-
Notifications
You must be signed in to change notification settings - Fork 105
/
demo.py
50 lines (40 loc) · 1.42 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from torch.autograd import Variable
import utils
import dataset
from PIL import Image
import models.crnn as crnn
import params
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model_path', type = str, required = True, help = 'crnn model path')
parser.add_argument('-i', '--image_path', type = str, required = True, help = 'demo image path')
args = parser.parse_args()
model_path = args.model_path
image_path = args.image_path
# net init
nclass = len(params.alphabet) + 1
model = crnn.CRNN(params.imgH, params.nc, nclass, params.nh)
if torch.cuda.is_available():
model = model.cuda()
# load model
print('loading pretrained model from %s' % model_path)
if params.multi_gpu:
model = torch.nn.DataParallel(model)
model.load_state_dict(torch.load(model_path))
converter = utils.strLabelConverter(params.alphabet)
transformer = dataset.resizeNormalize((100, 32))
image = Image.open(image_path).convert('L')
image = transformer(image)
if torch.cuda.is_available():
image = image.cuda()
image = image.view(1, *image.size())
image = Variable(image)
model.eval()
preds = model(image)
_, preds = preds.max(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
preds_size = Variable(torch.LongTensor([preds.size(0)]))
raw_pred = converter.decode(preds.data, preds_size.data, raw=True)
sim_pred = converter.decode(preds.data, preds_size.data, raw=False)
print('%-20s => %-20s' % (raw_pred, sim_pred))