-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.cjs
293 lines (257 loc) · 8.81 KB
/
index.cjs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
const fs = require("fs");
const fetch = require("node-fetch-2");
const FormData = require("form-data");
class OpticalCharacterRecognition {
constructor(apiKey, modelId) {
if (!apiKey || !modelId)
throw new Error(
"NanoNets SDK Optical Character Recognition Constructor Error: Insufficient parameters passed."
);
else if (typeof apiKey !== "string" || typeof modelId !== "string")
throw new Error(
`NanoNets SDK Optical Character Recognition Constructor Error: Incorrect parameter data type. Expected 'string', got '${typeof apiKey}' and '${typeof modelId}'.`
);
else if (apiKey === "" || modelId === "")
throw new Error(
"NanoNets SDK Optical Character Recognition Constructor Error: Invalid API Key or Model ID. Empty string(s) passed."
);
this.apiKey = apiKey;
this.modelId = modelId;
this.authHeaderVal =
"Basic " + Buffer.from(`${this.apiKey}:`).toString("base64");
}
async getModelDetails() {
const response = await fetch(
`https://app.nanonets.com/api/v2/OCR/Model/${this.modelId}`,
{
headers: {
"Authorization": this.authHeaderVal,
"Accept": "application/json"
}
}
);
const data = response.json();
return data;
}
async getAllPredictedFileData(startInterval, endInterval) {
if (!startInterval || !endInterval)
throw new Error(
"NanoNets SDK Optical Character Recognition getAllPredictedFileData() Error: Insufficient parameters passed."
);
else if (
typeof startInterval !== "number" ||
typeof endInterval !== "number"
)
throw new Error(
`NanoNets SDK Optical Character Recognition getAllPredictedFileData() Error: Incorrect parameter data type. Expected 'number', got '${typeof startInterval}' and '${typeof endInterval}'.`
);
else if (startInterval < 0 || endInterval < 0)
throw new Error(
"NanoNets SDK Optical Character Recognition getAllPredictedFileData() Error: Interval value(s) < 0. Interval values should be non-negative."
);
const response = await fetch(
`https://app.nanonets.com/api/v2/Inferences/Model/${this.modelId}/ImageLevelInferences/?start_day_interval=${startInterval}¤t_batch_day=${endInterval}`,
{
headers: {
"Authorization": this.authHeaderVal,
"Accept": "application/json"
}
}
);
const data = response.json();
return data;
}
async getPredictedFileData(fileId) {
if (!fileId)
throw new Error(
"NanoNets SDK Optical Character Recognition getPredictedFileDataById() Error: File ID parameter not passed."
);
else if (typeof fileId !== "string")
throw new Error(
`NanoNets SDK Optical Character Recognition getPredictedFileDataById() Error: Incorrect parameter data type. Expected 'string', got '${typeof fileId}'.`
);
else if (fileId === "")
throw new Error(
`NanoNets SDK Optical Character Recognition predictUsingFile() Error: Empty file ID passed.`
);
const response = await fetch(
`https://app.nanonets.com/api/v2/Inferences/Model/${this.modelId}/ImageLevelInferences/${fileId}`,
{
headers: {
"Authorization": this.authHeaderVal,
"Accept": "application/json"
}
}
);
const data = response.json();
return data;
}
async predictUsingUrls(urlArray, isAsync = false) {
if (!urlArray)
throw new Error(
"NanoNets SDK Optical Character Recognition predictUsingUrls() Error: URL array parameter not passed."
);
else if (!Array.isArray(urlArray) || typeof isAsync !== "boolean") {
const urlArrayType = Array.isArray(urlArray)
? "array"
: typeof urlArray;
throw new Error(
`NanoNets SDK Optical Character Recognition predictUsingUrls() Error: Incorrect parameter types. Expected 'array' and 'boolean', got '${urlArrayType}' and '${typeof isAsync}'.`
);
} else if (urlArray.length === 0)
throw new Error(
"NanoNets SDK Optical Character Recognition predictUsingUrls() Error: Empty URL array passed."
);
let encodedUrls = new URLSearchParams();
for (let i = 0; i < urlArray.length; i++)
encodedUrls.append("urls", urlArray[i]);
let asyncParam = "";
if (isAsync === true)
asyncParam = "/?" + new URLSearchParams({ "async": "true" });
const response = await fetch(
`https://app.nanonets.com/api/v2/OCR/Model/${this.modelId}/LabelUrls${asyncParam}`,
{
method: "POST",
headers: {
"Authorization": this.authHeaderVal,
"Content-Type": "application/x-www-form-urlencoded",
"Accept": "application/json"
},
body: encodedUrls
}
);
const data = response.json();
return data;
}
async predictUsingFile(filePath, isAsync = false) {
if (!filePath)
throw new Error(
"NanoNets SDK Optical Character Recognition predictUsingFile() Error: File path parameter not passed."
);
else if (typeof filePath !== "string" || typeof isAsync !== "boolean")
throw new Error(
`NanoNets SDK Optical Character Recognition predictUsingFile() Error: Incorrect parameter data types. Expected 'string' and 'boolean', got '${typeof filePath}' and '${typeof isAsync}'.`
);
else if (filePath === "")
throw new Error(
`NanoNets SDK Optical Character Recognition predictUsingFile() Error: Empty file path passed.`
);
const fileStream = fs.createReadStream(filePath);
const formData = new FormData();
formData.append("file", fileStream);
let asyncParam = "";
if (isAsync === true)
asyncParam = "/?" + new URLSearchParams({ "async": "true" });
const response = await fetch(
`https://app.nanonets.com/api/v2/OCR/Model/${this.modelId}/LabelFile${asyncParam}`,
{
method: "POST",
headers: {
"Authorization": this.authHeaderVal,
"Accept": "application/json"
},
body: formData
}
);
const data = response.json();
return data;
}
}
class ImageClassification {
constructor(apiKey, modelId) {
if (!apiKey || !modelId)
throw new Error(
"NanoNets SDK Image Classification Constructor Error: Insufficient parameters passed."
);
else if (typeof apiKey !== "string" || typeof modelId !== "string")
throw new Error(
`NanoNets SDK Image Classification Constructor Error: Incorrect parameter data type. Expected 'string', got '${typeof apiKey}' and '${typeof modelId}'.`
);
else if (apiKey === "" || modelId === "")
throw new Error(
"NanoNets SDK Image Classification Constructor Error: Invalid API Key or Model ID. Empty string(s) passed."
);
this.apiKey = apiKey;
this.modelId = modelId;
this.authHeaderVal =
"Basic " + Buffer.from(`${this.apiKey}:`).toString("base64");
}
async getModelDetails() {
const response = await fetch(
`https://app.nanonets.com/api/v2/ImageCategorization/Model/?modelId=${this.modelId}`,
{
headers: {
"Authorization": this.authHeaderVal,
"Accept": "application/json"
}
}
);
const data = response.json();
return data;
}
async predictUsingUrls(urlArray) {
if (!urlArray)
throw new Error(
"NanoNets SDK Image Classification predictUsingUrls() Error: URL array parameter not passed."
);
else if (!Array.isArray(urlArray))
throw new Error(
`NanoNets SDK Image Classification predictUsingUrls() Error: Incorrect parameter type. Expected 'array', got '${typeof urlArray}'.`
);
else if (urlArray.length === 0)
throw new Error(
"NanoNets SDK Image Classification predictUsingUrls() Error: Empty URL array passed."
);
let encodedData = new URLSearchParams();
for (let i = 0; i < urlArray.length; i++) {
encodedData.append("urls", urlArray[i]);
}
encodedData.append("modelId", this.modelId);
const response = await fetch(
`https://app.nanonets.com/api/v2/ImageCategorization/LabelUrls`,
{
method: "POST",
headers: {
"Authorization": this.authHeaderVal,
"Content-Type": "application/x-www-form-urlencoded",
"Accept": "application/json"
},
body: encodedData
}
);
const data = response.json();
return data;
}
async predictUsingFile(filePath) {
if (!filePath)
throw new Error(
"NanoNets SDK Image Classification predictUsingFile() Error: File path parameter not passed."
);
else if (typeof filePath !== "string")
throw new Error(
`NanoNets SDK Image Classification predictUsingFile() Error: Incorrect parameter data type. Expected 'string', got '${typeof filePath}'.`
);
else if (filePath === "")
throw new Error(
`NanoNets SDK Image Classification predictUsingFile() Error: Empty file path passed.`
);
const fileStream = fs.createReadStream(filePath);
const formData = new FormData();
formData.append("file", fileStream);
formData.append("modelId", this.modelId);
const response = await fetch(
`https://app.nanonets.com/api/v2/ImageCategorization/LabelFile`,
{
method: "POST",
headers: {
"Authorization": this.authHeaderVal,
"Accept": "application/json"
},
body: formData
}
);
const data = response.json();
return data;
}
}
module.exports = { OpticalCharacterRecognition, ImageClassification };