-
Notifications
You must be signed in to change notification settings - Fork 7
/
config_sample_2pop_inference.yml
182 lines (173 loc) · 4 KB
/
config_sample_2pop_inference.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
name: sample_2pop
setup_name: minimal
start_date: 2020-02-01
end_date: 2020-08-31
nslots: 1
subpop_setup:
geodata: model_input/geodata_sample_2pop.csv
mobility: model_input/mobility_sample_2pop.csv
initial_conditions:
method: SetInitialConditions
initial_conditions_file: model_input/ic_2pop.csv
allow_missing_subpops: TRUE
allow_missing_compartments: TRUE
compartments:
infection_stage: ["S", "E", "I", "R"]
seir:
integration:
method: rk4
dt: 1
parameters:
sigma:
value: 1 / 4
gamma:
value: 1 / 5
Ro:
value: 2.5
transitions:
- source: ["S"]
destination: ["E"]
rate: ["Ro * gamma"]
proportional_to: [["S"],["I"]]
proportion_exponent: ["1","1"]
- source: ["E"]
destination: ["I"]
rate: ["sigma"]
proportional_to: ["E"]
proportion_exponent: ["1"]
- source: ["I"]
destination: ["R"]
rate: ["gamma"]
proportional_to: ["I"]
proportion_exponent: ["1"]
seir_modifiers:
scenarios:
- Ro_all
modifiers:
Ro_mod: # assume same for all subpopulations, as a method to fit baseline R0
method: SinglePeriodModifier
parameter: Ro
period_start_date: 2020-02-01
period_end_date: 2020-08-31
subpop: "all"
subpop_groups: "all"
value:
distribution: truncnorm
mean: 1.0
sd: 0.001
a: 0
b: 1
perturbation:
distribution: truncnorm
mean: 0
sd: 0.025
a: -0.1
b: 0.1
Ro_lockdown: # allow to vary by subpopulation
method: SinglePeriodModifier
parameter: Ro
period_start_date: 2020-03-15
period_end_date: 2020-05-01
subpop: "all"
value:
distribution: truncnorm
mean: 0.5
sd: 0.001
a: 0
b: 1
perturbation:
distribution: truncnorm
mean: 0
sd: 0.025
a: -0.1
b: 0.1
Ro_relax: # allow to vary by subpopulation
method: SinglePeriodModifier
parameter: Ro
period_start_date: 2020-05-01
period_end_date: 2020-08-31
subpop: "all"
value:
distribution: truncnorm
mean: 0.8
sd: 0.001
a: 0
b: 1
perturbation:
distribution: truncnorm
mean: 0
sd: 0.025
a: -0.1
b: 0.1
Ro_all:
method: StackedModifier
modifiers: ["Ro_mod","Ro_lockdown","Ro_relax"]
outcomes:
method: delayframe
outcomes:
incidCase: #incidence of detected cases
source:
incidence:
infection_stage: "I"
probability:
value: 0.5
delay:
value: 5
incidHosp: #incidence of hospitalizations
source:
incidence:
infection_stage: "I"
probability:
value: 0.05
delay:
value: 7
duration:
value: 10
name: currHosp # will track number of current hospitalizations (ie prevalence)
incidDeath: #incidence of deaths
source: incidHosp
probability:
value: 0.2
delay:
value: 14
outcome_modifiers:
scenarios:
- test_limits
modifiers:
# assume that due to limitations in testing, initially the case detection probability was lower
test_limits:
method: SinglePeriodModifier
parameter: incidCase::probability
subpop: "all"
period_start_date: 2020-02-01
period_end_date: 2020-06-01
value:
distribution: truncnorm
mean: 0.5
sd: 0.001
a: 0
b: 1
perturbation:
distribution: truncnorm
mean: 0
sd: 0.025
a: -0.1
b: 0.1
inference:
iterations_per_slot: 1
do_inference: TRUE
gt_data_path: data/sample_2pop_cases.csv
statistics:
sum_hosp:
name: "Weekly incident hospitalizations"
aggregator: sum
period: "1 weeks"
#gt_start_date:
#gt_end_date:
sim_var: incidHosp
data_var: incidH
remove_na: TRUE
add_one: TRUE
likelihood:
dist: norm_cov
param: 0.3