forked from Kuper-Tech/work
-
Notifications
You must be signed in to change notification settings - Fork 0
/
priority_sampler.go
80 lines (69 loc) · 2.3 KB
/
priority_sampler.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
package work
import (
"math/rand"
)
type prioritySampler struct {
sum uint
samples []sampleItem
}
type sampleItem struct {
priority uint
// payload:
redisJobs string
redisJobsInProg string
redisJobsPaused string
redisJobsLock string
redisJobsLockInfo string
redisJobsMaxConcurrency string
}
func (s *prioritySampler) add(priority uint, redisJobs, redisJobsInProg, redisJobsPaused, redisJobsLock, redisJobsLockInfo, redisJobsMaxConcurrency string) {
sample := sampleItem{
priority: priority,
redisJobs: redisJobs,
redisJobsInProg: redisJobsInProg,
redisJobsPaused: redisJobsPaused,
redisJobsLock: redisJobsLock,
redisJobsLockInfo: redisJobsLockInfo,
redisJobsMaxConcurrency: redisJobsMaxConcurrency,
}
s.samples = append(s.samples, sample)
s.sum += priority
}
// sample re-sorts s.samples, modifying it in-place. Higher weighted things will tend to go towards the beginning.
// NOTE: as written currently makes 0 allocations.
// NOTE2: this is an O(n^2 algorithm) that is:
// 5492ns for 50 jobs (50 is a large number of unique jobs in my experience)
// 54966ns for 200 jobs
// ~1ms for 1000 jobs
// ~4ms for 2000 jobs
func (s *prioritySampler) sample() []sampleItem {
lenSamples := len(s.samples)
remaining := lenSamples
sumRemaining := s.sum
lastValidIdx := 0
// Algorithm is as follows:
// Loop until we sort everything. We're going to sort it in-place, probabilistically moving the highest weights to the front of the slice.
// Pick a random number
// Move backwards through the slice on each iteration,
// and see where the random number fits in the continuum.
// If we find where it fits, sort the item to the next slot towards the front of the slice.
for remaining > 1 {
// rn from [0 to sumRemaining)
rn := uint(rand.Uint32()) % sumRemaining
prevSum := uint(0)
for i := lenSamples - 1; i >= lastValidIdx; i-- {
sample := s.samples[i]
if rn < (sample.priority + prevSum) {
// move the sample to the beginning
s.samples[i], s.samples[lastValidIdx] = s.samples[lastValidIdx], s.samples[i]
sumRemaining -= sample.priority
break
} else {
prevSum += sample.priority
}
}
lastValidIdx++
remaining--
}
return s.samples
}