diff --git a/README.md b/README.md index 1c5a904e..012820bb 100644 --- a/README.md +++ b/README.md @@ -70,6 +70,9 @@ The documentation also includes some [tutorials][tut_link], showing the most imp - [The Covariance Model][tut2_link] - [Variogram Estimation][tut3_link] - [Random Vector Field Generation][tut4_link] +- [Kriging][tut5_link] +- [Conditioned random field generation][tut6_link] +- [Field transformations][tut7_link] Some more examples are provided in the examples folder. @@ -268,5 +271,8 @@ You can contact us via . [tut2_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/latest/tutorial_02_cov.html [tut3_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/latest/tutorial_03_vario.html [tut4_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/latest/tutorial_04_vec_field.html +[tut5_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/latest/tutorial_05_kriging.html +[tut6_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/latest/tutorial_06_conditioning.html +[tut7_link]: https://geostat-framework.readthedocs.io/projects/gstools/en/latest/tutorial_07_transformations.html [cor_link]: https://en.wikipedia.org/wiki/Autocovariance#Normalization [vtk_link]: https://www.vtk.org/ diff --git a/docs/source/tutorial_05_kriging.rst b/docs/source/tutorial_05_kriging.rst index e33adc5e..f3bcb038 100755 --- a/docs/source/tutorial_05_kriging.rst +++ b/docs/source/tutorial_05_kriging.rst @@ -20,7 +20,7 @@ The resluting value :math:`z_0` at :math:`x_0` is calculated as a weighted mean: .. math:: - z_0 = \sum_{i=1}^n w_i(x_0) \cdot z_i + z_0 = \sum_{i=1}^n w_i \cdot z_i The weights :math:`W = (w_1,\ldots,w_n)` depent on the given covariance model and the location of the target point. diff --git a/docs/source/tutorial_07_transformations.rst b/docs/source/tutorial_07_transformations.rst index 90336a26..ccd0e886 100755 --- a/docs/source/tutorial_07_transformations.rst +++ b/docs/source/tutorial_07_transformations.rst @@ -1,5 +1,5 @@ -Tutorial 7: Field-transformation -================================ +Tutorial 7: Field transformations +================================= The generated fields of gstools are ordinary gaussian random fields. In application there are several transformations to describe real world