-
Notifications
You must be signed in to change notification settings - Fork 0
/
spoof-face-trial.py
93 lines (74 loc) · 2.94 KB
/
spoof-face-trial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
## -*- coding: utf-8 -*-
#"""
#Created on Sat Jul 3 13:00:09 2021
#
#@author: Harikrishnan
#"""
#
import numpy as np
import cv2
from sklearn.externals import joblib
def calc_hist(img):
histogram = [0] * 3
for j in range(3):
histr = cv2.calcHist([img], [j], None, [256], [0, 256])
histr *= 255.0 / histr.max()
histogram[j] = histr
return np.array(histogram)
modelFile = "res10_300x300_ssd_iter_140000.caffemodel"
configFile = "deploy.prototxt"
net = cv2.dnn.readNetFromCaffe(configFile, modelFile)
clf = joblib.load('face_spoofing.pkl')
cap = cv2.VideoCapture(0)
# width = 320
# height = 240
# cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
# cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
sample_number = 1
count = 0
measures = np.zeros(sample_number, dtype=np.float)
while True:
ret, img = cap.read()
blob = cv2.dnn.blobFromImage(cv2.resize(img, (300, 300)), 1.0,(300, 300), (104.0, 177.0, 123.0))
net.setInput(blob)
faces3 = net.forward()
measures[count%sample_number]=0
height, width = img.shape[:2]
for i in range(faces3.shape[2]):
confidence = faces3[0, 0, i, 2]
if confidence > 0.5:
box = faces3[0, 0, i, 3:7] * np.array([width, height, width, height])
(x, y, x1, y1) = box.astype("int")
# cv2.rectangle(img, (x, y), (x1, y1), (0, 0, 255), 5)
roi = img[y:y1, x:x1]
point = (0,0)
img_ycrcb = cv2.cvtColor(roi, cv2.COLOR_BGR2YCR_CB)
img_luv = cv2.cvtColor(roi, cv2.COLOR_BGR2LUV)
ycrcb_hist = calc_hist(img_ycrcb)
luv_hist = calc_hist(img_luv)
feature_vector = np.append(ycrcb_hist.ravel(), luv_hist.ravel())
feature_vector = feature_vector.reshape(1, len(feature_vector))
prediction = clf.predict_proba(feature_vector)
prob = prediction[0][1]
measures[count % sample_number] = prob
cv2.rectangle(img, (x, y), (x1, y1), (255, 0, 0), 2)
point = (x, y-5)
print (measures, np.mean(measures))
if 0 not in measures:
text = "True"
if np.mean(measures) >= 0.8:
text = "False"
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img=img, text=text, org=point, fontFace=font, fontScale=0.9, color=(0, 0, 255),
thickness=2, lineType=cv2.LINE_AA)
else:
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img=img, text=text, org=point, fontFace=font, fontScale=0.9,
color=(0, 255, 0), thickness=2, lineType=cv2.LINE_AA)
count+=1
cv2.imshow('img_rgb', img)
key = cv2.waitKey(1)
if key & 0xFF == 27:
break
cap.release()
cv2.destroyAllWindows()