-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathholoclean.py
363 lines (330 loc) · 13 KB
/
holoclean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import logging
import os
import random
import torch
import numpy as np
from dataset import Dataset
from dcparser import Parser
from domain import DomainEngine
from detect import DetectEngine
from repair import RepairEngine
from evaluate import EvalEngine
logging.basicConfig(format="%(asctime)s - [%(levelname)5s] - %(message)s", datefmt='%H:%M:%S')
root_logger = logging.getLogger()
gensim_logger = logging.getLogger('gensim')
root_logger.setLevel(logging.INFO)
gensim_logger.setLevel(logging.WARNING)
# Arguments for HoloClean
arguments = [
(('-u', '--db_user'),
{'metavar': 'DB_USER',
'dest': 'db_user',
'default': 'holocleanuser',
'type': str,
'help': 'User for DB used to persist state.'}),
(('-p', '--db-pwd', '--pass'),
{'metavar': 'DB_PWD',
'dest': 'db_pwd',
'default': 'abcd1234',
'type': str,
'help': 'Password for DB used to persist state.'}),
(('-h', '--db-host'),
{'metavar': 'DB_HOST',
'dest': 'db_host',
'default': 'localhost',
'type': str,
'help': 'Host for DB used to persist state.'}),
(('-d', '--db_name'),
{'metavar': 'DB_NAME',
'dest': 'db_name',
'default': 'holo',
'type': str,
'help': 'Name of DB used to persist state.'}),
(('-t', '--threads'),
{'metavar': 'THREADS',
'dest': 'threads',
'default': 20,
'type': int,
'help': 'How many threads to use for parallel execution. If <= 1, then no pool workers are used.'}),
(('-dbt', '--timeout'),
{'metavar': 'TIMEOUT',
'dest': 'timeout',
'default': 60000,
'type': int,
'help': 'Timeout for expensive featurization queries.'}),
(('-s', '--seed'),
{'metavar': 'SEED',
'dest': 'seed',
'default': 45,
'type': int,
'help': 'The seed to be used for torch.'}),
(('-l', '--learning-rate'),
{'metavar': 'LEARNING_RATE',
'dest': 'learning_rate',
'default': 0.001,
'type': float,
'help': 'The learning rate used during training.'}),
(('-o', '--optimizer'),
{'metavar': 'OPTIMIZER',
'dest': 'optimizer',
'default': 'adam',
'type': str,
'help': 'Optimizer used for learning.'}),
(('-e', '--epochs'),
{'metavar': 'LEARNING_EPOCHS',
'dest': 'epochs',
'default': 20,
'type': float,
'help': 'Number of epochs used for training.'}),
(('-w', '--weight_decay'),
{'metavar': 'WEIGHT_DECAY',
'dest': 'weight_decay',
'default': 0.01,
'type': float,
'help': 'Weight decay across iterations.'}),
(('-m', '--momentum'),
{'metavar': 'MOMENTUM',
'dest': 'momentum',
'default': 0.0,
'type': float,
'help': 'Momentum for SGD.'}),
(('-b', '--batch-size'),
{'metavar': 'BATCH_SIZE',
'dest': 'batch_size',
'default': 1,
'type': int,
'help': 'The batch size during training.'}),
(('-wlt', '--weak-label-thresh'),
{'metavar': 'WEAK_LABEL_THRESH',
'dest': 'weak_label_thresh',
'default': 0.90,
'type': float,
'help': 'Threshold of posterior probability to assign weak labels.'}),
(('-dt1', '--domain_thresh_1'),
{'metavar': 'DOMAIN_THRESH_1',
'dest': 'domain_thresh_1',
'default': 0.1,
'type': float,
'help': 'Minimum co-occurrence probability threshold required for domain values in the first domain pruning stage. Between 0 and 1.'}),
(('-dt2', '--domain-thresh-2'),
{'metavar': 'DOMAIN_THRESH_2',
'dest': 'domain_thresh_2',
'default': 0,
'type': float,
'help': 'Threshold of posterior probability required for values to be included in the final domain in the second domain pruning stage. Between 0 and 1.'}),
(('-md', '--max-domain'),
{'metavar': 'MAX_DOMAIN',
'dest': 'max_domain',
'default': 1000000,
'type': int,
'help': 'Maximum number of values to include in the domain for a given cell.'}),
(('-cs', '--cor-strength'),
{'metavar': 'COR_STRENGTH',
'dest': 'cor_strength',
'default': 0.05,
'type': float,
'help': 'Correlation threshold (absolute) when selecting correlated attributes for domain pruning.'}),
(('-cs', '--nb-cor-strength'),
{'metavar': 'NB_COR_STRENGTH',
'dest': 'nb_cor_strength',
'default': 0.3,
'type': float,
'help': 'Correlation threshold for correlated attributes when using NaiveBayes estimator.'}),
(('-fn', '--feature-norm'),
{'metavar': 'FEATURE_NORM',
'dest': 'feature_norm',
'default': True,
'type': bool,
'help': 'Normalize the features before training.'}),
(('-wn', '--weight_norm'),
{'metavar': 'WEIGHT_NORM',
'dest': 'weight_norm',
'default': False,
'type': bool,
'help': 'Normalize the weights after every forward pass during training.'}),
(('-ee', '--estimator_epochs'),
{'metavar': 'ESTIMATOR_EPOCHS',
'dest': 'estimator_epochs',
'default': 3,
'type': int,
'help': 'Number of epochs to run the weak labelling and domain generation estimator.'}),
(('-ebs', '--estimator_batch_size'),
{'metavar': 'ESTIMATOR_BATCH_SIZE',
'dest': 'estimator_batch_size',
'default': 32,
'type': int,
'help': 'Size of batch used in SGD in the weak labelling and domain generation estimator.'}),
]
# Flags for Holoclean mode
flags = [
(tuple(['--verbose']),
{'default': False,
'dest': 'verbose',
'action': 'store_true',
'help': 'verbose'}),
(tuple(['--bias']),
{'default': False,
'dest': 'bias',
'action': 'store_true',
'help': 'Use bias term'}),
(tuple(['--printfw']),
{'default': False,
'dest': 'print_fw',
'action': 'store_true',
'help': 'print the weights of featurizers'}),
(tuple(['--debug-mode']),
{'default': False,
'dest': 'debug_mode',
'action': 'store_true',
'help': 'dump a bunch of debug information to debug\/'}),
]
class HoloClean:
"""
Main entry point for HoloClean.
It creates a HoloClean Data Engine
"""
def __init__(self, **kwargs):
"""
Constructor for Holoclean
:param kwargs: arguments for HoloClean
"""
# Initialize default execution arguments
arg_defaults = {}
for arg, opts in arguments:
if 'directory' in arg[0]:
arg_defaults['directory'] = opts['default']
else:
arg_defaults[opts['dest']] = opts['default']
# Initialize default execution flags
for arg, opts in flags:
arg_defaults[opts['dest']] = opts['default']
# check env vars
for arg, opts in arguments:
# if env var is set use that
if opts["metavar"] and opts["metavar"] in os.environ.keys():
logging.debug(
"Overriding {} with env varible {} set to {}".format(
opts['dest'],
opts["metavar"],
os.environ[opts["metavar"]])
)
arg_defaults[opts['dest']] = os.environ[opts["metavar"]]
# Override defaults with manual flags
for key in kwargs:
arg_defaults[key] = kwargs[key]
# Initialize additional arguments
for (arg, default) in arg_defaults.items():
setattr(self, arg, kwargs.get(arg, default))
# Init empty session collection
self.session = Session(arg_defaults)
class Session:
"""
Session class controls the entire pipeline of HC
"""
def __init__(self, env, name="session"):
"""
Constructor for Holoclean session
:param env: Holoclean environment
:param name: Name for the Holoclean session
"""
# use DEBUG logging level if verbose enabled
if env['verbose']:
root_logger.setLevel(logging.DEBUG)
gensim_logger.setLevel(logging.DEBUG)
logging.debug('initiating session with parameters: %s', env)
# Initialize random seeds.
random.seed(env['seed'])
torch.manual_seed(env['seed'])
np.random.seed(seed=env['seed'])
# Initialize members
self.name = name
self.env = env
self.ds = Dataset(name, env)
self.dc_parser = Parser(env, self.ds)
self.domain_engine = DomainEngine(env, self.ds)
self.detect_engine = DetectEngine(env, self.ds)
self.repair_engine = RepairEngine(env, self.ds)
self.eval_engine = EvalEngine(env, self.ds)
def load_data(self, name, fpath, na_values=None, entity_col=None, src_col=None):
"""
load_data takes the filepath to a CSV file to load as the initial dataset.
:param name: (str) name to initialize dataset with.
:param fpath: (str) filepath to CSV file.
:param na_values: (str) value that identifies a NULL value
:param entity_col: (st) column containing the unique
identifier/ID of an entity. For fusion tasks, rows with
the same ID will be fused together in the output.
If None, assumes every row is a unique entity.
:param src_col: (str) if not None, for fusion tasks
specifies the column containing the source for each "mention" of an
entity.
"""
status, load_time = self.ds.load_data(name,
fpath,
na_values=na_values,
entity_col=entity_col,
src_col=src_col)
logging.info(status)
logging.debug('Time to load dataset: %.2f secs', load_time)
def load_dcs(self, fpath):
"""
load_dcs ingests the Denial Constraints for initialized dataset.
:param fpath: filepath to TXT file where each line contains one denial constraint.
"""
status, load_time = self.dc_parser.load_denial_constraints(fpath)
logging.info(status)
logging.debug('Time to load dirty data: %.2f secs', load_time)
def get_dcs(self):
return self.dc_parser.get_dcs()
def detect_errors(self, detect_list):
status, detect_time = self.detect_engine.detect_errors(detect_list)
logging.info(status)
logging.debug('Time to detect errors: %.2f secs', detect_time)
def setup_domain(self):
status, domain_time = self.domain_engine.setup()
logging.info(status)
logging.debug('Time to setup the domain: %.2f secs', domain_time)
def repair_errors(self, featurizers):
status, feat_time = self.repair_engine.setup_featurized_ds(featurizers)
logging.info(status)
logging.debug('Time to featurize data: %.2f secs', feat_time)
status, setup_time = self.repair_engine.setup_repair_model()
logging.info(status)
logging.debug('Time to setup repair model: %.2f secs', feat_time)
status, fit_time = self.repair_engine.fit_repair_model()
logging.info(status)
logging.debug('Time to fit repair model: %.2f secs', fit_time)
status, infer_time = self.repair_engine.infer_repairs()
logging.info(status)
logging.debug('Time to infer correct cell values: %.2f secs', infer_time)
status, time = self.ds.get_inferred_values()
logging.info(status)
logging.debug('Time to collect inferred values: %.2f secs', time)
status, time = self.ds.get_repaired_dataset()
logging.info(status)
logging.debug('Time to store repaired dataset: %.2f secs', time)
if self.env['print_fw']:
status, time = self.repair_engine.get_featurizer_weights()
logging.info(status)
logging.debug('Time to store featurizer weights: %.2f secs', time)
return status
def evaluate(self, fpath, tid_col, attr_col, val_col, na_values=None):
"""
evaluate generates an evaluation report with metrics (e.g. precision,
recall) given a test set.
:param fpath: (str) filepath to test set (ground truth) CSV file.
:param tid_col: (str) column in CSV that corresponds to the TID.
:param attr_col: (str) column in CSV that corresponds to the attribute.
:param val_col: (str) column in CSV that corresponds to correct value
for the current TID and attribute (i.e. cell).
:param na_values: (Any) how na_values are represented in the data.
Returns an EvalReport named tuple containing the experiment results.
"""
name = self.ds.raw_data.name + '_clean'
status, load_time = self.eval_engine.load_data(name, fpath, tid_col, attr_col, val_col, na_values=na_values)
logging.info(status)
logging.debug('Time to evaluate repairs: %.2f secs', load_time)
status, report_time, eval_report = self.eval_engine.eval_report()
logging.info(status)
logging.debug('Time to generate report: %.2f secs', report_time)
return eval_report