forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gaussian_elimination_pivoting.py
101 lines (85 loc) · 3.19 KB
/
gaussian_elimination_pivoting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
matrix = np.array(
[
[5.0, -5.0, -3.0, 4.0, -11.0],
[1.0, -4.0, 6.0, -4.0, -10.0],
[-2.0, -5.0, 4.0, -5.0, -12.0],
[-3.0, -3.0, 5.0, -5.0, 8.0],
],
dtype=float,
)
def solve_linear_system(matrix: np.ndarray) -> np.ndarray:
"""
Solve a linear system of equations using Gaussian elimination with partial pivoting
Args:
- matrix: Coefficient matrix with the last column representing the constants.
Returns:
- Solution vector.
Raises:
- ValueError: If the matrix is not correct (i.e., singular).
https://courses.engr.illinois.edu/cs357/su2013/lect.htm Lecture 7
Example:
>>> A = np.array([[2, 1, -1], [-3, -1, 2], [-2, 1, 2]], dtype=float)
>>> B = np.array([8, -11, -3], dtype=float)
>>> solution = solve_linear_system(np.column_stack((A, B)))
>>> np.allclose(solution, np.array([2., 3., -1.]))
True
>>> solve_linear_system(np.array([[0, 0], [0, 0]], dtype=float))
array([nan, nan])
"""
ab = np.copy(matrix)
num_of_rows = ab.shape[0]
num_of_columns = ab.shape[1] - 1
x_lst: list[float] = []
# Lead element search
for column_num in range(num_of_rows):
for i in range(column_num, num_of_columns):
if abs(ab[i][column_num]) > abs(ab[column_num][column_num]):
ab[[column_num, i]] = ab[[i, column_num]]
if ab[column_num, column_num] == 0.0:
raise ValueError("Matrix is not correct")
else:
pass
if column_num != 0:
for i in range(column_num, num_of_rows):
ab[i, :] -= (
ab[i, column_num - 1]
/ ab[column_num - 1, column_num - 1]
* ab[column_num - 1, :]
)
# Upper triangular matrix
for column_num in range(num_of_rows):
for i in range(column_num, num_of_columns):
if abs(ab[i][column_num]) > abs(ab[column_num][column_num]):
ab[[column_num, i]] = ab[[i, column_num]]
if ab[column_num, column_num] == 0.0:
raise ValueError("Matrix is not correct")
else:
pass
if column_num != 0:
for i in range(column_num, num_of_rows):
ab[i, :] -= (
ab[i, column_num - 1]
/ ab[column_num - 1, column_num - 1]
* ab[column_num - 1, :]
)
# Find x vector (Back Substitution)
for column_num in range(num_of_rows - 1, -1, -1):
x = ab[column_num, -1] / ab[column_num, column_num]
x_lst.insert(0, x)
for i in range(column_num - 1, -1, -1):
ab[i, -1] -= ab[i, column_num] * x
# Return the solution vector
return np.asarray(x_lst)
if __name__ == "__main__":
from doctest import testmod
from pathlib import Path
testmod()
file_path = Path(__file__).parent / "matrix.txt"
try:
matrix = np.loadtxt(file_path)
except FileNotFoundError:
print(f"Error: {file_path} not found. Using default matrix instead.")
# Example usage:
print(f"Matrix:\n{matrix}")
print(f"{solve_linear_system(matrix) = }")