forked from replicate/flux-fine-tuner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
weights.py
224 lines (173 loc) · 7.65 KB
/
weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import base64
import hashlib
import os
import re
import shutil
import subprocess
import tarfile
import tempfile
import time
from collections import deque
from io import BytesIO
from pathlib import Path
import requests
DEFAULT_CACHE_BASE_DIR = Path("/src/weights-cache")
class WeightsDownloadCache:
def __init__(
self, min_disk_free: int = 10 * (2**30), base_dir: Path = DEFAULT_CACHE_BASE_DIR
):
self.min_disk_free = min_disk_free
self.base_dir = base_dir
self.hits = 0
self.misses = 0
# Least Recently Used (LRU) cache for paths
self.lru_paths = deque()
base_dir.mkdir(parents=True, exist_ok=True)
def ensure(self, url: str) -> Path:
path = self._weights_path(url)
if path in self.lru_paths:
# here we remove to re-add to the end of the LRU (marking it as recently used)
self.hits += 1
self.lru_paths.remove(path)
else:
self.misses += 1
while not self._has_enough_space() and len(self.lru_paths) > 0:
self._remove_least_recent()
download_weights(url, path)
self.lru_paths.append(path) # Add file to end of cache
return path
def cache_info(self) -> str:
return f"CacheInfo(hits={self.hits}, misses={self.misses}, base_dir='{self.base_dir}', currsize={len(self.lru_paths)})"
def _remove_least_recent(self) -> None:
oldest = self.lru_paths.popleft()
print("removing oldest", oldest)
oldest.unlink()
def _has_enough_space(self) -> bool:
disk_usage = shutil.disk_usage(self.base_dir)
free = disk_usage.free
print(f"{free=}") # TODO(andreas): remove debug
return free >= self.min_disk_free
def _weights_path(self, url: str) -> Path:
hashed_url = hashlib.sha256(url.encode()).hexdigest()
short_hash = hashed_url[:16] # Use the first 16 characters of the hash
return self.base_dir / short_hash
def download_weights(url: str, path: Path):
download_url = make_download_url(url)
download_weights_url(download_url, path)
def download_weights_url(url: str, path: Path):
path = Path(path)
print("Downloading weights")
start_time = time.time()
if url.startswith("data:"):
download_data_url(url, path)
elif url.endswith(".tar"):
download_safetensors_tarball(url, path)
elif url.endswith(".safetensors") or "://civitai.com/api/download" in url:
download_safetensors(url, path)
elif url.endswith("/_weights"):
download_safetensors_tarball(url, path)
else:
raise ValueError("URL must end with either .tar or .safetensors")
print(f"Downloaded weights in {time.time() - start_time:.2f}s")
def find_safetensors(directory: Path) -> list[Path]:
safetensors_paths = []
for root, _, files in os.walk(directory):
root = Path(root)
for filename in files:
path = root / filename
if path.suffix == ".safetensors":
safetensors_paths.append(path)
return safetensors_paths
def download_safetensors_tarball(url: str, path: Path):
with tempfile.TemporaryDirectory() as temp_dir:
temp_dir = Path(temp_dir)
extract_dir = temp_dir / "weights"
try:
subprocess.run(["pget", "-x", url, extract_dir], check=True)
except subprocess.CalledProcessError as e:
raise RuntimeError(f"Failed to download tarball: {e}")
safetensors_paths = find_safetensors(extract_dir)
if not safetensors_paths:
raise ValueError("No .safetensors file found in tarball")
if len(safetensors_paths) > 1:
raise ValueError("Multiple .safetensors files found in tarball")
safetensors_path = safetensors_paths[0]
shutil.move(safetensors_path, path)
def download_data_url(url: str, path: Path):
_, encoded = url.split(",", 1)
data = base64.b64decode(encoded)
with tempfile.TemporaryDirectory() as temp_dir:
with tarfile.open(fileobj=BytesIO(data), mode="r:*") as tar:
tar.extractall(path=temp_dir)
safetensors_paths = find_safetensors(Path(temp_dir))
if not safetensors_paths:
raise ValueError("No .safetensors file found in data URI")
if len(safetensors_paths) > 1:
raise ValueError("Multiple .safetensors files found in data URI")
safetensors_path = safetensors_paths[0]
shutil.move(safetensors_path, path)
def download_safetensors(url: str, path: Path):
try:
subprocess.run(["pget", url, str(path)], check=True)
except subprocess.CalledProcessError as e:
raise RuntimeError(f"Failed to download safetensors file: {e}")
def make_download_url(url: str) -> str:
if url.startswith("data:"):
return url
if m := re.match(r"^(?:https?://)?huggingface\.co/([^/]+)/([^/]+)/?$", url):
owner, model_name = m.groups()
return make_huggingface_download_url(owner, model_name)
if m := re.match(r"^(?:https?://)?civitai\.com/models/(\d+)(?:/[^/?]+)?/?$", url):
model_id = m.groups()[0]
return make_civitai_download_url(model_id)
if m := re.match(r"^((?:https?://)?civitai\.com/api/download/models/.*)$", url):
return url
if m := re.match(r"^(https?://.*\.safetensors)(?:\?|$)", url):
return m.groups()[0]
if m := re.match(r"^(?:https?://replicate.com/)?([^/]+)/([^/]+)/?$", url):
owner, model_name = m.groups()
return make_replicate_model_download_url(owner, model_name)
if m := re.match(
r"^(?:https?://replicate.com/)?([^/]+)/([^/]+)/(?:versions/)?([^/]+)/?$", url
):
owner, model_name, version_id = m.groups()
return make_replicate_version_download_url(owner, model_name, version_id)
if m := re.match(r"^(https?://replicate.delivery/.*\.tar)$", url):
return m.groups()[0]
if "huggingface.co" in url:
raise ValueError(
"Failed to parse HuggingFace URL. Expected huggingface.co/<owner>/<model-name>"
)
if "civitai.com" in url:
raise ValueError(
"Failed to parse CivitAI URL. Expected civitai.com/models/<id>[/<model-name>]"
)
raise ValueError(
"""Failed to parse URL. Expected either:
* Replicate model in the format <owner>/<username> or <owner>/<username>/<version>
* HuggingFace URL in the format huggingface.co/<owner>/<model-name>
* CivitAI URL in the format civitai.com/models/<id>[/<model-name>]
* Arbitrary .safetensors URLs from the Internet"""
)
def make_replicate_model_download_url(owner: str, model_name: str) -> str:
return f"https://replicate.com/{owner}/{model_name}/_weights"
def make_replicate_version_download_url(
owner: str, model_name: str, version_id: str
) -> str:
return f"https://replicate.com/{owner}/{model_name}/versions/{version_id}/_weights"
def make_huggingface_download_url(owner: str, model_name: str) -> str:
url = f"https://huggingface.co/api/models/{owner}/{model_name}/tree/main"
response = requests.get(url)
response.raise_for_status()
files = response.json()
safetensors_files = [f for f in files if f["path"].endswith(".safetensors")]
if len(safetensors_files) == 0:
raise ValueError("No .safetensors file found in the repository")
if len(safetensors_files) > 1:
raise ValueError("Multiple .safetensors files found in the repository")
safetensors_path = safetensors_files[0]["path"]
return (
f"https://huggingface.co/{owner}/{model_name}/resolve/main/{safetensors_path}"
)
def make_civitai_download_url(model_id: str) -> str:
return f"https://civitai.com/api/download/models/{model_id}?type=Model&format=SafeTensor"