-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSet.py
executable file
·457 lines (356 loc) · 16.6 KB
/
Set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# Set.py
#
# Non-Deterministic Processor (NDP) - efficient parallel SAT-solver
# Copyright (c) 2022 GridSAT Stiftung
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# GridSAT Stiftung - Georgstr. 11 - 30159 Hannover - Germany - ipfs: gridsat.eth/ - info@gridsat.io
#
import hashlib
import ast
from configs import *
from Clause import *
import functools
class Set:
def __init__(self, str_input=None, id=0, properties=None):
self.clauses = []
self.value = None
self.id = id
self.computed_hash = None
self.final_names_map = []
self.evaluated_vars = {}
self.original_values = {}
self.highest_occurring_var = 1
# create a Set object from input string
if str_input:
seq = str_input
try:
seq = seq.replace('(', '')
seq = seq.replace(')', '')
clauses = seq.split('&')
clauses_set = []
for cl in clauses:
s = cl.split('|')
# remove duplicates within clause
s = frozenset(map(int, s))
# adding in a set container will remove duplicate clauses but will shuffle input order, so don't do it
clauses_set.append(s)
# create clauses objects
i = 1
for cl in clauses_set:
c = Clause(cl)
c.initial_index = i
self.add_clause(c)
i += 1
except Exception as e:
print("Error: " + str(e))
if properties:
self.deserialize_properties(properties)
# deserialize set's properties when retrieved from the DB
# As of now we have 3 properties: evaluated_vars, original_vars, final_names_map
# are stored as string in order, all are concatenated using '|'
def deserialize_properties(self, properties):
self.evaluated_vars = {}
self.original_values = {}
self.final_names_map = []
evaluated_vars, original_values, final_names_map = properties.split('|')
### get evaluated_vars
if evaluated_vars:
# input evaluated vars should be in the format [comma delimited true variables]-[comma delimited false variables]
# for example: '1,3,5,2-6,4' => {1:true, 3:true, 5:true, 2:true, 6:false, 4:false}
true_vars, false_vars = evaluated_vars.split('-')
flag = True
for vars in (true_vars, false_vars):
if vars:
self.evaluated_vars.update({v:flag for v in list(map(int, vars.split(',')))})
flag = not flag
### get original_values
if original_values:
#example format: {2:5,3:6,4:1,5:8,6:2,7:7,8:4,9:9}
self.original_values = ast.literal_eval(original_values)
### get final_names_map
if final_names_map:
# example format: [2,3,4,5,6,7,8,9]
self.final_names_map = ast.literal_eval(final_names_map)
# convert evaluated_vars, original_values and final_names_map to string for DB storage
def serialize_properties(self):
### evaluated_vars
# convert evaluated vars of this set into string for DB storage
# the format is [comma delimited true variables]-[comma delimited false variables]
true_ev_vars = []
false_ev_vars = []
for k,v in self.evaluated_vars.items():
if v: true_ev_vars.append(str(k))
else: false_ev_vars.append(str(k))
ev_var_serialized = ','.join(true_ev_vars) + '-' + ','.join(false_ev_vars)
### original_values
original_values_serialized = str(self.original_values)
### final_names_map
final_names_map_serialized = str(self.final_names_map)
return ev_var_serialized + '|' + original_values_serialized + '|' + final_names_map_serialized
# when all clauses in a set get evaluated, then the set has a final value
def set_value(self, val):
self.value = val
def add_clause(self, cl):
# no need to add new clauses if the set is already evaluated previous to False
if self.value == False:
return
if cl.value == False:
self.set_value(False)
elif cl.value == True and len(self.clauses) == 0:
self.set_value(True)
elif cl.value == None:
self.clauses.append(cl)
self.set_value(None)
# if cl == True, then it has no meaning to add it
def sort_within_clauses(self):
for i in range(0, len(self.clauses)):
self.clauses[i].sort()
def sort_clauses(self):
#self.clauses = sorted(self.clauses)
def sort_by_var(cl):
return abs(cl.raw[0])
if len(self.clauses) > 0 and len(self.clauses[0].raw) > 0:
self.clauses.sort()
#self.clauses.sort()
def rename_vars(self):
# start from 1
id = 1
names_map = {}
# keep track of the highest occurring var
highest_occurring_vars_map = {}
for cl in self.clauses:
for i in range(0, len(cl.raw)):
sign = -1 if cl.raw[i] < 0 else 1
new = names_map.get(abs(cl.raw[i]), None)
if new == None:
new = id
names_map[abs(cl.raw[i])] = new
id = id + 1
cl.raw[i] = new * sign
# calculate highest occurance var (should we count abs value?)
highest_occurring_vars_map[cl.raw[i]] = highest_occurring_vars_map.get(cl.raw[i], 0) + 1
self.highest_occurring_var = max(highest_occurring_vars_map, key=highest_occurring_vars_map.get)
var_positions = list(names_map.keys())
# if the set already gone through a round of rename before
if self.final_names_map:
self.final_names_map = [self.final_names_map[v-1] for v in var_positions]
# if it's first round of rename, typically LOU mode has only one rename round per set
else:
self.final_names_map = var_positions
self.sort_within_clauses()
# l.o. state as in "Constructive patterns of logical truth", or "#2SAT is in P" p. 23:
# 1- variables within clauses are in ascending order.
# 2- clauses are in ascending ordered in the Set
# 3- All new Names/Indices of literals occurring for the first time in any clause of S are strictly greater than all the Literal Names/Indices occurring before them in S.
# 4- each clause is unique in the set. (this was already done on input parsing)
# 5- the minimum literal id in the set equals MIN_LITERAL (new rule not in the paper). This is to force renaming if previous conditions are met but IDs start from a large value.
#@param: mode:
# lo (linearly ordered), all conditions are met
# lou (linearly ordered universal), is a state where condition# 2 is skipped
# normal: only condition 1 is met
def is_in_lo_state(self, mode=MODE_LO):
# condition 3
if mode != MODE_NORMAL:
seen_vars = {}
if len(self.clauses) > 0 and len(self.clauses[0].raw) > 0:
min_var = abs(self.clauses[0].raw[0])
seen_vars[min_var] = True
# condition 5 check
if min_var > MIN_LITERAL:
logger.debug("Not in l.o.: min_var > MIN_LITERAL. min_var = {0}, MIN_LITERAL = {1}".format(min_var, MIN_LITERAL))
return False
# condition 3
for cl in self.clauses:
for var in cl.raw:
var = abs(var)
if var < min_var and not seen_vars.get(var, None):
logger.debug("Not in l.o.: var < min_var and not seen before. var = {0}, min_var = {1}".format(var, min_var))
return False
if not seen_vars.get(var, None):
seen_vars[var] = True
min_var = var
# condition #2: is sorted?
if mode != MODE_LOU:
min_var = abs(self.clauses[0].raw[0])
for cl in self.clauses:
var = abs(cl.raw[0])
if var < min_var:
return False
min_var = var
return True
# bring ONLY unit clauses to the far left (front of the set)
def place_unit_clauses_first(self):
def ShiftUnit(cl):
if len(cl.raw) == 1:
return -1
return 1
if len(self.clauses) > 0 and len(self.clauses[0].raw) > 0:
self.clauses.sort(key=ShiftUnit)
def sort_clauses_by_length(self):
def clause_len(cl):
return len(cl.raw)
if len(self.clauses) > 0 and len(self.clauses[0].raw) > 0:
self.clauses.sort(key=clause_len)
def sort_clauses_by_len_and_initial_index(self):
self.clauses.sort(key=lambda cl: (len(cl.raw), cl.initial_index))
# convert to L.O. condition
def to_lo_condition(self, mode=MODE_LO, sort_by_size=False, thief_method=False):
# used in Thief method, sort by length,initial index
if thief_method:
self.sort_clauses_by_len_and_initial_index()
if mode == MODE_FLOP or sort_by_size:
# bring unit clauses to the front of the set
# self.place_unit_clauses_first()
self.sort_clauses_by_length()
# rename
self.rename_vars()
# check L.O. conditions
while not self.is_in_lo_state(mode):
# condition 2
if mode != MODE_LOU and mode != MODE_NORMAL:
self.sort_clauses()
if self.is_in_lo_state(mode):
break
# rename
self.rename_vars()
# substitue the value of a var or more in the set.
# vars map is a map of var name and value, such as {1: True, 2: False, 6: True}
def substitute_vars(self, vars_map):
vars = set(vars_map.keys())
i = 0
while i < len(self.clauses):
cl = self.clauses[i]
# does the clause has any of the evaluated vars?
cl_vars = vars & set([abs(a) for a in cl.raw])
if len(cl_vars) == 0:
i += 1
continue
cl_popped = False
clraw = list(cl.raw) # object copy
for v in clraw:
# if the clause evaluates to True, remove it
if (abs(v) in cl_vars) and ((vars_map[abs(v)] == True and v > 0) or (vars_map[abs(v)] == False and v < 0)):
self.clauses.pop(i)
cl_popped = True
break
elif abs(v) in cl_vars:
# for left branch, remove the var from the clause
cl.raw.pop(cl.raw.index(v))
if len(cl.raw) == 0:
# here it's unit clause that has a False value
cl.value = False
if not cl_popped:
i += 1
# evaluate the set and produce two branches
def evaluate(self):
# sanity check
if len(self.clauses) <= 0 or len(self.clauses[0].raw) <= 0:
return (None, None)
# always pick the left most variable and evaluate based on it.
pivot = abs(self.clauses[0].raw[0])
#pivot = self.highest_occurring_var
# Left Set: iterate through clauses, for each clause check if it has pivot, set it to True. If it has -pivot, remove the variable from the set
# Right Set: opposite of left
left_set = Set()
right_set = Set()
left_clauses = []
right_clauses = []
for c in self.clauses:
cl = Clause(c.raw)
cl.initial_index = c.initial_index
# remove clause, i.e. set the var to true
if pivot in cl.raw:
# for left branch, the clause will be set to true. i.e. removed. (will not be added to left_clauses)
# for right branch, remove the var from the clause
cl.raw.pop(cl.raw.index(pivot))
if len(cl.raw) > 0:
#ncl = Clause(cl.raw)
cl.substituted = True
right_clauses.append(cl)
# if it's the last variable, then the clause will be evaluated to False, then all the Set will be False
else:
right_set.set_value(False)
# if it's negated, remove it from the clause and return the rest
elif -pivot in cl.raw:
# for right branch, the clause will be set to true. i.e. removed.
# for left branch, remove the var from the clause
cl.raw.pop(cl.raw.index(-pivot))
if len(cl.raw) > 0:
cl.substituted = True
left_clauses.append(cl)
# if it's the last variable, then the clause will be evaluated to False
else:
left_set.set_value(False)
else:
lcl = Clause(cl.raw)
lcl.initial_index = c.initial_index
left_clauses.append(lcl)
right_clauses.append(cl)
left_set.clauses = left_clauses
right_set.clauses = right_clauses
if len(left_clauses) == 0 and left_set.value == None:
left_set.set_value(True)
if len(right_clauses) == 0 and right_set.value == None:
right_set.set_value(True)
# set a map to the original variables in each set
for sset in (left_set, right_set):
vars = sset.get_variables()
sset.original_values = {v:self.original_values[self.final_names_map[v-1]] for v in vars}
left_set.evaluated_vars = {**self.evaluated_vars, self.original_values[self.final_names_map[abs(pivot)-1]]:True}
right_set.evaluated_vars = {**self.evaluated_vars, self.original_values[self.final_names_map[abs(pivot)-1]]:False}
return (left_set, right_set)
def to_string(self, pretty=True, only_evaluated_clauses=False):
# if the set evaluates to a value
if self.value != None:
res = str(self.value)[0]
return res
# This shouldn't ever happen. If the set doesn't have a value, then it must has clauses
if len(self.clauses) == 0:
raise ValueError('A set with empty clauses and no evaluated values!')
res_arr = []
for cl in self.clauses:
if len(cl.raw):
if only_evaluated_clauses and not cl.substituted:
continue
if pretty:
res_arr.append('(' + ' | '.join(map(str, cl.raw)) + f')[{cl.initial_index}]')
else:
res_arr.append('|'.join(map(str, cl.raw)))
if pretty:
res = ' & '.join(res_arr)
else:
res = '&'.join(res_arr)
return res
# return a list of variables in the set
def get_variables(self):
vars = set()
for cl in self.clauses:
vars |= set(map(abs, cl.raw))
return list(vars)
@staticmethod
def calculate_hash(input_str):
# sha1 hash
return hashlib.sha1(bytes(input_str, "ascii")).digest()
def get_hash(self, force_recalculate=False):
if self.computed_hash == None or force_recalculate:
self.computed_hash = Set.calculate_hash(self.to_string(pretty=False))
return self.computed_hash
def print_set(self):
print(self.to_string())
@staticmethod
def get_true_set_hash():
return Set.calculate_hash('T')
@staticmethod
def get_false_set_hash():
return Set.calculate_hash('F')