-
Notifications
You must be signed in to change notification settings - Fork 5
Home
Caffe 튜토리얼에 오신 것을 환영합니다!
해당 튜토리얼은 Caffe 공식사이트에서 제공하고 있는 내용을 기본적으로 하고 작성자가 개발하면서 참고한 여러가지 경험> 들에 기반하여 작성되었습니다.
-
1.튜토리얼 자료 : Caffe Tutorial (Kor)
Practical guide and framework reference.
-
2.Model Zoo : Caffe Model Zoo (Kor)
BVLC suggests a standard distribution format for Caffe models, and provides trained models.
All of below examples also provided translation for Korean. link for original ones are on translated title beside
-
1.ImageNet Tutorial : Brewing ImageNet (Kor)
Train and test "CaffeNet" on ImageNet data.
-
2.LeNet MNIST Tutorial : Training LeNet on MNIST with Caffe (Kor)
Train and test "LeNet" on the MNIST handwritten digit data.
-
3.CIFAR-10 tutorial : Alex’s CIFAR-10 tutorial, Caffe style (Kor)
Train and test Caffe on CIFAR-10 data.
-
4.Fine-tuning for style recognition : Fine-tuning CaffeNet for Style Recognition on “Flickr Style” Data (Kor)
Fine-tune the ImageNet-trained CaffeNet on the "Flickr Style" dataset.
-
5.Feature extraction with Caffe C++ code : Extracting Features (Kor)
Extract CaffeNet / AlexNet features using the Caffe utility.
-
6.CaffeNet C++ Classification example : Classifying ImageNet: using the C++ API (Kor)
A simple example performing image classification using the low-level C++ API.
-
7.Web demo : Web Demo (Kor)
Image classification demo running as a Flask web server.
-
8.Siamese Network Tutorial : Siamese Network Training with Caffe (Kor)
Train and test a siamese network on MNIST data.