forked from 1Konny/Beta-VAE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
202 lines (179 loc) · 7.23 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""implementing models"""
import torch.nn as nn
import torch.nn.init as init
from torch.autograd import Variable
def reparametrize(mu, logvar):
std = logvar.div(2).exp()
eps = Variable(std.data.new(std.size()).normal_())
return mu + std*eps
class View(nn.Module):
def __init__(self, size):
super(View, self).__init__()
self.size = size
def forward(self, tensor):
return tensor.view(self.size)
def kaiming_init(m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
init.kaiming_normal(m.weight)
if m.bias is not None:
m.bias.data.fill_(0)
elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
m.weight.data.fill_(1)
if m.bias is not None:
m.bias.data.fill_(0)
class base_model(nn.Module):
def __init__(self, z_dim, nc):
super(base_model, self).__init__()
self.z_dim = z_dim
self.nc = nc
def weight_init(self):
for block in self._modules:
for m in self._modules[block]:
kaiming_init(m)
def _encode(self, x):
return self.encoder(x)
class AutoEncoder(base_model):
def __init__(self, z_dim, nc):
super(AutoEncoder, self).__init__(z_dim, nc)
def forward(self, x):
distributions = self._encode(x)
mu = distributions[:, :self.z_dim]
logvar = distributions[:, self.z_dim:]
z = reparametrize(mu, logvar)
x_recon = self._decode(z)
return x_recon, mu, logvar
def _decode(self, z):
if z.shape[1] == self.z_dim:
return self.decoder(z)
else:
mu = z[:, :self.z_dim]
logvar = z[:, self.z_dim:]
z = reparametrize(mu, logvar)
return self.decoder(z)
class BetaVAE_H_net(AutoEncoder):
"""Model proposed in original beta-VAE paper(Higgins et al, ICLR, 2017)."""
def __init__(self, z_dim=32, nc=3):
super(BetaVAE_H_net, self).__init__(z_dim, nc)
self.encoder = nn.Sequential(
nn.Conv2d(nc, 32, 4, 2, 1), # B, 32, 32, 32
nn.ReLU(True),
nn.Conv2d(32, 32, 4, 2, 1), # B, 32, 16, 16
nn.ReLU(True),
nn.Conv2d(32, 64, 4, 2, 1), # B, 64, 8, 8
nn.ReLU(True),
nn.Conv2d(64, 64, 4, 2, 1), # B, 64, 4, 4
nn.ReLU(True),
nn.Conv2d(64, 256, 4, 1), # B, 256, 1, 1
nn.ReLU(True),
View((-1, 256*1*1)), # B, 256
nn.Linear(256, z_dim*2), # B, z_dim*2
)
self.decoder = nn.Sequential(
nn.Linear(z_dim, 256), # B, 256
View((-1, 256, 1, 1)), # B, 256, 1, 1
nn.ReLU(True),
nn.ConvTranspose2d(256, 64, 4), # B, 64, 4, 4
nn.ReLU(True),
nn.ConvTranspose2d(64, 64, 4, 2, 1), # B, 64, 8, 8
nn.ReLU(True),
nn.ConvTranspose2d(64, 32, 4, 2, 1), # B, 32, 16, 16
nn.ReLU(True),
nn.ConvTranspose2d(32, 32, 4, 2, 1), # B, 32, 32, 32
nn.ReLU(True),
nn.ConvTranspose2d(32, nc, 4, 2, 1), # B, nc, 64, 64
nn.Sigmoid()
)
self.weight_init()
class BetaVAE_B_net(AutoEncoder):
"""Model proposed in understanding beta-VAE paper(Burgess et al, arxiv:1804.03599, 2018)."""
def __init__(self, z_dim=32, nc=1):
super(BetaVAE_B_net, self).__init__(z_dim, nc)
self.encoder = nn.Sequential(
nn.Conv2d(nc, 32, 4, 2, 1), # B, 32, 32, 32
nn.ReLU(True),
nn.Conv2d(32, 32, 4, 2, 1), # B, 32, 16, 16
nn.ReLU(True),
nn.Conv2d(32, 32, 4, 2, 1), # B, 32, 8, 8
nn.ReLU(True),
nn.Conv2d(32, 32, 4, 2, 1), # B, 32, 4, 4
nn.ReLU(True),
View((-1, 32*4*4)), # B, 512
nn.Linear(32*4*4, 256), # B, 256
nn.ReLU(True),
nn.Linear(256, 256), # B, 256
nn.ReLU(True),
nn.Linear(256, z_dim*2), # B, z_dim*2
)
self.decoder = nn.Sequential(
nn.Linear(z_dim, 256), # B, 256
nn.ReLU(True),
nn.Linear(256, 256), # B, 256
nn.ReLU(True),
nn.Linear(256, 32*4*4), # B, 512
nn.ReLU(True),
View((-1, 32, 4, 4)), # B, 32, 4, 4
nn.ConvTranspose2d(32, 32, 4, 2, 1), # B, 32, 8, 8
nn.ReLU(True),
nn.ConvTranspose2d(32, 32, 4, 2, 1), # B, 32, 16, 16
nn.ReLU(True),
nn.ConvTranspose2d(32, 32, 4, 2, 1), # B, 32, 32, 32
nn.ReLU(True),
nn.ConvTranspose2d(32, nc, 4, 2, 1), # B, nc, 64, 64
nn.Sigmoid()
)
self.weight_init()
class DAE_net(base_model):
def __init__(self, z_dim=100, nc=3):
super(DAE_net, self).__init__(z_dim, nc)
self.encoder = nn.Sequential(
nn.Conv2d(nc, 32, 4, 2, 1), # B, 32, 32, 32
nn.ReLU(True),
nn.Conv2d(32, 32, 4, 2, 1), # B, 32, 16, 16
nn.ReLU(True),
nn.Conv2d(32, 64, 4, 2, 1), # B, 64, 8, 8
nn.ReLU(True),
nn.Conv2d(64, 64, 4, 2, 1), # B, 64, 4, 4
nn.ReLU(True),
View((-1, 1024)), # B, 1024
nn.Linear(1024, z_dim), # B, z_dim
)
self.decoder = nn.Sequential(
nn.Linear(z_dim, 1024), # B, 1024
View((-1, 64, 4, 4)), # B, 64, 4, 4
nn.ReLU(True),
nn.ConvTranspose2d(64, 64, 4, 2, 1), # B, 64, 8, 8
nn.ReLU(True),
nn.ConvTranspose2d(64, 32, 4, 2, 1), # B, 32, 16, 16
nn.ReLU(True),
nn.ConvTranspose2d(32, 32, 4, 2, 1), # B, 32, 32, 32
nn.ReLU(True),
nn.ConvTranspose2d(32, nc, 4, 2, 1), # B, nc, 64, 64
nn.Sigmoid()
)
self.weight_init()
def forward(self, x):
x_encoded = self._encode(x)
x_recon = self._decode(x_encoded)
return x_recon
def _decode(self, z):
return self.decoder(z)
class SCAN_net(AutoEncoder):
"""Model proposed in SCAN: Learning Hierarchical Compositional Visual Concepts, Higgins et al., ICLR 2018."""
def __init__(self, z_dim=32, nc=40):
super(SCAN_net, self).__init__(z_dim, nc)
self.encoder = nn.Sequential(
nn.Linear(nc, 500), # B, 500
nn.ReLU(True),
nn.Linear(500, 500), # B, 500
nn.ReLU(True),
nn.Linear(500, self.z_dim * 2), # B, z_dim*2
)
self.decoder = nn.Sequential(
nn.Linear(z_dim, 500), # B, 500
nn.ReLU(True),
nn.Linear(500, 500), # B, 500
nn.ReLU(True),
nn.Linear(500, nc), # B, nc
nn.Sigmoid(),
)
self.weight_init()