sps.csr_matrix(adj2)
init_sim, corr_mat = unsup_align.convex_init_sparse(embed1, embed2, K_X = adj1, K_Y = adj2, apply_sqrt = False, niter = args.niter_init, reg = args.reg_init, P = corr)
else:
init_sim, corr_mat = unsup_align.convex_init(embed1, embed2, apply_sqrt = False, niter = args.niter_init, reg = args.reg_init, P = corr)
print(corr_mat)
print(np.max(corr_mat, axis = 0))
print(np.max(corr_mat, axis = 1))
# Stochastic Alternating Optimization
dim_align_matrix, corr_mat = unsup_align.align(embed1, embed2, init_sim, lr = args.lr, bsz = args.bsz, nepoch = args.nepoch, niter = args.niter_align, reg = args.reg_align)
print(dim_align_matrix.shape, corr_mat.shape)
# Step 3: Match Nodes with Similar Embeddings
# Align embedding spaces
aligned_embed1 = embed1.dot(dim_align_matrix)
# Greedily match nodes
if args.alignmethod == 'greedy': # greedily align each embedding to most similar neighbor
# KD tree with only top similarities computed
if args.numtop is not None:
alignment_matrix = kd_align(aligned_embed1, embed2, distance_metric=args.embsim, num_top=args.numtop)
# All pairwise distance computation
else:
if args.embsim == "cosine":
alignment_matrix = sklearn.metrics.pairwise.cosine_similarity(aligned_embed1, embed2)
else:
alignment_matrix = sklearn.metrics.pairwise.euclidean_distances(aligned_embed1, embed2)
alignment_matrix = np.exp(-alignment_matrix)
return alignment_matrix
def get_counterpart(alignment_matrix, true_alignments):
n_nodes = alignment_matrix.shape[0]
correct_nodes = []
counterpart_dict = {}
if not sps.issparse(alignment_matrix):
sorted_indices = np.argsort(alignment_matrix)
for node_index in range(n_nodes):
target_alignment = node_index #default: assume identity mapping, and the node should be aligned to itself
if true_alignments is not None: #if we have true alignments (which we require), use those for each node
target_alignment = int(true_alignments[node_index])
if sps.issparse(alignment_matrix):
row, possible_alignments, possible_values = sps.find(alignment_matrix[node_index])
node_sorted_indices = possible_alignments[possible_values.argsort()]
else:
node_sorted_indices = sorted_indices[node_index]
if target_alignment in node_sorted_indices[-1:]:
correct_nodes.append(node_index)
counterpart = node_sorted_indices[-1]
counterpart_dict[node_index] = counterpart
return correct_nodes, counterpart_dict
def kd_align(emb1, emb2, normalize=False, distance_metric="euclidean", num_top=10):
kd_tree = KDTree(emb2, metric=distance_metric)
row = np.array([])
col = np.array([])
data = np.array([])
dist, ind = kd_tree.query(emb1, k=num_top)
print("queried alignments")
row = np.array([])
for i in range(emb1.shape[0]):
row = np.concatenate((row, np.ones(num_top) * i))
col = ind.flatten()
data = np.exp(-dist).flatten()
sparse_align_matrix = coo_matrix((data, (row, col)), shape=(emb1.shape[0], emb2.shape[0]))
return sparse_align_matrix.tocsr()
def main(args):
true_align_name = args.true_align
with open(true_align_name, "rb") as true_alignments_file:
true_align = pickle.load(true_alignments_file)
# true_align = pickle.load(true_alignments_file, encoding="bytes")
before_emb = time.time()
combined_graph_name = args.combined_graph
graph = nx.read_edgelist(combined_graph_name, nodetype=int, comments="%")
adj = nx.adjacency_matrix(graph).todense().astype(float)
node_num = int(adj.shape[0] / 2)
adjA = adj[:node_num, :node_num]
adjB = adj[node_num:, node_num:]
# step1: obtain normalized proximity-preserving node embeddings
if (args.embmethod == "netMF"):
emb_matrixA = embedding.netmf(adjA, dim = args.dim, window=args.window, b=args.negative, normalize=True)
emb_matrixB = embedding.netmf(adjB, dim = args.dim, window=args.window, b=args.negative, normalize=True)
after_emb = time.time()
if (args.store_emb):
np.save(args.embeddingA, emb_matrixA, allow_pickle=False)
np.save(args.embeddingB, emb_matrixB, allow_pickle=False)
before_align = time.time()
# step2 and 3: align embedding spaces and match nodes with similar embeddings
alignment_matrix = align_embeddings(emb_matrixA, emb_matrixB, adj1=csr_matrix(adjA), adj2=csr_matrix(adjB), struc_embed=None, struc_embed2=None)
after_align = time.time()
# evaluation
total_time = (after_align - before_align) + (after_emb - before_emb)
correct_nodes, counter_dict = get_counterpart(alignment_matrix, true_align)
score = len(correct_nodes) / float(node_num)
print(("score for CONE-align: %f" % score))
print(("time for CONE-align (in seconds): %f" % total_time))
with open(args.output_stats, "w") as log:
log.write("score: %f\n" % score)
log.writelines("time(in seconds): %f\n"% total_time)
if args.store_align:
binary_sim = np.zeros((node_num, node_num))
for j in range(node_num):
binary_sim[int(j), int(counter_dict[j])] = 1
np.save(args.output_alignment, binary_sim)
if __name__ == "__main__":
args = parse_args()
main(args)