-
Notifications
You must be signed in to change notification settings - Fork 0
/
bikeshare_2.py
254 lines (161 loc) · 9.18 KB
/
bikeshare_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#Professional track project 1
import time
import pandas as pd
import numpy as np
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
city = input("Please enter city name from one of the cities : chicago, washington, new york city:").lower()
while city not in CITY_DATA:
city = input("Please enter city name from one of the cities : chicago, washington, new york city:").lower()
# get user input for month (all, january, february, ... , june)
valid_months = ['all','january','february','march', 'april', 'may', 'june']
month = input("Please enter your desired month or 'all' for all months:").lower()
while month not in valid_months:
month = input("Please enter a valid month from :{} ".format(valid_months)).lower()
# get user input for day of week (all, monday, tuesday, ... sunday)
valid_days = ['all','sunday','monday','tuesday','wednesday','thursday','friday','saturday']
day = input("Please enter weekday or 'all' for all days:").lower()
while day not in valid_days:
day = input("Please enter a valid weekday from :{} ".format(valid_days)).lower()
#Note that we lowercased city,day,month for later purposes of use in following functions
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
# load data file into a dataframe
df = pd.read_csv(CITY_DATA[city])
# convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
# filter by month if applicable
if month != 'all':
# use the index of the months list to get the corresponding int
months = ['january', 'february', 'march', 'april', 'may', 'june']
month = months.index(month) + 1
# filter by month to create the new dataframe
df = df[df['month'] == month]
# filter by day of week if applicable
if day != 'all':
# filter by day of week to create the new dataframe
df = df[df['day_of_week'] == day.title()]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
df['Start Time'] = pd.to_datetime(df['Start Time']) #repeated here in case of calling this function on a ready df directly without using load_data(df)
Month_Strings = {1 : 'January', 2 : 'February', 3 : 'March',
4 : 'April', 5 : 'May', 6 : 'June'}
# TO DO: display the most common month
df['month'] = df['Start Time'].dt.month
print('The most common month of travel is: {}'.format(Month_Strings[df['month'].mode()[0]]))
#we can make it print months names with datetime_object = datetime.datetime.strptime(month_number, "%m")
# TO DO: display the most common day of week
df['day_of_week'] = df['Start Time'].dt.weekday_name
print('The most day of week for travel is: {}'.format(df['day_of_week'].mode()[0]))
# TO DO: display the most common start hour
df['hour']= df['Start Time'].dt.hour
print('The most common hour of start of travel is: {}'.format(df['hour'].mode()[0]))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# TO DO: display most commonly used start station
print("The most common start station is :{} ".format(df['Start Station'].mode()[0]))
# TO DO: display most commonly used end station
print("The most common end station is :{}".format(df['End Station'].mode()[0]))
# TO DO: display most frequent combination of start station and end station trip
df['route'] = df['Start Station'] + " to " + df['End Station']
print("The most common start-end station combination is :{}".format(df['route'].mode()[0]))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
df['duration'] = pd.to_datetime(df['End Time']) - pd.to_datetime(df['Start Time'])
# TO DO: display total travel time
print("The total time of travel for all trips is: {}".format(df['duration'].sum())) #Summation of all trips for all routes
# TO DO: display mean travel time
mean = df['duration'].mean()
print("The average time for a trip is: {} minutes and {} seconds".format(mean.components.minutes,mean.components.seconds)) #Displaying duration in just minutes and seconds as it never exceeds an hour for all given csv files
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df,city):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# TO DO: Display counts of gender
if city != 'washington': #Because the following two columns arent included in washington.csv
# TO DO: Display earliest, most recent, and most common year of birth
print("The oldest user was born at: {} \n".format(int(min(df['Birth Year'])))) #earliest birth year means oldest user
print("The youngest user was born at: {} \n".format(int(max(df['Birth Year']))))
print("The most common year of birth among users is: {} \n".format(int(df['Birth Year'].mode()[0])))
print("The number of users for each gender is displayed as follows: \n")
print(df['Gender'].value_counts().to_frame()) #to_frame() removes the datatypes at the bottom of the query for smoother output to the user
print("\n")
# TO DO: Display counts of user types
print("The numbers of each type of users are displayed as follows: \n")
print( df['User Type'].value_counts().to_frame())
print("\n")
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def display_raw_data(df):
'''Displays 5 rows of raw data upon request from the user
args: filtered DataFrame
'''
# given that df is send as arg after calling load_data therefore the user already applied the desired filters and we filtered it
df.drop(['Unnamed: 0','month', 'day_of_week', 'hour', 'route','duration'], inplace = True, axis = 1) #Remove the helper cols that we used as helpers in functions, as they're undesired for user display
i=0
for i in range(df.size-5): #to be ready to print the whole df in successive rows of 5 , we here ignored the case where there're rows less than 5 as the user specified them to be in rows of 5
try :
print(df.iloc[i:i+5])
except IndexError:
print("we are done with displaying the available data in rows of 5, \n Thank You for your time!!")
break
i += 5
proceed = input("Do you like to see 5 more rows, Please type 'yes' or 'no' only: ").lower()
while proceed != 'yes' and proceed != 'no':
proceed = input("Do you like to see 5 more rows, Please type 'yes' or 'no' only: ").lower()
if proceed == 'no':
break
'''if proceed == 'yes' & i< df.size-1 :
print(df.iloc[i:df.size-1])''' #Just uncomment these two lines if we are interested in displaying the very last batch of data even if they wont be enough to compose a 5 rows block
print("we are done with displaying the available data in rows of 5, \n Thank You for your time!!")
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df,city)
display_raw_data(df)
restart = input('\nWould you like to restart? Enter yes or no.\n').lower()
if restart != 'yes':
break
if __name__ == "__main__":
main()