forked from 1Konny/Beta-VAE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolver.py
640 lines (535 loc) · 24.4 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
"""solver.py"""
import warnings
warnings.filterwarnings("ignore")
import os
from abc import ABC, abstractmethod
from tqdm import tqdm
import visdom
import random
from PIL import Image, ImageDraw
import math
import numpy as np
import torch
import torch.optim as optim
from torchvision.utils import make_grid, save_image
from torchvision import transforms
from utils import cuda, grid2gif
from model import BetaVAE_H_net, BetaVAE_B_net, DAE_net, SCAN_net
from dataset import return_data
#---------------------------------TEMPLATES-------------------------------------#
class Solver(ABC):
def __init__(self, args, require_attr=False, nc=None):
self.global_iter = 0
self.args = args
if nc is None:
if args.dataset.lower() == 'dsprites':
self.nc = 1
self.decoder_dist = 'bernoulli'
elif args.dataset.lower() == '3dchairs':
self.nc = 3
self.decoder_dist = 'gaussian'
elif args.dataset.lower() == 'celeba':
self.nc = 3
self.decoder_dist = 'gaussian'
else:
raise NotImplementedError
else:
self.nc = nc
self.output_dir = os.path.join(args.root_dir, self.env_name, args.output_dir)
self.ckpt_dir = os.path.join(args.root_dir, self.env_name, args.ckpt_dir)
if not os.path.exists(self.ckpt_dir):
os.makedirs(self.ckpt_dir, exist_ok=True)
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir, exist_ok=True)
if self.args.vis_on:
self.vis = visdom.Visdom(port=self.args.vis_port)
self.gather = DataGather()
self.net = cuda(self.model(self.z_dim, self.nc), self.args.cuda)
self.optim = optim.Adam(self.net.parameters(), lr=self.args.lr,
betas=(self.args.beta1, self.args.beta2), eps=self.args.epsilon)
self.load_checkpoint(self.args.ckpt_name)
self.data_loader = return_data(self.args, require_attr)
def prepare_training(self):
pass
@abstractmethod
def training_process(self, x):
pass
@abstractmethod
def get_win_states(self):
pass
@abstractmethod
def load_win_states(self):
pass
def train(self):
self.net_mode(train=True)
self.prepare_training()
self.pbar = tqdm(total=self.args.max_iter)
self.pbar.update(self.global_iter)
while self.global_iter < self.args.max_iter:
for x in self.data_loader:
self.global_iter += 1
self.pbar.update(1)
loss = self.training_process(x)
self.optim.zero_grad()
loss.backward()
self.optim.step()
if self.global_iter%self.args.display_save_step == 0:
self.save_checkpoint(self.get_win_states(), str(self.global_iter))
self.save_checkpoint(self.get_win_states(), 'last')
self.pbar.write('Saved checkpoint(iter:{})'.format(self.global_iter))
self.pbar.write("[Training Finished]")
self.pbar.close()
def vis_display(self, image_set, traverse=True):
if self.args.vis_on:
for image in image_set:
self.gather.insert(images=image.data)
self.vis_reconstruction()
self.vis_lines()
self.gather.flush()
if (self.args.vis_on or self.args.save_output) and traverse:
self.vis_traverse()
def vis_reconstruction(self):
self.net_mode(train=False)
x = self.gather.data['images'][0][:100]
x = make_grid(x, normalize=True)
x_recon = self.gather.data['images'][1][:100]
x_recon = make_grid(x_recon, normalize=True)
images = torch.stack([x, x_recon], dim=0).cpu()
self.vis.images(images, env=self.env_name+'_reconstruction',
opts=dict(title=str(self.global_iter)), nrow=10)
output_dir = os.path.join(self.output_dir, str(self.global_iter))
os.makedirs(output_dir, exist_ok=True)
save_image(images, os.path.join(output_dir, 'reconstruction.jpeg'), 10)
self.net_mode(train=True)
def update_win(self, Y, win, legend, title):
iters = torch.Tensor(self.gather.data['iter'])
opts = dict( width=400, height=400, legend=legend, xlabel='iteration', title=title,)
if win is None:
return self.vis.line(X=iters, Y=Y, env=self.env_name+'_lines', opts=opts)
else:
return self.vis.line(X=iters, Y=Y, env=self.env_name+'_lines', win=win, update='append', opts=opts)
def net_mode(self, train):
if not isinstance(train, bool):
raise('Only bool type is supported. True or False')
if train:
self.net.train()
else:
self.net.eval()
def save_checkpoint(self, win_states, filename, silent=True):
states = {'iter': self.global_iter,
'win_states': win_states,
'net_states': self.net.state_dict(),
'optim_states': self.optim.state_dict(),}
file_path = os.path.join(self.ckpt_dir, filename)
with open(file_path, mode='wb+') as f:
torch.save(states, f)
if not silent:
print("=> saved checkpoint '{}' (iter {})".format(file_path, self.global_iter))
def load_checkpoint(self, filename):
file_path = os.path.join(self.ckpt_dir, filename)
if os.path.isfile(file_path):
checkpoint = torch.load(file_path)
self.global_iter = checkpoint['iter']
self.load_win_states(checkpoint['win_states'])
self.net.load_state_dict(checkpoint['net_states'])
self.optim.load_state_dict(checkpoint['optim_states'])
print("=> loaded checkpoint '{} (iter {})'".format(file_path, self.global_iter))
else:
print("=> no checkpoint found at '{}'".format(file_path))
keys = ['lines', 'reconstruction', 'traversal', 'img2sym', 'sym2img']
for key in keys:
env_name = self.env_name + '_' + key
self.vis.delete_env(env_name)
def tensor(self, tensor, requires_grad=True):
return cuda(torch.tensor(tensor, dtype=torch.float32, requires_grad=requires_grad), self.args.cuda)
class super_beta_VAE(Solver):
def __init__(self, args):
if args.model == 'H':
self.model = BetaVAE_H_net
elif args.model == 'B':
self.model = BetaVAE_B_net
else:
raise NotImplementedError('only support model H or B')
self.z_dim = args.beta_VAE_z_dim
self.env_name = args.beta_VAE_env_name
self.win_recon = None
self.win_kld = None
self.win_mu = None
self.win_var = None
super(super_beta_VAE, self).__init__(args)
def prepare_training(self):
self.args.C_max = self.tensor(torch.FloatTensor([self.args.C_max]))
def recon_loss_funtion(self, x, x_recon):
pass
def training_process(self, x):
x = self.tensor(x)
x_recon, mu, logvar = self.net(x)
recon_loss = self.recon_loss_function(x, x_recon)
kld = kl_divergence(mu, logvar)
if self.args.objective == 'H':
loss = recon_loss + self.args.beta * kld
elif self.args.objective == 'B':
C = torch.clamp(self.args.C_max/self.args.C_stop_iter*self.global_iter, 0, self.args.C_max.data[0])
loss = recon_loss + self.args.gamma * (kld - C).abs()
if self.args.vis_on and self.global_iter % self.args.gather_step == 0:
self.gather.insert(iter=self.global_iter,
mu=mu.mean(0).data, var=logvar.exp().mean(0).data,
recon_loss=recon_loss.data, kld=kld.data)
if self.global_iter % self.args.display_save_step == 0:
self.vis_display([x, self.visual(x_recon)])
return loss
def vis_lines(self):
self.net_mode(train=False)
def gather(name):
return torch.stack(self.gather.data[name]).cpu()
recon_losses = gather('recon_loss')
mus = gather('mu')
variances = gather('var')
klds = gather('kld')
legend = []
for z_j in range(self.z_dim):
legend.append('z_{}'.format(z_j))
self.win_recon = self.update_win(recon_losses, self.win_recon, [''], 'reconstruction loss')
self.win_kld = self.update_win(klds, self.win_kld, [''], 'kl divergence')
self.win_mu = self.update_win(mus, self.win_mu, legend[:self.z_dim], 'posterior mean')
self.win_var = self.update_win(variances, self.win_var, legend[:self.z_dim], 'posterior variance')
self.net_mode(train=True)
def vis_traverse(self, limit=3, inter=2/3, loc=-1):
self.net_mode(train=False)
decoder = self.net.decoder
encoder = self.net.encoder
interpolation = torch.arange(-limit, limit+0.1, inter)
n_dsets = len(self.data_loader.dataset)
rand_idx = random.randint(1, n_dsets-1)
random_img = self.data_loader.dataset.__getitem__(rand_idx)
random_img = self.tensor(random_img).unsqueeze(0)
random_img_z = encoder(random_img)[:, :self.z_dim]
random_z = self.tensor(torch.rand(1, self.z_dim))
if self.args.dataset == 'dsprites':
fixed_idx1 = 87040 # square
fixed_idx2 = 332800 # ellipse
fixed_idx3 = 578560 # heart
fixed_img1 = self.data_loader.dataset.__getitem__(fixed_idx1)
fixed_img1 = self.tensor(fixed_img1).unsqueeze(0)
fixed_img_z1 = encoder(fixed_img1)[:, :self.z_dim]
fixed_img2 = self.data_loader.dataset.__getitem__(fixed_idx2)
fixed_img2 = self.tensor(fixed_img2).unsqueeze(0)
fixed_img_z2 = encoder(fixed_img2)[:, :self.z_dim]
fixed_img3 = self.data_loader.dataset.__getitem__(fixed_idx3)
fixed_img3 = self.tensor(fixed_img3).unsqueeze(0)
fixed_img_z3 = encoder(fixed_img3)[:, :self.z_dim]
Z = {'fixed_square':fixed_img_z1, 'fixed_ellipse':fixed_img_z2,
'fixed_heart':fixed_img_z3, 'random_img':random_img_z}
else:
fixed_idx = 0
fixed_img = self.data_loader.dataset.__getitem__(fixed_idx)
fixed_img = self.tensor(fixed_img).unsqueeze(0)
fixed_img_z = encoder(fixed_img)[:, :self.z_dim]
Z = {'fixed_img':fixed_img_z, 'random_img':random_img_z, 'random_z':random_z}
gifs = []
for key in Z.keys():
z_ori = Z[key]
samples = []
for row in range(self.z_dim):
if loc != -1 and row != loc:
continue
z = z_ori.clone()
for val in interpolation:
z[:, row] = val
sample = self.visual(decoder(z)).data
samples.append(sample)
gifs.append(sample)
samples = torch.cat(samples, dim=0).cpu()
title = '{}_latent_traversal(iter:{})'.format(key, self.global_iter)
self.vis.images(samples, env=self.env_name+'_traverse',
opts=dict(title=title), nrow=len(interpolation))
if self.args.save_output:
output_dir = os.path.join(self.output_dir, str(self.global_iter))
os.makedirs(output_dir, exist_ok=True)
gifs = torch.cat(gifs)
gifs = gifs.view(len(Z), self.z_dim, len(interpolation), self.nc, 64, 64).transpose(1, 2)
for i, key in enumerate(Z.keys()):
for j, val in enumerate(interpolation):
save_image(tensor=gifs[i][j].cpu(),
filename=os.path.join(output_dir, '{}_{}.jpg'.format(key, j)),
nrow=self.z_dim, pad_value=1)
grid2gif(os.path.join(output_dir, key+'*.jpg'),
os.path.join(output_dir, key+'.gif'), delay=10)
self.net_mode(train=True)
def get_win_states(self):
return {'recon': self.win_recon,
'kld': self.win_kld,
'mu': self.win_mu,
'var': self.win_var,}
def load_win_states(self, win_states):
self.win_recon = win_states['recon']
self.win_kld = win_states['kld']
self.win_var = win_states['var']
self.win_mu = win_states['mu']
#---------------------------------SOLVERS-------------------------------------#
class ori_beta_VAE(super_beta_VAE):
def __init__(self, args):
super(ori_beta_VAE, self).__init__(args)
def recon_loss_function(self, x, x_recon):
return reconstruction_loss(x, x_recon, self.decoder_dist)
def visual(self, x):
return x
class beta_VAE(super_beta_VAE):
def __init__(self, args):
super(beta_VAE, self).__init__(args)
DAE_solver = DAE(args)
DAE_solver.net_mode(train=False)
self.DAE_net = DAE_solver.net
def recon_loss_function(self, x, x_recon):
return reconstruction_loss(self.DAE_net._encode(x), self.DAE_net._encode(x_recon), self.decoder_dist)
def visual(self, x):
return self.DAE_net(x)
class DAE(Solver):
def __init__(self, args):
self.win_recon = None
self.model = DAE_net
self.z_dim = args.DAE_z_dim
self.env_name = args.DAE_env_name
super(DAE, self).__init__(args)
def prepare_training(self):
pass
def training_process(self, x):
x = self.tensor(x)
masked = random_occluding(x, [self.args.batch_size, self.nc, self.args.image_size, self.args.image_size], cuda_or_not=self.args.cuda)
x_recon = self.net(masked)
recon_loss = reconstruction_loss(x, x_recon, self.decoder_dist)
loss = recon_loss
if self.args.vis_on and self.global_iter % self.args.gather_step == 0:
self.gather.insert(iter=self.global_iter, recon_loss=recon_loss.data)
if self.global_iter % self.args.display_save_step == 0:
self.pbar.write('[{}] recon_loss:{:.3f}'.format(self.global_iter, recon_loss.data[0]))
self.vis_display([masked, x_recon], traverse=False)
return loss
def get_win_states(self):
return {'recon': self.win_recon}
def load_win_states(self, win_states):
self.win_recon = win_states['recon']
def vis_lines(self):
self.net_mode(train=False)
recon_losses = torch.stack(self.gather.data['recon_loss']).cpu()
self.win_recon = self.update_win(recon_losses, self.win_recon, [''], 'reconstruction loss')
self.net_mode(train=True)
class SCAN(Solver):
def __init__(self, args):
self.model = SCAN_net
self.z_dim = args.SCAN_z_dim
self.env_name = args.SCAN_env_name
self.win_recon = None
self.win_kld = None
self.win_relv = None
self.win_mu = None
self.win_var = None
self.keys = None
super(SCAN, self).__init__(args, require_attr=True, nc=40)
beta_VAE_solver = beta_VAE(args)
beta_VAE_solver.net_mode(train=False)
self.beta_VAE_net = beta_VAE_solver.net
self.DAE_net = beta_VAE_solver.DAE_net
def training_process(self, data):
[x, y, keys] = data
x = self.tensor(x)
y = self.tensor(y)
if self.keys is None:
self.keys = np.asarray(keys)[:, 0].tolist()
self.n_key = len(self.keys)
y_recon, mu_y, logvar_y = self.net(y)
z_x = self.beta_VAE_net._encode(x)
mu_x = z_x[:, :self.args.beta_VAE_z_dim]
logvar_x = z_x[:, self.args.beta_VAE_z_dim:]
recon_loss = reconstruction_loss(y, y_recon, 'bernoulli')
kld = kl_divergence(mu_y, logvar_y)
relv = dual_kl_divergence(mu_x, logvar_x, mu_y, logvar_y)
loss = recon_loss + self.args.beta * kld + self.args.Lambda * relv
if self.args.vis_on and self.global_iter % self.args.gather_step == 0:
self.gather.insert(iter=self.global_iter,
mu=mu_y.mean(0).data, var=logvar_y.exp().mean(0).data,
recon_loss=recon_loss.data, kld=kld.data, relv=relv.data)
if self.global_iter % self.args.display_save_step == 0:
self.vis_display([x, self.visual(y)])
return loss
def visual(self, y):
return self.DAE_net(self.beta_VAE_net._decode(self.net._encode(y)))
def get_win_states(self):
return {'recon': self.win_recon,
'kld': self.win_kld,
'relv': self.win_relv,
'mu': self.win_mu,
'var': self.win_var,}
def load_win_states(self, win_states):
self.win_recon = win_states['recon']
self.win_kld = win_states['kld']
self.win_relv = win_states['relv']
self.win_var = win_states['var']
self.win_mu = win_states['mu']
def vis_lines(self):
self.net_mode(train=False)
def gather(name):
return torch.stack(self.gather.data[name]).cpu()
recon_losses = gather('recon_loss')
klds = gather('kld')
relvs = gather('relv')
mus = gather('mu')
variances = gather('var')
legend = []
for z_j in range(self.z_dim):
legend.append('z_{}'.format(z_j))
self.win_recon = self.update_win(recon_losses, self.win_recon, [''], 'reconstruction loss')
self.win_kld = self.update_win(klds, self.win_kld, [''], 'kl divergence')
self.win_relv = self.update_win(relvs, self.win_relv, [''], 'relevance')
self.win_mu = self.update_win(mus, self.win_mu, legend[:self.z_dim], 'posterior mean')
self.win_var = self.update_win(variances, self.win_var, legend[:self.z_dim], 'posterior variance')
self.net_mode(train=True)
def vis_traverse(self, limit=3, inter=2/3, loc=-1, num_img2sym=4, num_sym2img=9):
self.net_mode(train=False)
n_dsets = self.data_loader.__len__()
toimage = transforms.ToPILImage('RGB')
interpolation = torch.arange(-limit, limit+0.1, inter)
output_dir = os.path.join(self.output_dir, str(self.global_iter))
os.makedirs(output_dir, exist_ok=True)
def save_display(images, name, nrow):
images = torch.stack(images, dim=0)
self.vis.images(images, env=self.env_name+'_'+name,
opts=dict(title='iter:{}'.format(self.global_iter)), nrow=nrow)
save_image(images, os.path.join(output_dir, '{}.jpeg'.format(name)), nrow)
# img2sym
images = []
for i in range(num_img2sym):
i_rand = random.randint(0, n_dsets)
[image, attr, keys] = self.data_loader.dataset.__getitem__(i_rand)
if self.keys is None:
self.keys = keys
self.n_key = len(self.keys)
y_x = self.net._decode(self.beta_VAE_net._encode(self.tensor(image.unsqueeze(0)))).cpu().squeeze(0)
image = toimage(image)
board = Image.new('RGB', (400, 200), 'white')
board.paste(image, (18, 30))
drawer = ImageDraw.Draw(board)
attr_text = ''
for i_key in range(self.n_key):
if attr[i_key] >= 1.:
attr_text = attr_text + self.keys[i_key] + '\n'
drawer.text((90, 10), attr_text, fill='black')
y_x = y_x.tolist()
sorted_y = y_x.copy()
sorted_y.sort(reverse=True)
sym_text = ''
for i_key in range(10):
if sorted_y[i_key] > 0.4:
index = y_x.index(sorted_y[i_key])
sym_text = sym_text + '[{0}: {1:.3f}]\n'.format(self.keys[index], y_x[index])
drawer.text((225, 10), sym_text, fill='black')
images.append(transforms.ToTensor()(board))
save_display(images, 'img2sym', int(math.sqrt(num_img2sym)))
#sym2img
images = []
for i in range(self.n_key):
random_ys = np.random.randint(2, size=[num_sym2img, self.nc])
random_ys[:, i] = 3
random_ys = self.tensor(random_ys)
image_subset = self.DAE_net(self.beta_VAE_net._decode(self.net._encode(random_ys))).cpu().data
nrow = int(math.sqrt(num_sym2img))
image_subset = toimage(make_grid(image_subset, nrow=int(math.sqrt(num_sym2img))))
image_subset.resize((nrow * self.args.image_size, nrow * self.args.image_size))
board = Image.new('RGB', (nrow * self.args.image_size, nrow * self.args.image_size + 15), 'white')
board.paste(image_subset, (0, 15))
drawer = ImageDraw.Draw(board)
drawer.text((0, 0), self.keys[i], fill='black')
images.append(transforms.ToTensor()(board))
save_display(images, 'sym2img', 5)
#traverse
images = []
collection = []
for i in range(self.n_key):
n_traverse = len(list(interpolation))
random_y = np.random.randint(2, size=[1, self.nc])
def set_value(v):
vector = random_y.copy()
vector[0, i] = v
return vector
random_ys = self.tensor(np.concatenate([set_value(j) for j in interpolation], axis=0))
image_subset = self.DAE_net(self.beta_VAE_net._decode(self.net._encode(random_ys))).cpu().data
collection.append(image_subset)
image_row = toimage(make_grid(image_subset, nrow=n_traverse))
image_row.resize((n_traverse * self.args.image_size, self.args.image_size))
board = Image.new('RGB', (n_traverse * self.args.image_size, self.args.image_size + 15), 'white')
board.paste(image_row, (0, 15))
drawer = ImageDraw.Draw(board)
drawer.text((0, 0), self.keys[i], fill='black')
images.append(transforms.ToTensor()(board))
save_display(images, 'traversal', 1)
self.net_mode(train=True)
#---------------------------------UTILITIES-------------------------------------#
def reconstruction_loss(X, Y, distribution):
batch_size = X.size(0)
assert batch_size != 0
if distribution == 'bernoulli':
recon_loss = -(X * torch.log(Y) + (1 - X) * torch.log(1 - Y)).sum() / batch_size
elif distribution == 'gaussian':
recon_loss = ((X - Y) ** 2).sum() / batch_size
else:
recon_loss = None
return recon_loss
def kl_divergence(mu, logvar):
batch_size = mu.size(0)
assert batch_size != 0
if mu.data.ndimension() == 4:
mu = mu.view(mu.size(0), mu.size(1))
if logvar.data.ndimension() == 4:
logvar = logvar.view(logvar.size(0), logvar.size(1))
klds = -0.5*(1 + logvar - mu.pow(2) - logvar.exp())
return klds.mean(0).sum()
def dual_kl_divergence(mu_x, logvar_x, mu_y, logvar_y):
batch_size = mu_x.size(0)
assert batch_size != 0
if mu_x.data.ndimension() == 4:
mu_x = mu_x.view(mu_x.size(0), mu_x.size(1))
if logvar_x.data.ndimension() == 4:
logvar_x = logvar_x.view(logvar_x.size(0), logvar_x.size(1))
if mu_y.data.ndimension() == 4:
mu_y = mu_y.view(mu_y.size(0), mu_y.size(1))
if logvar_y.data.ndimension() == 4:
logvar_y = logvar_y.view(logvar_y.size(0), logvar_y.size(1))
var_x = logvar_x.exp()
var_y = logvar_y.exp()
klds = 0.5 * (-1 + var_x / var_y + ((mu_x - mu_y) ** 2) / var_y + logvar_y - logvar_x)
return klds.mean(0).sum()
class DataGather(object):
def __init__(self):
self.data = self.get_empty_data_dict()
def get_empty_data_dict(self):
return dict(iter=[],
recon_loss=[],
kld=[],
relv=[],
mu=[],
var=[],
images=[],)
def insert(self, **kwargs):
for key in kwargs:
self.data[key].append(kwargs[key])
def flush(self):
self.data = self.get_empty_data_dict()
def random_occluding(images, size, cuda_or_not=True):
occluded = images.clone()
(batch_size, nc, x, y) = size
def random_mask():
left = random.randint(0, x)
right = random.randint(0, x)
down = random.randint(0, y)
up = random.randint(0, y)
if left > right:
left, right = right, left
if down > up:
down, up = up, down
mask = torch.zeros([nc, x, y], dtype=torch.uint8)
mask[:, left : right, down : up] = 1
return mask
masks = torch.stack([random_mask() for i in range(batch_size)])
masks = cuda(masks, cuda_or_not)
occluded.masked_fill_(masks, 0)
return occluded