From 71370296b2a2a086c59d085cba9af1e326cb978c Mon Sep 17 00:00:00 2001 From: Andreas Lynge Date: Fri, 2 Apr 2021 20:06:37 +0200 Subject: [PATCH] Decrease number of universes Put Fin in lowest universe and 1 universe for FinSeq. --- theories/Spaces/Finite/Fin.v | 2 +- theories/Spaces/Finite/FinSeq.v | 2 +- theories/Spaces/Finite/Finite.v | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/theories/Spaces/Finite/Fin.v b/theories/Spaces/Finite/Fin.v index b3a21480153..ea16cef1a8b 100644 --- a/theories/Spaces/Finite/Fin.v +++ b/theories/Spaces/Finite/Fin.v @@ -15,7 +15,7 @@ Local Open Scope nat_scope. (** A *finite set* is a type that is merely equivalent to the canonical finite set determined by some natural number. There are many equivalent ways to define the canonical finite sets, such as [{ k : nat & k < n}]; we instead choose a recursive one. *) -Fixpoint Fin (n : nat) : Type +Fixpoint Fin (n : nat) : Type0 := match n with | 0 => Empty | S n => Fin n + Unit diff --git a/theories/Spaces/Finite/FinSeq.v b/theories/Spaces/Finite/FinSeq.v index 07c34ed45f3..8a4b858fe40 100644 --- a/theories/Spaces/Finite/FinSeq.v +++ b/theories/Spaces/Finite/FinSeq.v @@ -13,7 +13,7 @@ Require Import Note that the induction principle [finseq_]*) -Definition FinSeq (n : nat) (A : Type) : Type := Fin n -> A. +Definition FinSeq@{u} (n : nat) (A : Type@{u}) : Type@{u} := Fin n -> A. (** The empty finite sequence. *) diff --git a/theories/Spaces/Finite/Finite.v b/theories/Spaces/Finite/Finite.v index 347c4314ee5..105efc519ef 100644 --- a/theories/Spaces/Finite/Finite.v +++ b/theories/Spaces/Finite/Finite.v @@ -686,7 +686,7 @@ Qed. (** A function from [nat] to a finite set must repeat itself eventually. *) Section Enumeration. - Context `{Funext} {X} `{Finite X} (e : nat -> X). + Context `{Funext} {X} `{Finite@{_ Set _} X} (e : nat -> X). Let er (n : nat) : Fin n -> X := fun k => e (nat_fin n k).