-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_cls.py
263 lines (220 loc) · 8.99 KB
/
run_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa)."""
import dataclasses
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EvalPrediction, GlueDataset
# from transformers import GlueDataTrainingArguments as DataTrainingArguments
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
glue_compute_metrics,
glue_output_modes,
glue_tasks_num_labels,
set_seed,
)
from data_helper import get_examples, DictDataCollator, ExampleDataset
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
@dataclass
class DataTrainingArguments:
train_data_file: Optional[str] = field(
default=None,
metadata={"help": "The input training data file with text format file"}
)
eval_data_file: Optional[str] = field(
default=None,
metadata={"help": "The input eval data file with text format file"}
)
max_len: Optional[int] = field(
default=256,
metadata={"help": "The length to truncate your src input sentence"}
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached train and evaluation sets"}
)
data_mode: str = field(
default="csv",
metadata={"help": "Input data mode"}
)
patience: Optional[int] = field(
default=1000000,
metadata={"help": "How many steps for tolerating the unimproved case"}
)
output_best_dir: str = field(
default=None,
metadata={"help": "The best model's output dir"}
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
try:
num_labels = 7 # glue_tasks_num_labels[data_args.task_name]
output_mode = "classification" # glue_output_modes[data_args.task_name]
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
# finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
# Get datasets
# train_dataset = GlueDataset(data_args, tokenizer=tokenizer) if training_args.do_train else None
# eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, evaluate=True) if training_args.do_eval else None
train_dataset = get_examples(
examples_path=data_args.train_data_file,
tokenizer=tokenizer,
max_src_len=data_args.max_len)
eval_dataset = get_examples(
examples_path=data_args.eval_data_file,
tokenizer=tokenizer,
max_src_len=data_args.max_len)
train_dataset = ExampleDataset(train_dataset)
eval_dataset = ExampleDataset(eval_dataset)
data_collator = DictDataCollator()
def compute_metrics(p: EvalPrediction) -> Dict:
def acc_and_f1(preds, labels):
acc = (preds == labels).mean()
p = precision_score(labels, preds, average='macro')
r = recall_score(labels, preds, average='macro')
f1 = f1_score(y_true=labels, y_pred=preds, average='macro')
return {
"acc": acc,
"f1": f1,
"p": p,
"r": r
}
if output_mode == "classification":
preds = np.argmax(p.predictions, axis=1)
elif output_mode == "regression":
preds = np.squeeze(p.predictions)
return acc_and_f1(preds, p.label_ids)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
data_collator=data_collator
)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
results = {}
if training_args.do_eval and training_args.local_rank in [-1, 0]:
logger.info("*** Evaluate ***")
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_datasets = [eval_dataset]
for eval_dataset in eval_datasets:
result = trainer.evaluate(eval_dataset=eval_dataset)
output_eval_file = os.path.join(
training_args.output_dir, "eval_results_xx.txt"
)
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(result)
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()