-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_config.py
111 lines (104 loc) · 3.91 KB
/
model_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
"""
Contains the global configurations for model related tasks and performs common imports.
Attributes
----------
row_count : int
No. of rows of dataset_operations to be used
RF_ESTIMATORS : int
No. of Decision Trees per Random Forest
TEST_SIZE : float
Test Data size (out of 1.0)
VERBOSE : int or bool
Controls Model processing verbosity
N_JOBS : int
Controls the no. of threads to use for computations (N_JOBS = -1 for auto)
K_FOLD : int
No. of Cross validation folds
SCORING : str
Performance metric to optimize the model for
TESTING : bool
Set to True if testing with the Python CONSOLE
DATA_NORMALIZATION : bool
If True, the dataset_operations is normalized before training and testing
DATA_REDUCE : bool
If True, a selected portion of the entire dataset_operations is used for training+testing (# of rows = row_count)
GEN_RANKING_FILE : bool
If True, generate a .csv file for the feature ranking
PLOT : bool
If True, a plot will be generated for the # of features used vs performance metric
EXPORT_MODEL : bool
If True, trained model is exported to TRAINED_MODEL_PATH
DATA_PATH : str
loading in the actual dataset_operations for one sensor (Data under test)
PROCESSED_DATASET : str
Directory name for new data set which contains the training/testing data for the classifier
PROCESSED_DATASET_PATH : str
Directory path for new data set which contains the training/testing data for the classifier
TRAINED_MODEL_DIR : str
Trained Model directory name
TRAINED_MODEL_PATH : str
Trained Model directory path
TRAINED_MODEL_NAME : str
Trained Model name
TRAINED_NORMALIZER_NAME : str
Trained Normalizer name
"""
# Global imports
import os
import locale
import numpy as np
import pandas as pd
from time import time
from datetime import datetime as dt
from sklearn.externals import joblib
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from config import new_sensor_paths, ROOT, Path, DATASETS
# Configuring locale for datetime purposes
lang = 'de_DE.UTF-8'
locale.setlocale(locale.LC_TIME, lang)
# Model Configuration Variables
# Setting numpy print precision
np.set_printoptions(precision=5)
# no. of rows of dataset_operations to be used
row_count = 1200000
# no. of Decision Trees per Random Forest
RF_ESTIMATORS = 100
# Test Data size (out of 1.0)
TEST_SIZE = 0.5
# Controls Model processing verbosity
VERBOSE = False
# Controls the no. of threads to use for computations (N_JOBS = -1 for auto)
N_JOBS = -1
# Cross validation folds
K_FOLD = 2
# Performance metric to optimize the model for
SCORING = 'f1_weighted'
# Set to True if TESTING with the Python CONSOLE
TESTING = False
# If True, the dataset_operations is normalized before training & testing
DATA_NORMALIZATION = True
# If True, a selected portion of the entire dataset_operations is used for training+testing (# of rows = row_count)
DATA_REDUCE = False
# If True, generate a .csv file for the feature ranking
GEN_RANKING_FILE = False
# If True, a plot will be generated for the # of features used vs performance metric
PLOT = False
# If True, trained model is exported to TRAINED_MODEL_PATH
EXPORT_MODEL = False
# Paths
# Directory name for new data set which contains the training/testing data for the classifier
PROCESSED_DATASET = "Processed_Dataset"
# Directory path for new data set which contains the training/testing data for the classifier
PROCESSED_DATASET_PATH = Path(f'{DATASETS}/{PROCESSED_DATASET}')
# loading in the actual dataset for the ML classifier
DATA_PATH = Path(f"{PROCESSED_DATASET_PATH}/ds_all.csv")
# Trained Model directory name
TRAINED_MODEL_DIR = 'Trained Models'
# Trained Model directory path
TRAINED_MODEL_PATH = Path(f'{ROOT}/{TRAINED_MODEL_DIR}')
# Trained Model name
TRAINED_MODEL_NAME = 'step_detection_model_test.pkl'
# Trained Normalizer name
TRAINED_NORMALIZER_NAME = 'step_detection_min_max_norm_test.pkl'