-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_gin.py
208 lines (172 loc) · 7.3 KB
/
main_gin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import logging
import os.path as osp
import os
import random
import torch
import torch.nn
import torch.nn.functional as F
from torch.nn import Sequential, Linear, ReLU, PReLU
import torch_geometric.transforms as T
import pandas as pd
from collections import defaultdict
import collections
from collections import defaultdict
from pathlib import Path
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics.pairwise import paired_distances
# from arguments import arg_parse
from utils import get_activation, seed_everything
from net import MLP, GCN, Net
from dataloader import get_train_loader, get_test_loader
from loss import TripletMarginWithDistanceLoss
import subprocess
import nni
from sp import SimpleParam
import argparse
data_folder = '../DATA_Standardized'
query_emb_path = 'query_embedding_dict.npy'
def train(epoch):
model.train()
if epoch == 51:
for param_group in optimizer.param_groups:
param_group['lr'] = 0.5 * param_group['lr']
epoch_loss = 0
for i, data in enumerate(train_loader):
# each data should include three elements in a triplet (qid, doc+ and doc-)
qid = data[0]
query_emb = data[1].squeeze()
positive_docid = data[2]
positive_graph = data[3]
negative_docid = data[4]
negative_graph = data[5]
query_emb = query_emb.to(device)
positive_graph = positive_graph.to(device)
negative_graph = negative_graph.to(device)
optimizer.zero_grad()
# triplet loss
positive_emb = model(positive_graph.x, positive_graph.edge_index, positive_graph.batch, device)
negative_emb = model(negative_graph.x, negative_graph.edge_index, negative_graph.batch, device)
triplet_loss = TripletMarginWithDistanceLoss(distance_function=lambda x, y: 1 - F.cosine_similarity(x, y),
margin=1.0, swap=True, reduction='mean')
loss = triplet_loss(query_emb, positive_emb, negative_emb)
epoch_loss += loss.item()
loss.backward()
optimizer.step()
return epoch_loss
@torch.no_grad()
def test(epoch, final=False):
model.eval()
ranking_list = []
fake_rank_value = 0
for data in test_loader:
qid = data[0].item()
query_emb = data[1].reshape(1, -1)
docid = data[2][0]
doc_graph = data[3]
doc_graph = doc_graph.to(device)
doc_emb = model(doc_graph.x, doc_graph.edge_index, doc_graph.batch, device)
doc_emb_data = doc_emb.detach().cpu().numpy()
score = F.cosine_similarity(torch.Tensor(query_emb), torch.Tensor(doc_emb_data)).item()
ranking_list.append([qid, "Q0", docid, fake_rank_value, score, "run"])
ranking_df = pd.DataFrame(ranking_list, columns=["qid", "Q0", "docid", "rank", "score", "tag"])
ranking_df["docid"] = ranking_df["docid"].map(lambda x: x.split('.')[0])
ranking_df["rank"] = ranking_df.groupby("qid")["score"].rank("first", ascending=False)
ranking_df = ranking_df.groupby(["qid"]).apply(lambda x: x.sort_values(["rank"], ascending=True))
ranking_out_dirs = Path(data_folder) / Path('eval/gin')
if not os.path.exists(ranking_out_dirs):
os.makedirs(ranking_out_dirs)
ranking_out_name = f"gin_epoch{epoch}_batch{batch_size}_gc{num_gcn_layers}_mlp{num_mlp_layers}_lr{learning_rate}_{activation}_{readout}.txt"
out_path = Path(ranking_out_dirs) / Path(ranking_out_name)
ranking_df.to_csv(out_path, sep=' ', index=False, header=False)
# evaluation
test_qrels_path = "../DATA_Standardized/eval/qrels-covid_d5_j4.5-5.txt"
eval_excutable = "../trec_eval-9.0.7/trec_eval"
if os.path.exists(eval_excutable):
rc, out = subprocess.getstatusoutput(eval_excutable + " -m " + " ndcg_cut.20 " + test_qrels_path + " " + str(out_path))
ndcg_20 = float(out.split('\t')[-1])
print(f'gin ndcg_20: {ndcg_20}')
if final and use_nni:
nni.report_final_result(ndcg_20)
elif use_nni:
nni.report_intermediate_result(ndcg_20)
return ndcg_20
if __name__ == '__main__':
import warnings
warnings.filterwarnings('ignore')
parser = argparse.ArgumentParser(description='Arguments.')
parser.add_argument('--param', type=str, default='local:gin.yaml')
# parser.add_argument('--cuda', dest='cuda', type=int, default=0, help='gpu id.')
parser.add_argument('--eval_interval', dest='eval_interval', type=int, default=20)
parser.add_argument('--save_emb_interval', dest='save_emb_interval', type=int, default=100)
parser.add_argument('--seed', dest='seed', type=int, default=54321)
parser.add_argument('--hidden_dim', dest='hidden_dim', type=int, default=700)
default_param = {
'batch_size': 32,
'epoch_num': 20,
'activation': "relu",
'num_GCN_layers': 3,
'num_MLP_layers': 3,
'readout': "mean",
'learning_rate': 0.01,
}
# add hyper-parameters into parser
param_keys = default_param.keys()
for key in param_keys:
parser.add_argument(f'--{key}', type=type(default_param[key]), nargs='?')
args = parser.parse_args()
# parse param
sp = SimpleParam(default=default_param)
param = sp(source=args.param, preprocess='nni')
for key in param_keys:
if getattr(args, key) is not None:
param[key] = getattr(args, key)
use_nni = args.param == 'nni'
eval_interval = args.eval_interval
save_emb_interval = args.save_emb_interval
seed_everything(args.seed)
hidden_dim = args.hidden_dim
batch_size = param['batch_size']
epoch_num = param['epoch_num']
num_gcn_layers = param['num_GCN_layers']
num_mlp_layers = param['num_MLP_layers']
learning_rate = param['learning_rate']
activation = param['activation']
readout = param['readout']
# query emb
query_embedding = dict(np.load(Path(data_folder) / Path(query_emb_path), allow_pickle=True).item())
for k, v in query_embedding.items():
query_embedding[k] = torch.from_numpy(v)
if torch.cuda.is_available():
dev = "cuda"
else:
dev = "cpu"
device = torch.device(dev)
node_feature_dim = 200
dataset_num_features = node_feature_dim
model = Net(
GCN(dataset_num_features, hidden_dim, num_gcn_layers, get_activation(activation), readout),
MLP(num_gcn_layers * hidden_dim, hidden_dim, num_mlp_layers, get_activation(activation)),
).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
train_loader = get_train_loader(data_folder, query_embedding, batch_size)
test_loader = get_test_loader(data_folder, query_embedding)
best_ndcg_20 = 0
best_params = {}
for epoch in range(1, epoch_num+1):
train_loss = train(epoch)
print("Epoch {} loss: {}".format(epoch, train_loss))
if epoch % eval_interval == 0:
ndcg_20 = test(epoch)
if best_ndcg_20 < ndcg_20:
best_ndcg_20 = ndcg_20
param['epoch_num'] = epoch
best_params = param
ndcg_20 = test(epoch, final=True)
if ndcg_20 > best_ndcg_20:
best_ndcg_20 = ndcg_20
param['epoch_num'] = epoch
best_params = param
print(f'gin final_ndcg_20: {ndcg_20}')
print(f'gin best_ndcg_20: {best_ndcg_20}')
print(f'gin best_params: {best_params}')