Skip to content

Latest commit

 

History

History
45 lines (38 loc) · 1.25 KB

README.md

File metadata and controls

45 lines (38 loc) · 1.25 KB

Constrained-Chain-of-ToM

Code for PRICAI 2024 paper Constrained Reasoning Chains for Enhancing Theory-of-Mind in Large Language Models.

Library Requirements:

  1. Python 3.10
  2. openai 1.12
  3. tqdm 4.64

Dataset:

BigToM: https://github.com/cicl-stanford/procedural-evals-tom We use the script generate_conditions.py from the above repo to pre-process the BigToM dataset, and the processed dataset should be saved in data/conditions/ under the main directory, whereas the code should be in src/ under the main directory.

Usage:

Run the following command for testing:

python -u main.py \
--data_dir ../data \
--variable [variable] \
--condition [condition] \
--model_name [llm_name] \
--method [prompting method] 

Here is an example:

python -u main.py \
--data_dir ../data \
--variable forward_belief \
--condition true_belief \
--model_name gpt-3.5-turbo-0125 \
--method 0shot

And here is an example for computing the score of the tested llm and prompting method:

python -u compute_final_score.py \
--data_dir ../data \
--variable forward_belief \
--model_name gpt-3.5-turbo-0125 \
--method 0shot

Notice that 0shot corresponds to the prompting method proposed by us.

See the comments within the soure code for more details about using the code.