-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
187 lines (152 loc) · 5.93 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import glob
import os
import os.path as osp
import platform
import sys
from itertools import product
import torch
from setuptools import find_packages, setup
from torch.__config__ import parallel_info
from torch.utils.cpp_extension import (
CUDA_HOME,
BuildExtension,
CppExtension,
CUDAExtension,
)
__version__ = '0.2.0'
URL = 'https://github.com/HipGraph/iSpLib'
WITH_CUDA = False
if torch.cuda.is_available():
WITH_CUDA = CUDA_HOME is not None or torch.version.hip
suffices = ['cpu', 'cuda'] if WITH_CUDA else ['cpu']
if os.getenv('FORCE_CUDA', '0') == '1':
suffices = ['cuda', 'cpu']
if os.getenv('FORCE_ONLY_CUDA', '0') == '1':
suffices = ['cuda']
if os.getenv('FORCE_ONLY_CPU', '0') == '1':
suffices = ['cpu']
WITH_CUDA = False
suffices = ['cpu']
BUILD_DOCS = os.getenv('BUILD_DOCS', '0') == '1'
WITH_METIS = True if os.getenv('WITH_METIS', '0') == '1' else False
WITH_MTMETIS = True if os.getenv('WITH_MTMETIS', '0') == '1' else False
WITH_SYMBOLS = True if os.getenv('WITH_SYMBOLS', '0') == '1' else False
def get_extensions():
extensions = []
extensions_dir = osp.join('csrc')
main_files = glob.glob(osp.join(extensions_dir, '*.cpp'))
# remove generated 'hip' files, in case of rebuilds
main_files = [path for path in main_files if 'hip' not in path]
for main, suffix in product(main_files, suffices):
FUSEDMM = "fusedmm" in main
define_macros = [('WITH_PYTHON', None)]
undef_macros = []
if sys.platform == 'win32':
define_macros += [('torchsparse_EXPORTS', None)]
libraries = []
if WITH_METIS:
define_macros += [('WITH_METIS', None)]
libraries += ['metis']
if WITH_MTMETIS:
define_macros += [('WITH_MTMETIS', None)]
define_macros += [('MTMETIS_64BIT_VERTICES', None)]
define_macros += [('MTMETIS_64BIT_EDGES', None)]
define_macros += [('MTMETIS_64BIT_WEIGHTS', None)]
define_macros += [('MTMETIS_64BIT_PARTITIONS', None)]
libraries += ['mtmetis', 'wildriver']
extra_compile_args = {'cxx': ['-O3']}
if not os.name == 'nt': # Not on Windows:
extra_compile_args['cxx'] += ['-Wno-sign-compare']
extra_link_args = [] if WITH_SYMBOLS else ['-s']
info = parallel_info()
if ('backend: OpenMP' in info and 'OpenMP not found' not in info
and sys.platform != 'darwin'):
extra_compile_args['cxx'] += ['-DAT_PARALLEL_OPENMP']
if sys.platform == 'win32':
extra_compile_args['cxx'] += ['/openmp']
else:
extra_compile_args['cxx'] += ['-fopenmp']
else:
print('Compiling without OpenMP...')
# Compile for mac arm64
if (sys.platform == 'darwin' and platform.machine() == 'arm64'):
extra_compile_args['cxx'] += ['-arch', 'arm64']
extra_link_args += ['-arch', 'arm64']
if suffix == 'cuda':
define_macros += [('WITH_CUDA', None)]
nvcc_flags = os.getenv('NVCC_FLAGS', '')
nvcc_flags = [] if nvcc_flags == '' else nvcc_flags.split(' ')
nvcc_flags += ['-O3']
if torch.version.hip:
# USE_ROCM was added to later versions of PyTorch
# Define here to support older PyTorch versions as well:
define_macros += [('USE_ROCM', None)]
undef_macros += ['__HIP_NO_HALF_CONVERSIONS__']
else:
nvcc_flags += ['--expt-relaxed-constexpr']
extra_compile_args['nvcc'] = nvcc_flags
name = main.split(os.sep)[-1][:-4]
sources = [main]
path = osp.join(extensions_dir, 'cpu', f'{name}_cpu.cpp')
if osp.exists(path):
sources += [path]
path = osp.join(extensions_dir, 'cuda', f'{name}_cuda.cu')
if suffix == 'cuda' and osp.exists(path):
sources += [path]
phmap_dir = "third_party/parallel-hashmap"
extra_objects = []
if FUSEDMM:
extra_objects += [f'csrc/fusedmm/{i}' for i in os.listdir('csrc/fusedmm/') if i[-2:] == '.a']
# extra_objects += ['csrc/fusedmm/fusedmm_cpu.a','csrc/fusedmm/fusedmm_gpu.a']
extra_compile_args['cxx'] += ["-O3", "-march=native", "-Wall", "-lm", "-fopenmp", "-L/usr/local/cuda/lib64", "-lcudart"]
extra_link_args += ['-lgomp']
Extension = CppExtension if suffix == 'cpu' else CUDAExtension
extension = Extension(
f'isplib._{name}_{suffix}',
sources,
extra_objects=extra_objects,
include_dirs=[extensions_dir, phmap_dir],
define_macros=define_macros,
undef_macros=undef_macros,
extra_compile_args=extra_compile_args,
extra_link_args=extra_link_args,
libraries=libraries,
)
extensions += [extension]
return extensions
install_requires = [
]
test_requires = [
]
# work-around hipify abs paths
include_package_data = True
if torch.cuda.is_available() and torch.version.hip:
include_package_data = False
setup(
name='isplib',
version=__version__,
description=('PyTorch Extension Library of Optimized Autograd Sparse '
'Matrix Operations'),
author='Ariful Azad, Hoque Anik, Md Saidul, Rohit Gampa',
author_email='azad@iu.edu',
url=URL,
download_url=f'{URL}/archive/{__version__}.tar.gz',
keywords=[
'pytorch',
'sparse',
'sparse-matrices',
'autograd',
],
python_requires='>=3.7',
install_requires=install_requires,
extras_require={
'test': test_requires,
},
ext_modules=get_extensions() if not BUILD_DOCS else [],
cmdclass={
'build_ext':
BuildExtension.with_options(no_python_abi_suffix=False, use_ninja=False)
},
packages=find_packages(),
include_package_data=include_package_data,
)