Skip to content

Latest commit

 

History

History
45 lines (43 loc) · 2.24 KB

original_requirements.md

File metadata and controls

45 lines (43 loc) · 2.24 KB

Original Requirements

  1. Accept and validate a completed verbal learning template csv
  2. Return scores conversions for each column, based on the column name; (see 9. below)
  3. Ignore unknown columns
  4. Generate errors on unacceptable input data
    • any input that isn't in valid csv format
    • any input that contains no single matching column header
  5. Generate a blank template on demand
  6. Work with Shiny
  7. a function which returns a text object containing the template
  8. a function which returns a stream io object container the template
  9. column names matching the default column format will be calculated. Non-matching columns will be ignored
    • columns in scope match the regular expression

      r"^(cvlt|cvltc|ravlt|hvlt)_([a-z_])+$"
    • the column names shall be split on '_'

    • the total number of tokens after splitting on '_' determines what conversion to apply

      • matching column titles with four tokens
        1. instrument
        2. item
        3. trial
        4. value type
      • matching columns with three tokens
        1. instrument
        2. item
        3. value type
      • matching columns with two tokens
        1. instrument
        2. instrument metadata type
    • cvlt, cvltc, ravlt, hvlt are the instrument names

    • dr, imfr, sdcr, sdfr, ldfr, ldcr, recog, rep, int are the item names

    • t1, t2, t3, t4, t5, t13, t15, tb, b are the trial names

    • total, hits, c, i, fp are the value types

    • form, version are instrument metadata types

    • conditionals

      • if instrument is 'cvltc', ignore
      • if the item is in ['sdfr', 'ldfr']
      • if the trial isn't in ['totals', 't1', 't2', 't3', 't4', 't5', 'b']
  10. a function which takes a string (matching the column formatting rules above), and returns a tuple of values representing the source value, and the desired target value, and raises an error on negative, non-integer, or out of range values.
  11. a function which returns a text object containing the resulting converted data
  12. a function which return a stream object containing the resulting converted data
  13. a function which takes a text object, and returns a random sample of the converted dataset.