-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
271 lines (218 loc) · 7.99 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForCausalLM,
)
import torch
import jsonlines
from tqdm.auto import tqdm
from collections import defaultdict
import click
import re
import pandas as pd
import numpy as np
from googleapiclient import discovery
import json
from typing import List
import os
device = "cuda:0" if torch.cuda.is_available() else "cpu"
class Classifier:
def __init__(self, model_name) -> None:
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = (
AutoModelForSequenceClassification.from_pretrained(model_name)
.to(device)
.eval()
)
@torch.no_grad()
def classify_item(self, text, label_index, clean=False, return_prob: bool = False):
# if clean:
# text = clean_text(text)
tokens = self.tokenizer(
text, return_tensors="pt", truncation=True, padding=True
)
tokens = {k: v.to(device) for k, v in tokens.items()}
logits = self.model(**tokens).logits.softmax(-1)
if return_prob:
preds = logits[0].cpu().tolist()
return preds[label_index]
else:
return logits[0].cpu().argmax(-1).item() == label_index
class PerspectiveAPI:
def __init__(self) -> None:
API_KEY = os.environ["PERSPECTIVE_API_KEY"]
self.client = discovery.build(
"commentanalyzer",
"v1alpha1",
developerKey=API_KEY,
discoveryServiceUrl="https://commentanalyzer.googleapis.com/$discovery/rest?version=v1alpha1",
static_discovery=False,
)
self.api = self.client.comments()
def __call__(self, text: str):
analyze_request = {
"comment": {"text": text},
"languages": ["en"],
"requestedAttributes": {"TOXICITY": {}},
}
response = self.api.analyze(body=analyze_request).execute()
score = response["attributeScores"]["TOXICITY"]["summaryScore"]["value"]
# print(json.dumps(response, indent=2))
return score
class PerplexityEstimator:
def __init__(self, model_name: str = "gpt2") -> None:
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name).to(device).eval()
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
@torch.no_grad()
def classify_item(self, text, clean=False):
tokens = self.tokenizer([text], return_tensors="pt").to(device)["input_ids"]
if tokens.shape[1] == 0:
return 0
loss = self.model(input_ids=tokens, labels=tokens).loss
return loss.cpu().item()
class TopicPPL:
def __init__(self) -> None:
self.ppls = {
"sentiment": PerplexityEstimator("heegyu/gpt2-yelp-polarity"),
"emotion": PerplexityEstimator("heegyu/gpt2-emotion"),
"news": PerplexityEstimator("heegyu/gpt2-bbc-news"),
}
@torch.no_grad()
def classify_item(self, topic, text, clean=False):
return self.ppls[topic2group[topic]].classify_item(text, clean)
def score_accuracy(items, preds, use_prompt_label=True, true_label=None):
total = defaultdict(lambda: 0)
correct = defaultdict(lambda: 0)
for item, p in zip(items, preds):
label = item["topic"]
total[label] += 1
# print(label, p)
if use_prompt_label:
if label == p:
correct[label] += 1
elif p == true_label:
correct[label] += 1
# print(items)
# print(preds)
# print(list(correct.keys()), list(total.keys()))
for k in total.keys():
# print(k, correct[k] / total[k] ,f"{correct[k]} of {total[k]}")
correct[k] = correct.get(k, 0) / total[k]
return correct
topic_category = {
"sentiment": ["negative", "positive"],
"emotion": ["sadness", "joy", "love", "anger", "fear", "surprise"],
# "news": [x.lower() for x in [
# "ENTERTAINMENT", "POLITICS", "WELLNESS", "TRAVEL", "STYLE & beauty",
# "PARENTING", "HEALTHY living", "QUEER VOICES", "FOOD & DRINK", "BUSINESS",
# ]],
"news": ["business", "entertainment", "politics", "sport", "tech"],
}
topic2group = {v: g for g, l in topic_category.items() for v in l}
@click.command()
@click.option("--perspective/--no-perspective", default=True, type=bool, help="use perspective api or classifier to evaluate toxicity")
@click.option("--large", default=False, type=bool, help="is it large experiment result? if true, use gpt2-large for evaluating perplexity.")
@click.argument("files", nargs=-1)
def main(
perspective: bool,
large: bool,
files: List[str]
):
files = tqdm(files)
for file in files:
files.desc = file
handle_file(perspective=perspective, large=large, filename=file)
def get_topic(x):
return x.split("\n", 1)[0].replace("topic: ", "").strip().split("-", 1)[0]
def clean_text(x):
if not x:
return None
if x[0] == "=":
x = x[1:]
x = x.split("==", 1)[0]
# x = re.sub(r"[^a-zA-Z\"'\!\?\s\.\,\&\(\)\-]", "", x)
x = x.strip()
return x
def handle_file(
perspective: bool,
large: bool,
filename: str
):
df = pd.read_json(filename, lines=True)
if "topic" in df.columns:
df["topic"] = df.topic.map(lambda x: x.split("-", 1)[0])
if "prompt" in df.columns:
df["topic"] = df.prompt.map(get_topic)
else:
df["prompt"] = ""
df.rename(columns={"generation": "text"}, inplace=True)
df.text = df.text.map(clean_text)
df = df[df.text.str.len() > 0]
print("filtered: ", len(df))
# clf_news = Classifier("heegyu/roberta-base-news-category-top10")
clf_news = Classifier("Umesh/distilbert-bbc-news-classification")
clf_sentiment = Classifier("VictorSanh/roberta-base-finetuned-yelp-polarity")
clf_emotion = Classifier("bhadresh-savani/bert-base-uncased-emotion")
topic_classifier = {
"sentiment": clf_sentiment,
"emotion": clf_emotion,
"news": clf_news,
}
def eval_topic_text(topic, prompt, text):
group = topic2group[topic]
index = topic_category[group].index(topic)
# text = prompt.split("\n", 1)[1] + text
return topic_classifier[group].classify_item(text, index, False, False)
df["topic_accuracy"] = list(
tqdm(
map(
lambda x: eval_topic_text(x[0], x[1], x[2]),
zip(df.topic, df.prompt, df.text),
),
desc="evaluating topics",
)
)
del topic_classifier
del clf_news
del clf_sentiment
del clf_emotion
# evaluate toxicity
if perspective:
clf_toxicity = PerspectiveAPI()
df["toxicity"] = df.text.map(clf_toxicity)
else:
clf_toxicity = Classifier("s-nlp/roberta_toxicity_classifier")
df["toxicity"] = df.text.map(lambda x: clf_toxicity.classify_item(x, 1, True, True))
del clf_toxicity
clf_grammar = Classifier("cointegrated/roberta-large-cola-krishna2020")
df["grammar"] = df.text.map(lambda x: clf_grammar.classify_item(x, 0, True, True))
del clf_grammar
if large:
# for fewshot generation
ppl = PerplexityEstimator("gpt2-large")
df["loss"] = list(tqdm(
map(lambda x: ppl.classify_item(x[2]), zip(df.topic, df.prompt, df.text)),
desc="evaluating ppls"
))
else:
ppl = TopicPPL()
df["loss"] = list(
tqdm(
map(
lambda x: ppl.classify_item(x[0], x[1] + x[2]),
zip(df.topic, df.prompt, df.text),
),
desc="evaluating topic ppls",
)
)
del ppl
# save result
loss2ppl(df).to_csv(filename + ".eval.csv")
loss2ppl(df.groupby("topic").mean()).to_csv(filename + ".eval_topic_mean.csv")
loss2ppl(df.mean()).to_csv(filename + ".eval_mean.csv")
def loss2ppl(df):
df["ppl"] = np.exp(df.loss)
return df
if __name__ == "__main__":
main()