-
Notifications
You must be signed in to change notification settings - Fork 210
/
util.py
143 lines (117 loc) · 5.76 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import tensorflow as tf
import numpy as np
import re
from collections import Counter
import string
def get_record_parser(config, is_test=False):
def parse(example):
para_limit = config.test_para_limit if is_test else config.para_limit
ques_limit = config.test_ques_limit if is_test else config.ques_limit
char_limit = config.char_limit
features = tf.parse_single_example(example,
features={
"context_idxs": tf.FixedLenFeature([], tf.string),
"ques_idxs": tf.FixedLenFeature([], tf.string),
"context_char_idxs": tf.FixedLenFeature([], tf.string),
"ques_char_idxs": tf.FixedLenFeature([], tf.string),
"y1": tf.FixedLenFeature([], tf.string),
"y2": tf.FixedLenFeature([], tf.string),
"id": tf.FixedLenFeature([], tf.int64)
})
context_idxs = tf.reshape(tf.decode_raw(
features["context_idxs"], tf.int32), [para_limit])
ques_idxs = tf.reshape(tf.decode_raw(
features["ques_idxs"], tf.int32), [ques_limit])
context_char_idxs = tf.reshape(tf.decode_raw(
features["context_char_idxs"], tf.int32), [para_limit, char_limit])
ques_char_idxs = tf.reshape(tf.decode_raw(
features["ques_char_idxs"], tf.int32), [ques_limit, char_limit])
y1 = tf.reshape(tf.decode_raw(
features["y1"], tf.float32), [para_limit])
y2 = tf.reshape(tf.decode_raw(
features["y2"], tf.float32), [para_limit])
qa_id = features["id"]
return context_idxs, ques_idxs, context_char_idxs, ques_char_idxs, y1, y2, qa_id
return parse
def get_batch_dataset(record_file, parser, config):
num_threads = tf.constant(config.num_threads, dtype=tf.int32)
dataset = tf.data.TFRecordDataset(record_file).map(
parser, num_parallel_calls=num_threads).shuffle(config.capacity).repeat()
if config.is_bucket:
buckets = [tf.constant(num) for num in range(*config.bucket_range)]
def key_func(context_idxs, ques_idxs, context_char_idxs, ques_char_idxs, y1, y2, qa_id):
c_len = tf.reduce_sum(
tf.cast(tf.cast(context_idxs, tf.bool), tf.int32))
buckets_min = [np.iinfo(np.int32).min] + buckets
buckets_max = buckets + [np.iinfo(np.int32).max]
conditions_c = tf.logical_and(
tf.less(buckets_min, c_len), tf.less_equal(c_len, buckets_max))
bucket_id = tf.reduce_min(tf.where(conditions_c))
return bucket_id
def reduce_func(key, elements):
return elements.batch(config.batch_size)
dataset = dataset.apply(tf.contrib.data.group_by_window(
key_func, reduce_func, window_size=5 * config.batch_size)).shuffle(len(buckets) * 25)
else:
dataset = dataset.batch(config.batch_size)
return dataset
def get_dataset(record_file, parser, config):
num_threads = tf.constant(config.num_threads, dtype=tf.int32)
dataset = tf.data.TFRecordDataset(record_file).map(
parser, num_parallel_calls=num_threads).repeat().batch(config.batch_size)
return dataset
def convert_tokens(eval_file, qa_id, pp1, pp2):
answer_dict = {}
remapped_dict = {}
for qid, p1, p2 in zip(qa_id, pp1, pp2):
context = eval_file[str(qid)]["context"]
spans = eval_file[str(qid)]["spans"]
uuid = eval_file[str(qid)]["uuid"]
start_idx = spans[p1][0]
end_idx = spans[p2][1]
answer_dict[str(qid)] = context[start_idx: end_idx]
remapped_dict[uuid] = context[start_idx: end_idx]
return answer_dict, remapped_dict
def evaluate(eval_file, answer_dict):
f1 = exact_match = total = 0
for key, value in answer_dict.items():
total += 1
ground_truths = eval_file[key]["answers"]
prediction = value
exact_match += metric_max_over_ground_truths(
exact_match_score, prediction, ground_truths)
f1 += metric_max_over_ground_truths(f1_score,
prediction, ground_truths)
exact_match = 100.0 * exact_match / total
f1 = 100.0 * f1 / total
return {'exact_match': exact_match, 'f1': f1}
def normalize_answer(s):
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return (normalize_answer(prediction) == normalize_answer(ground_truth))
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)