-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
279 lines (215 loc) · 9.05 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import numpy as np
import time
# import librosa
from librosa.filters import mel as librosa_mel_fn
from librosa import stft, power_to_db
from pathlib import Path
from utilities import (create_folder, get_filename, RegressionPostProcessor,
write_events_to_midi)
import config
def append_to_dict(dict, key, value):
if key in dict.keys():
dict[key].append(value)
else:
dict[key] = [value]
def output_to_dict(note_output,pedal_output):
full_output_dict = {
'reg_onset_output': note_output[0],
'reg_offset_output': note_output[1],
'frame_output': note_output[2],
'velocity_output': note_output[3],
'reg_pedal_onset_output': pedal_output[0],
'reg_pedal_offset_output': pedal_output[1],
'pedal_frame_output': pedal_output[2]
}
return full_output_dict
def forward(model, x,
batch_size,
setProgressBarValue,
setProgressBarVisibility,
setProgressBarFullValue,
logUpdate = print,
frames_per_second=100):
"""Forward data to model in mini-batch.
Args:
model: object
x: (N, segment_samples)
batch_size: int
Returns:
output_dict: dict, e.g. {
'frame_output': (segments_num, frames_num, classes_num),
'onset_output': (segments_num, frames_num, classes_num),
...}
"""
sample_rate = 16000
window_size = 2048
hop_size = sample_rate // frames_per_second
mel_bins = 229
fmin = 30
fmax = sample_rate // 2
window = 'hann'
center = True
pad_mode = 'reflect'
ref = 1.0
amin = 1e-10
top_db = None
# midfeat = 1792
# momentum = 0.01
# Spectrogram extractor
# spectrogram_extractor = Spectrogram(n_fft=window_size,
# hop_length=hop_size, win_length=window_size, window=window,
# center=center, pad_mode=pad_mode, freeze_parameters=True)
# # Logmel feature extractor
# logmel_extractor = LogmelFilterBank(sr=sample_rate,
# n_fft=window_size, n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref,
# amin=amin, top_db=top_db, freeze_parameters=True)
logmel = librosa_mel_fn(sr=sample_rate, n_fft=window_size, n_mels=mel_bins,
fmin=fmin, fmax=fmax).T
output_dict = {}
# device = next(model.parameters()).device
pointer = 0
total_segments = int(np.ceil(len(x) / batch_size))
setProgressBarFullValue(total_segments)
setProgressBarVisibility(True)
while True:
logUpdate('Segment {} / {}'.format(pointer, total_segments))
setProgressBarValue(pointer)
if pointer >= len(x):
break
batch_waveform = x[pointer : pointer + batch_size]
pointer += batch_size
batch_waveform = stft(y=batch_waveform,n_fft=window_size,
hop_length=hop_size, win_length=window_size, window=window,
center=center, pad_mode=pad_mode,)
mel_spectrogram = np.dot(np.abs(np.transpose(batch_waveform,axes=(0,2,1))) ** 2, logmel)
logmel_spectrogram = power_to_db(
mel_spectrogram, ref=ref, amin=amin, top_db=top_db)
batch_waveform = np.expand_dims(logmel_spectrogram, axis=1)
# batch_waveform = spectrogram_extractor(batch_waveform)
# batch_waveform = logmel_extractor(batch_waveform)
# note_output,pedal_output = model(batch_waveform)
note_output,pedal_output = model(None,{'input':batch_waveform.astype(np.float32)})
batch_output_dict = output_to_dict(note_output,pedal_output)
for key in batch_output_dict.keys():
append_to_dict(output_dict, key, batch_output_dict[key])
for key in output_dict.keys():
output_dict[key] = np.concatenate(output_dict[key], axis=0)
setProgressBarVisibility(False)
return output_dict
# def to_numpy(tensor):
# return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
class PianoTranscription(object):
def __init__(self, model,checkpoint_path=None,
segment_samples=16000*10):
"""Class for transcribing piano solo recording.
Args:
model_type: str
checkpoint_path: str
segment_samples: int
device: 'cuda' | 'cpu'
"""
print('Using CPU for inference.')
self.segment_samples = segment_samples
self.frames_per_second = config.frames_per_second
self.classes_num = config.classes_num
self.onset_threshold = 0.3
self.offset_threshod = 0.3
self.frame_threshold = 0.1
self.pedal_offset_threshold = 0.2
self.model = model
# print("loaded model")
def transcribe(self, audio, midi_path,
setProgressBarValue,
setProgressBarVisibility,
setProgressBarFullValue,
logUpdate=print):
"""Transcribe an audio recording.
Args:
audio: (audio_samples,)
midi_path: str, path to write out the transcribed MIDI.
Returns:
transcribed_dict, dict: {'output_dict':, ..., 'est_note_events': ...}
"""
audio = audio[None, :] # (1, audio_samples)
# Pad audio to be evenly divided by segment_samples
audio_len = audio.shape[1]
pad_len = int(np.ceil(audio_len / self.segment_samples))\
* self.segment_samples - audio_len
audio = np.concatenate((audio, np.zeros((1, pad_len))), axis=1)
# Enframe to segments
segments = self.enframe(audio, self.segment_samples)
"""(N, segment_samples)"""
# Forward
output_dict = forward(self.model, segments, batch_size=1,
setProgressBarValue=setProgressBarValue,
setProgressBarFullValue=setProgressBarFullValue,
setProgressBarVisibility=setProgressBarVisibility,
logUpdate=logUpdate,
frames_per_second=self.frames_per_second)
"""{'reg_onset_output': (N, segment_frames, classes_num), ...}"""
# Deframe to original length
for key in output_dict.keys():
output_dict[key] = self.deframe(output_dict[key])[0 : audio_len]
"""output_dict: {
'reg_onset_output': (N, segment_frames, classes_num),
'reg_offset_output': (N, segment_frames, classes_num),
'frame_output': (N, segment_frames, classes_num),
'velocity_output': (N, segment_frames, classes_num)}"""
# Post processor
post_processor = RegressionPostProcessor(self.frames_per_second,
classes_num=self.classes_num, onset_threshold=self.onset_threshold,
offset_threshold=self.offset_threshod,
frame_threshold=self.frame_threshold,
pedal_offset_threshold=self.pedal_offset_threshold)
# Post process output_dict to MIDI events
(est_note_events, est_pedal_events) = \
post_processor.output_dict_to_midi_events(output_dict)
# Write MIDI events to file
if midi_path:
write_events_to_midi(start_time=0, note_events=est_note_events,
pedal_events=est_pedal_events, midi_path=midi_path)
logUpdate('Write out to {}'.format(midi_path))
transcribed_dict = {
'output_dict': output_dict,
'est_note_events': est_note_events,
'est_pedal_events': est_pedal_events}
return transcribed_dict
def enframe(self, x, segment_samples):
"""Enframe long sequence to short segments.
Args:
x: (1, audio_samples)
segment_samples: int
Returns:
batch: (N, segment_samples)
"""
assert x.shape[1] % segment_samples == 0
batch = []
pointer = 0
while pointer + segment_samples <= x.shape[1]:
batch.append(x[:, pointer : pointer + segment_samples])
pointer += segment_samples // 2
batch = np.concatenate(batch, axis=0)
return batch
def deframe(self, x):
"""Deframe predicted segments to original sequence.
Args:
x: (N, segment_frames, classes_num)
Returns:
y: (audio_frames, classes_num)
"""
if x.shape[0] == 1:
return x[0]
else:
x = x[:, 0 : -1, :]
"""Remove an extra frame in the end of each segment caused by the
'center=True' argument when calculating spectrogram."""
(N, segment_samples, classes_num) = x.shape
assert segment_samples % 4 == 0
y = []
y.append(x[0, 0 : int(segment_samples * 0.75)])
for i in range(1, N - 1):
y.append(x[i, int(segment_samples * 0.25) : int(segment_samples * 0.75)])
y.append(x[-1, int(segment_samples * 0.25) :])
y = np.concatenate(y, axis=0)
return y