forked from FFmgll/shapiq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
precompute_icm.py
170 lines (140 loc) · 6.32 KB
/
precompute_icm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import copy
from typing import Sequence, Optional
import os
import pandas as pd
import torch
from skimage.io import imread, imshow
from skimage.segmentation import slic
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from torchvision.models import resnet50, ResNet50_Weights
from torchvision.models import resnet18, ResNet18_Weights
import torchvision.transforms as transforms
import tqdm
from approximators.base import powerset
def get_superpixels(image: np.ndarray, n_segments=10, exact_n=True, n_segments_iter: int = None,
max_iter=10):
if n_segments_iter is None:
n_segments_iter = n_segments
segments_slic = slic(image, n_segments=n_segments_iter, compactness=10, sigma=1, start_label=0)
n_superpixels = len(np.unique(segments_slic))
if not exact_n or n_superpixels == n_segments:
return n_superpixels, segments_slic
if n_superpixels < n_segments and max_iter > 0:
n_superpixels, segments_slic = get_superpixels(
image=image, n_segments=n_segments, exact_n=True, n_segments_iter=n_segments_iter + 1,
max_iter=max_iter - 1)
if n_superpixels >= n_segments:
segments_slic = np.clip(segments_slic, a_min=1, a_max=n_segments - 1)
return n_segments, segments_slic
raise RuntimeError(f"Could not find a set of superpixels with {n_segments} segments.")
def mask_superpixels(image: np.ndarray, superpixel_mask: np.ndarray, coalition: Sequence,
return_image: bool = True, pbar=None):
coalition = set(coalition)
image_replaced = np.zeros_like(image)
image_replaced[:, :] = [127, 127, 127]
for super_pixel_id in coalition:
segment_mask = np.where(superpixel_mask == super_pixel_id)
image_replaced[segment_mask] = image[segment_mask]
if return_image:
image_replaced = Image.fromarray(image_replaced)
if pbar is not None:
pbar.update(1)
return copy.deepcopy(image_replaced)
def mask_image(image: np.ndarray):
masked_image = image.copy()
masked_image[:, :] = [127, 127, 127]
return masked_image
def get_masked_images_from_coalitions(image: np.ndarray, coalitions: list,
superpixel_mask: Optional[np.ndarray] = None, pbar=None):
if superpixel_mask is None:
_, superpixel_mask = get_superpixels(image=image)
images = [mask_superpixels(image=image, superpixel_mask=superpixel_mask, coalition=coalition,
pbar=pbar)
for coalition in coalitions]
images = np.array(images, dtype=object)
return images
def eval_complete(file_path, n_players=14):
img = imread(file_path, as_gray=False)
tensor_transform = transforms.ToTensor()
img_tensor = Image.fromarray(img)
img_tensor = tensor_transform(img_tensor)
# create superpixels
n_superpixels, superpixels = get_superpixels(image=img, n_segments=n_players)
print("Number of superpixels found:", n_superpixels)
# get coalitions
coalitions = [subset for subset in powerset(range(n_superpixels))]
coalitions_lists = [list(subset) for subset in coalitions]
# create masked images
with tqdm.tqdm(total=2 ** n_players, desc="Generating Masks") as pbar:
masked_images = get_masked_images_from_coalitions(image=img, superpixel_mask=superpixels,
coalitions=coalitions_lists, pbar=pbar)
# init model
weights = ResNet18_Weights.DEFAULT
model = resnet18(weights=weights)
model.eval()
# init inference
preprocess = weights.transforms()
# apply inference preprocessing transforms
batch = preprocess(img_tensor).unsqueeze(0)
# predict
prediction = model(batch).squeeze(0).softmax(0)
original_class_id = prediction.argmax().item()
original_score = prediction[original_class_id].item()
category_name = weights.meta["categories"][original_class_id]
print(f"{category_name}: {original_score}")
# convert images to big tensor
image_tensors = []
with tqdm.tqdm(total=2 ** n_players, desc="Creating Torch Tensors") as pbar:
for image_masked in masked_images:
image_tensors.append(preprocess(tensor_transform(image_masked)).unsqueeze(0))
pbar.update(1)
image_tensors = torch.cat(image_tensors, dim=0)
# predict masks
predictions = []
batch_size = 25
with tqdm.tqdm(total=2 ** n_players, desc="Running the Model") as pbar:
for i in range(0, len(image_tensors), batch_size):
batch = image_tensors[i:i + batch_size]
prediction_batch = model(batch).softmax(1)
score_batch = prediction_batch[:, original_class_id].tolist()
predictions.extend(score_batch)
pbar.update(batch_size)
predictions = np.asarray(predictions)
return coalitions, predictions
def pre_compute_game(n_players, data_folder, n_images=100):
file_names = os.listdir(data_folder)
save_folder = os.path.join("games", "data", "image_classifier", str(n_players))
if not os.path.exists(save_folder):
os.mkdir(save_folder)
save_files = os.listdir(save_folder)
count = 0
for i, file_name in enumerate(file_names):
count += 1
if count > n_images:
break
file_id = file_name.split('.')[0]
if file_id + '.csv' in save_files:
continue
print(f"\nPrecomputing {file_name} no. {count}\n")
file_path = os.path.join(data_folder, file_name)
try:
coalitions, predictions = eval_complete(file_path=file_path, n_players=n_players)
except RuntimeError:
print(f"Stopped Computation because the subset size could not be found for "
f"{file_name} and {n_players}.")
continue
except Exception as error:
print(f"Something happended: {error}")
continue
storage_data = []
for subset, prediction in zip(coalitions, predictions):
subset_key = 's'
for player in subset:
subset_key += str(player)
storage_data.append({"set": subset_key, "value": prediction})
save_path = os.path.join(save_folder, file_id + '.csv')
pd.DataFrame(storage_data).to_csv(save_path, index=False)
if __name__ == "__main__":
pre_compute_game(n_players=14, data_folder="games/data/images")