forked from mmeh/simon-speck-cryptanalysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simon.cpp
1143 lines (968 loc) · 31.8 KB
/
simon.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// ===========================================================================
// SIMON implementation and cryptanalytic methods
// =========================================================================
// Copyright (c) 2013 Martin M. Lauridsen and Hoda A. Alkhzaimi.
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#include "simon.h"
#include <stdio.h>
#include <string.h>
#include <random>
#include <vector>
#include <map>
#include <set>
#include "omp.h"
u64 z[5][62] = {
{1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0,1,1,0,0,0,0,1,1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0,1,1,0,0,0,0,1,1,1,0,0,1,1,0},
{1,0,0,0,1,1,1,0,1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0,1,0,1,1,0,1,0,1,0,0,0,1,1,1,0,1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0,1,0,1,1,0,1,0},
{1,0,1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1,1,0,0,0,1,0,1,0,0,0,0,1,0,0,0,1,1,1,1,1,1,0,0,1,0,1,1,0,1,1,0,0,1,1},
{1,1,0,1,1,0,1,1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,1,1,1,0,0,1,1,0,1,0,0,0,0,1,1,1,1},
{1,1,0,1,0,0,0,1,1,1,1,0,0,1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0,0,1,0,0,1,1,1,0,1,1,1,1}
};
u64 k[ROUNDS] = { 0 };
std::mt19937 rng;
std::uniform_int_distribution<u64> uni_dist(0x0ull, WORD_MASK);
//////////////////////////////////////////
// HELPERS
//////////////////////////////////////////
char* binary(u64 x) {
char *r = new char[BLOCK_SIZE+1];
for (int i = 0; i < BLOCK_SIZE; ++i)
r[i] = ((x >> (BLOCK_SIZE-1-i)) & 0x1) ? '1' : '0';
r[BLOCK_SIZE] = '\0';
return r;
}
// Hamming weight (64-bit words)
int weight(u64 x) {
int r = 0;
while (x) {
if (x & 0x1)
r++;
x >>= 1;
}
return r;
}
// longest common subsequence, assumes len(x) = len(y) = BLOCK_SIZE+1 (where the last is \0)
unsigned char lcs(char *x, char *y) {
unsigned char L[(BLOCK_SIZE+1)][(BLOCK_SIZE+1)];
for(int i = 0; i <= BLOCK_SIZE; i++) {
for(int j = 0; j <= BLOCK_SIZE; j++) {
if(i == 0 || j == 0)
L[i][j] = 0;
else if(x[i-1] == y[j-1])
L[i][j] = L[i-1][j-1] + 1;
else
L[i][j] = (L[i-1][j] > L[i][j-1]) ? L[i-1][j] : L[i][j-1];
}
}
return L[BLOCK_SIZE][BLOCK_SIZE];
}
//////////////////////////////////////////
// CIPHER STUFF
//////////////////////////////////////////
// Rotate. As in the paper, positive amount is left, negative amount is right.
u64 rotate(u64 x, int p) {
if (p >= BLOCK_SIZE || p <= -BLOCK_SIZE)
perror("Bad rotation amount!\n");
return (p > 0) ?
((x << p) | (x >> (BLOCK_SIZE-p))) & WORD_MASK :
((x >> (-p)) | (x << (BLOCK_SIZE+p))) & WORD_MASK;
/* OLD METHOD
return (p > 0) ?
(((x & (((0x1ull << p) - 1) << (BLOCK_SIZE-p))) >> (BLOCK_SIZE-p)) ^ (x << p)) & WORD_MASK :
(((x & (((0x1ull << (BLOCK_SIZE+p)) - 1) << (-p))) >> (-p)) ^ (x << (BLOCK_SIZE+p))) & WORD_MASK;
*/
}
// F function
u64 F(u64 x) {
return (rotate(x,1) & rotate(x,8)) ^ rotate(x,2);
}
// Toy version of F, rotation by 8 is replaced by p
u64 F_toy(u64 x) {
return (rotate(x,1) & rotate(x,8)); // ^ rotate(x,2);
}
// Key schedule
void key_schedule() {
u64 tmp;
for (int i = KEY_WORDS; i < ROUNDS; ++i) {
tmp = rotate(k[i-1], -3);
if (KEY_WORDS == 4)
tmp ^= k[i-3];
tmp ^= rotate(tmp, -1);
k[i] = k[i-KEY_WORDS] ^ z[CONST_J][(i-KEY_WORDS) % 62] ^ tmp ^ CONST_C;
//k[i] = k[i-KEY_WORDS] ^ tmp;
}
if (PRINT_ROUND_KEYS) {
for (int i = 0; i < ROUNDS; ++i)
printf("%s\n", binary(k[i]));
printf("\n\n");
}
//printf("k[%2d] : %s wt : %d\n", i, binary(k[i]), weight(k[i]));
}
// Encryption for num_rounds rounds
void encrypt(u64 &x, u64 &y, int num_rounds) {
u64 tmp;
for (int i = 0; i < num_rounds; ++i) {
tmp = x;
x = y ^ F(x) ^ k[i];
y = tmp;
}
}
// Encrypt for the full number of rounds
void encrypt(u64 &x, u64 &y) {
encrypt(x, y, ROUNDS);
}
// Decryption for num_rounds rounds
void decrypt(u64 &x, u64 &y, int num_rounds) {
u64 tmp;
for (int i = 0; i < num_rounds; ++i) {
tmp = y;
y = x ^ F(y) ^ k[ROUNDS-i-1];
x = tmp;
}
}
// Decrypt for the full number of rounds
void decrypt(u64 &x, u64 &y) {
decrypt(x, y, ROUNDS);
}
void setup_random_key() {
// key schedule
for (int i = 0; i < KEY_WORDS; ++i)
k[i] = uni_dist(rng) & WORD_MASK;
key_schedule();
}
//////////////////////////////////////////
// CIPHER TESTING
//////////////////////////////////////////
void run_test_vectors() {
u64 x, y, ex, ey;
if (BLOCK_SIZE == 16 && KEY_WORDS == 4) {
k[3] = 0x1918; k[2] = 0x1110; k[1] = 0x0908; k[0] = 0x0100; x = 0x6565; y = 0x6877; ex = 0xc69b; ey = 0xe9bb;
}
if (BLOCK_SIZE == 24 && KEY_WORDS == 3) {
k[2] = 0x121110; k[1] = 0x0a0908; k[0] = 0x020100; x = 0x612067; y = 0x6e696c; ex = 0xdae5ac; ey = 0x292cac;
}
if (BLOCK_SIZE == 24 && KEY_WORDS == 4) {
k[3] = 0x1a1918; k[2] = 0x121110; k[1] = 0x0a0908; k[0] = 0x020100; x = 0x726963; y = 0x20646e; ex = 0x6e06a5; ey = 0xacf156;
}
if (BLOCK_SIZE == 32 && KEY_WORDS == 3) {
k[2] = 0x13121110; k[1] = 0x0b0a0908; k[0] = 0x03020100; x = 0x6f722067; y = 0x6e696c63; ex = 0x5ca2e27f; ey = 0x111a8fc8;
}
if (BLOCK_SIZE == 32 && KEY_WORDS == 4) {
k[3] = 0x1b1a1918; k[2] = 0x13121110; k[1] = 0x0b0a0908; k[0] = 0x03020100; x = 0x656b696c; y = 0x20646e75; ex = 0x44c8fc20; ey = 0xb9dfa07a;
}
if (BLOCK_SIZE == 48 && KEY_WORDS == 2) {
k[1] = 0x0d0c0b0a0908; k[0] = 0x050403020100; x = 0x2072616c6c69; y = 0x702065687420; ex = 0x602807a462b4; ey = 0x69063d8ff082;
}
if (BLOCK_SIZE == 48 && KEY_WORDS == 3) {
k[2] = 0x151413121110; k[1] = 0x0d0c0b0a0908; k[0] = 0x050403020100; x = 0x746168742074; y = 0x73756420666f; ex = 0xecad1c6c451e; ey = 0x3f59c5db1ae9;
}
if (BLOCK_SIZE == 64 && KEY_WORDS == 2) {
k[1] = 0x0f0e0d0c0b0a0908; k[0] = 0x0706050403020100; x = 0x6373656420737265; y = 0x6c6c657661727420; ex = 0x49681b1e1e54fe3f; ey = 0x65aa832af84e0bbc;
}
if (BLOCK_SIZE == 64 && KEY_WORDS == 3) {
k[2] = 0x1716151413121110; k[1] = 0x0f0e0d0c0b0a0908; k[0] = 0x0706050403020100; x = 0x206572656874206e; y = 0x6568772065626972; ex = 0xc4ac61effcdc0d4f; ey = 0x6c9c8d6e2597b85b;
}
if (BLOCK_SIZE == 64 && KEY_WORDS == 4) {
k[3] = 0x1f1e1d1c1b1a1918; k[2] = 0x1716151413121110; k[1] = 0x0f0e0d0c0b0a0908; k[0] = 0x0706050403020100; x = 0x74206e69206d6f6f; y = 0x6d69732061207369; ex = 0x8d2b5579afc8a3a0; ey = 0x3bf72a87efe7b868;
}
key_schedule();
encrypt(x, y);
if (x != ex || y != ey)
printf("Test-std::vector mismatch! %016llx %016llx <=> %016llx %016llx\n", x, y, ex, ey);
}
void test_enc() {
u64 x,y,a,b;
for (int j = 0; j < 1000000; ++j) {
// Draw random plaintext
a = uni_dist(rng) & WORD_MASK;
b = uni_dist(rng) & WORD_MASK;
x = a;
y = b;
// Draw random master key
for (int i = 0; i < KEY_WORDS; ++i)
k[i] = uni_dist(rng) & WORD_MASK;
key_schedule();
// Encrypt + decrypt
encrypt(x,y);
decrypt(x,y);
if (x != a || y != b)
printf("encrypt/decrypt failed!\n");
}
}
//////////////////////////////////////////
// DIFFERENTIAL STUFF
//////////////////////////////////////////
void distribution_test() {
int RUNS = 1000;
unsigned int weight_count[ROUNDS][17] = { { 0 } };
for (int i = 0; i < RUNS; ++i) {
k[3] = uni_dist(rng);
k[2] = uni_dist(rng);
k[1] = uni_dist(rng);
k[0] = uni_dist(rng);
key_schedule();
/*u64 x = uni_dist(rng);
u64 y = uni_dist(rng);
u64 x2 = x ^ 0x1ull;
u64 y2 = y;
encrypt(x,y,ROUNDS);
encrypt(x2,y2,ROUNDS);
*/
for (int j = 0; j < ROUNDS; ++j)
weight_count[j][weight(k[j])]++;
}
for (int i = 0; i < 17; ++i) {
for (int j = 0; j < ROUNDS; ++j)
printf("%f\t", (double)weight_count[j][i] / RUNS);
printf("\n");
}
}
#define table(i,j) (table[(i)*(WORD_MASK+1) + (j)])
void diff_dist_table() {
if (BLOCK_SIZE == 16) {
//unsigned int table[WORD_MASK + 1][WORD_MASK + 1] = { { 0 } };
unsigned short *table = (unsigned short*) calloc((WORD_MASK+1)*(WORD_MASK+1), sizeof(unsigned short));
u64 x, y, _tmp;
for (x = 0; x <= WORD_MASK; ++x)
for (y = 0; y <= WORD_MASK; ++y)
table((x^y), (F(x)^F(y)))++;
u64 best = 0;
std::vector<std::pair<u64,u64>> best_pairs;
/*for (x = 0; x <= WORD_MASK; ++x) {
for (y = 0; y <= WORD_MASK; ++y) {
if (table(x,y) > best)
best = table(x,y);
}
}
printf("best entry : %d\n", best);
return;
for (x = 1; x <= WORD_MASK; ++x) {
if (table(x,x) > best) {
best = table(x,x);
printf("new best on diagonal %016llx count %d\n", x, table(x,x));
}
}
return;
*/
for (x = 1; x <= WORD_MASK; ++x) {
for (y = 1; y <= WORD_MASK; ++y) {
_tmp = table(x,y) * table(y,x);
if (_tmp == best)
best_pairs.push_back(std::make_pair(x,y));
else if (_tmp > best) {
best_pairs.clear();
best = _tmp;
best_pairs.push_back(std::make_pair(x,y));
}
}
}
printf("listing best difference pairs found :\n");
for (std::vector<std::pair<u64,u64>>::iterator it = best_pairs.begin(); it != best_pairs.end(); ++it)
printf("(a,b) = (%016llx, %016llx) = (%s, %s) counts : %d and %d\n", (*it).first, (*it).second, binary((*it).first), binary((*it).second), table((*it).first, (*it).second), table((*it).second, (*it).first));
/*best = 0;
u64 v;
best_pairs.clear();
for (x = 0; x <= WORD_MASK; ++x) {
v = 0;
for (y = 0; y <= WORD_MASK; ++y)
v += table(x,y) * table(y,x);
if (v == best)
best_pairs.push_back(std::make_pair(x,v));
if (v > best) {
best_pairs.clear();
best_pairs.push_back(std::make_pair(x,v));
best = v;
}
}
printf("listing best input differences a found :\n");
for (std::vector<std::pair<u64,u64>>::iterator it = best_pairs.begin(); it != best_pairs.end(); ++it)
printf("a = %016llx = %s count : %d\n", (*it).first, binary((*it).first), (*it).second);
*/
}
else
perror("Can't do difference distribution table for n > 16!\n");
}
void test_differential(u64 alphaL, u64 alphaR, u64 betaL, u64 betaR, int rounds_to_test) {
// set up random master key and run key schedule
setup_random_key();
u64 x, y, m1L, m1R, m2L, m2R;
u64 good = 0, counter = 0;
x = 0;
//while (x <= WORD_MASK) {
// for (i = 0; i < alphaL; ++i) {
for (x = 0; x <= WORD_MASK; x+=2) {
for (y = 0; y <= 0xFFF; ++y) {
m1L = x;
m1R = y;
m2L = x ^ alphaL;
m2R = y ^ alphaR;
encrypt(m1L, m1R, rounds_to_test);
encrypt(m2L, m2R, rounds_to_test);
if ((m1L^m2L) == betaL && (m1R^m2R) == betaR)
good++;
counter++;
}
// x++;
// }
// x += alphaL;
}
printf("experimental differential prob : %u/%u\n", good, counter);
}
// Do iterated differential attack of the form [a 0] -> [b a] -> [0 b] -> [b 0] -> [a b] -> [0 a] -> [a 0]
// a and b are differences of BLOCK_SIZE bits
void diff_attack(u64 alphaL, u64 alphaR, u64 betaL, u64 betaR, int rounds_attacked) {
setup_random_key();
std::map<unsigned int, unsigned int> freq;
unsigned int *counts = (unsigned int*) calloc((WORD_MASK+1), sizeof(unsigned int)); //[WORD_MASK + 1] = { 0 };
u64 x, y, m1L, m1R, m2L, m2R, keyguess, i;
clock_t start_time = clock();
for (y = 0; y <= 0xFFFF; ++y) {
x = 0;
while (x <= WORD_MASK) {
for (i = 0; i < alphaL; ++i) {
m1L = x;
m1R = y;
m2L = x ^ alphaL;
m2R = y ^ alphaR;
encrypt(m1L, m1R, rounds_attacked);
encrypt(m2L, m2R, rounds_attacked);
if ( (F(m1R) ^ F(m2R) ^ m1L ^ m2L) == betaL ) {
for (keyguess = 0; keyguess <= WORD_MASK; ++keyguess) {
if ( (F(F(m1R)^m1L^keyguess) ^
F(F(m2R)^m2L^keyguess) ^ m1R ^ m2R) == betaR )
counts[keyguess]++;
}
}
x++;
}
x += alphaL;
}
}
for (u64 x = 0; x <= WORD_MASK; ++x)
freq[counts[x]]++;
printf("allCounts[correct key] = allCounts[%016llx] = %d\n", k[rounds_attacked-1], counts[k[rounds_attacked-1]]);
printf("Time spent : %f sec.\n", (double)(clock()-start_time)/CLOCKS_PER_SEC);
for (std::map<unsigned int, unsigned int>::iterator it = freq.begin(); it != freq.end(); ++it)
printf("%u\t%u\n", (*it).first, (*it).second);
free(counts);
}
void test_2r_difference(u64 diff) {
u64 x, c = 0;
for (x = 0; x <= WORD_MASK; ++x) {
if ( (F(F(x)) ^ F(F(x^diff))) == diff )
c++;
}
printf("difference %016llx -> * -> %016llx happened %d times out of %d\n", diff, diff, c, (WORD_MASK+1));
}
// determine the diagonal of the DDT in time 2^n memory 2^n
// see the rump session talk from Eurocrypt 2013
void ddt_diagonal() {
std::map<u64, std::vector<u64>> M;
u64 x, diff;
for (x = 0; x <= WORD_MASK; ++x)
M[(x ^ F(x))].push_back(x);
u64 best = 0, val = 0;
int len, p, q;
std::set<u64> good_diffs;
std::set<u64> seen_diffs;
for (std::map<u64, std::vector<u64>>::iterator it = M.begin(); it != M.end(); ++it) {
len = ((*it).second).size();
if (len > 1) {
for (p = 0; p < len; ++p) {
for (q = p+1; q < len; ++q) {
val = 0;
diff = ((*it).second)[p]^((*it).second)[q];
if (!seen_diffs.count(diff)) {
seen_diffs.insert(diff);
for (x = 0; x <= WORD_MASK; ++x) {
if ((F(x)^F(x^diff)) == diff)
val++;
}
if (val >= best) {
best = val;
//good_diffs.insert(diff);
printf("diff %016llx\tcount %d\n", diff, val);
}
}
}
}
}
}
printf("differences seen : %d\n", seen_diffs.size());
/*for (set<u64>::iterator it = good_diffs.begin(); it != good_diffs.end(); ++it)
printf("difference %04llx\n", *it);
return;
printf("%d\n", best);
best = 0;
u64 d = 0x0000000000003214^0x0000000000009361;
for (x = 0; x <= WORD_MASK; ++x)
if ((F(x) ^ F(x^d)) == d)
best++;
printf("c : %d\n", best);*/
}
//////////////////////////////////////////
// ROTATIONAL STUFF
//////////////////////////////////////////
void rotational_approx() {
u64 x, count, best = 0, rot, Fx;
u64 *rot_table = (u64 *)calloc(BLOCK_SIZE, sizeof(u64));
for (x = 0; x <= WORD_MASK; ++x) {
Fx = F(x);
for (rot = 0; rot < BLOCK_SIZE; ++rot) {
if (rotate(Fx,rot) == x)
rot_table[rot]++;
}
}
printf("== Number of inputs x s.t. F(x <<< alpha) == F(x) <<< alpha\n");
for (rot = 0; rot < BLOCK_SIZE; ++rot)
printf("%d\t%d\n", rot, rot_table[rot]);
return;
printf("== Searching for (alpha,e) maximizing Pr(x = (F(x) <<< alpha) + e) ==\n");
std::vector<std::pair<u64,u64>> best_pairs;
for (int alpha = 0; alpha < BLOCK_SIZE; ++alpha) {
for (u64 e = 0; e <= WORD_MASK; ++e) {
count = 0;
for (x = 0; x <= WORD_MASK; ++x) {
if (x == (rotate(F(x), alpha) ^ e))
count++;
}
if (count == best)
best_pairs.push_back(std::make_pair(alpha,e));
if (count > best) {
best = count;
best_pairs.clear();
best_pairs.push_back(std::make_pair(alpha,e));
}
}
}
printf("The best count for x = (F(x) <<< alpha) + e was : %d\nHere is the list:\n", best);
for (unsigned int i = 0; i < best_pairs.size(); ++i)
printf("(alpha, e) = (%d, %016llx)\n", best_pairs[i].first, best_pairs[i].second);
}
void differences_to_zero_diff() {
unsigned short *list = (unsigned short*) calloc((WORD_MASK+1), sizeof(unsigned short));
for (u64 x = 0; x <= WORD_MASK; ++x) {
for (u64 y = 0; y <= WORD_MASK; ++y) {
if ((F(x) ^ F(y)) == 0)
list[(x^y)]++;
}
}
for (u64 i = 0; i <= WORD_MASK; ++i)
if (list[i] == 128)
printf("%s\t%d\n", binary(i), list[i]);
free(list);
}
//////////////////////////////////////////
// WEAK KEY STUFF
//////////////////////////////////////////
void weak_keys() {
k[0] = 0xaaaaaaaaaaaaaaaa & WORD_MASK;
k[1] = 0xaaaaaaaaaaaaaaaa & WORD_MASK;
k[2] = 0xaaaaaaaaaaaaaaba & WORD_MASK;
k[3] = 0xaaaaaaaaaaaaaaba & WORD_MASK;
//k[2] = 0xaaaaaaaaaaaaaaba & WORD_MASK; // (rotate_right(k[0], 3) ^ 0xaaaaaaaaaaaaaaaa) & WORD_MASK;
//k[3] = 0xaaaaaaaaaaaaaaaa & WORD_MASK; //(rotate_left(k[1], 3) ^ 0xaaaaaaaaaaaaaaaa) & WORD_MASK;
key_schedule();
}
void test_rotational() {
// set up random master key and run key schedule
for (int i = 0; i < KEY_WORDS; ++i)
k[i] = uni_dist(rng) & WORD_MASK;
key_schedule();
unsigned short lol[BLOCK_SIZE] = { 0 };
u64 x,y;
for (u64 i = 0; i <= WORD_MASK; ++i) {
for (u64 j = 0; j <= 0x4000; ++j) {
x = i;
y = j;
encrypt(x,y,2);
for (int m = 0; m < BLOCK_SIZE; ++m)
if (x == rotate(i,m))
lol[m]++;
}
}
for (int m = 0; m < BLOCK_SIZE; ++m)
printf("rotation %d : %d\n", m, lol[m]);
}
void test_key_rotation() {
unsigned int freq[ROUNDS] = { 0 };
unsigned int RUNS = 0x8000;
u64 *kcopy = (u64*) malloc(ROUNDS*sizeof(u64));
for (unsigned int j = 0; j < RUNS; ++j) {
// set up random master key and run key schedule
for (int i = 0; i < KEY_WORDS; ++i)
k[i] = uni_dist(rng) & WORD_MASK;
key_schedule();
// copy round keys
memcpy(kcopy, k, ROUNDS*sizeof(u64));
// rotate master key and do key schedule again
for (int i = 0; i < KEY_WORDS; ++i)
k[i] = rotate(k[i], 2);
key_schedule();
// check longest common subsequence of k[i] and (k'[i] >>> 2)
for (int i = 0; i < ROUNDS; ++i)
freq[i] += lcs(binary(kcopy[i]), binary(rotate(k[i], -2)));
//printf("k[%2d] = %s and (k'[%2d] >>> 2) = %s have LCS length %d\n", i, binary(kcopy[i]), i, binary(rotate(k[i], -2)), );
}
for (int i = 0; i < ROUNDS; ++i)
printf("%d\t%f\n", i, (double)freq[i] / RUNS);
free(kcopy);
}
void is_F_balanced() {
unsigned short *abe = (unsigned short*) calloc((WORD_MASK+1), sizeof(unsigned short));
for (u64 x = 0; x <= WORD_MASK; ++x)
abe[F(x)]++;
unsigned short t = abe[0];
for (u64 x = 0; x <= WORD_MASK; ++x) {
if (abe[x] != 0 && abe[x] != t)
printf("not balanced!\n");
}
}
void generate_key_relations(unsigned int rotation) {
int ROUNDS_TO_DO = 5;
printf("B.<");
for (int r = 0; r < ROUNDS_TO_DO; ++r) {
for (int i = 0; i < BLOCK_SIZE; ++i)
printf("k%02d%02d,kp%02d%02d,", r,i,r,i);
}
printf("> = BooleanPolynomialRing()\n");
// rotational relation between k and kp
printf("L = [");
int eidx = 0;
for (int r = 0; r < ROUNDS_TO_DO; ++r) {
for (int i = 0; i < BLOCK_SIZE; ++i) {
printf("kp%02d%02d + k%02d%02d + 1,", r, i, r, (i-rotation)%BLOCK_SIZE);
eidx++;
}
}
// round keys to master key relations
eidx = 0;
for (int r = KEY_WORDS; r < ROUNDS_TO_DO; ++r) {
for (int i = 0; i < BLOCK_SIZE; ++i) {
switch (i) {
case 0:
printf("k%02d%02d + k%02d%02d + k%02d%02d + k%02d%02d", r, i, (r-1), ((i+4)%BLOCK_SIZE), (r-1), ((i+3)%BLOCK_SIZE), (r-KEY_WORDS), i);
if (!z[CONST_J][(r-KEY_WORDS) % 62])
printf(" + 1");
break;
case 1:
printf("k%02d%02d + k%02d%02d + k%02d%02d + k%02d%02d + 1", r, i, (r-1), ((i+4)%BLOCK_SIZE), (r-1), ((i+3)%BLOCK_SIZE), (r-KEY_WORDS), i);
break;
default:
printf("k%02d%02d + k%02d%02d + k%02d%02d + k%02d%02d", r, i, (r-1), ((i+4)%BLOCK_SIZE), (r-1), ((i+3)%BLOCK_SIZE), (r-KEY_WORDS), i);
break;
}
if (KEY_WORDS == 4)
printf(" + k%02d%02d", (r-3), ((i+1)%BLOCK_SIZE));
printf(",");
eidx++;
}
}
// round keys to master key relations
for (int r = KEY_WORDS; r < ROUNDS_TO_DO; ++r) {
for (int i = 0; i < BLOCK_SIZE; ++i) {
switch (i) {
case 0:
printf("kp%02d%02d + kp%02d%02d + kp%02d%02d + kp%02d%02d", r, i, (r-1), ((i+4)%BLOCK_SIZE), (r-1), ((i+3)%BLOCK_SIZE), (r-KEY_WORDS), i);
if (!z[CONST_J][(r-KEY_WORDS) % 62])
printf(" + 1");
break;
case 1:
printf("kp%02d%02d + kp%02d%02d + kp%02d%02d + kp%02d%02d + 1", r, i, (r-1), ((i+4)%BLOCK_SIZE), (r-1), ((i+3)%BLOCK_SIZE), (r-KEY_WORDS), i);
break;
default:
printf("kp%02d%02d + kp%02d%02d + kp%02d%02d + kp%02d%02d", r, i, (r-1), ((i+4)%BLOCK_SIZE), (r-1), ((i+3)%BLOCK_SIZE), (r-KEY_WORDS), i);
break;
}
if (KEY_WORDS == 4)
printf(" + kp%02d%02d", (r-3), ((i+1)%BLOCK_SIZE));
printf(",");
eidx++;
}
}
printf("]\n");
}
void key_difference() {
u64 *kcopy = (u64*) malloc(ROUNDS*sizeof(u64));
for (int i = 0; i < KEY_WORDS; ++i)
k[i] = uni_dist(rng) & WORD_MASK;
key_schedule();
memcpy(kcopy, k, ROUNDS*sizeof(u64));
k[0] = kcopy[0];
k[1] = kcopy[1]^0x8000000000000000;
key_schedule();
for (int i = 0; i < ROUNDS; ++i)
printf("%s\n", binary(k[i]^kcopy[i]));
}
//////////////////////////////////////////
// IMPOSSIBLE DIFFERENTIAL STUFF
//////////////////////////////////////////
std::string rotchar(std::string x, unsigned int p) {
std::string ret(BLOCK_SIZE, '0');
for (int i = 0; i < BLOCK_SIZE; ++i)
ret[i] = x[(i+p) % BLOCK_SIZE];
return ret;
}
unsigned short cweight(std::string x) {
unsigned short c = 0;
for (int i = 0; i < BLOCK_SIZE; ++i)
c = x[i] == '0' ? c+1 : c;
return BLOCK_SIZE-c;
}
std::string cxor(std::string a, std::string b) {
std::string x(BLOCK_SIZE, '0');
for (int i = 0; i < BLOCK_SIZE; ++i) {
if (a[i] == '*' || b[i] == '*')
x[i] = '*';
else
x[i] = (char)(48 + ((a[i] - 48) ^ (b[i] - 48)));
}
return x;
}
std::string rot_func(std::string in) {
std::string ret(BLOCK_SIZE, '0');
for (int i = 0; i < BLOCK_SIZE; ++i) {
if (in[i] == '*') {
ret[(i-1+BLOCK_SIZE)%BLOCK_SIZE] = '*';
ret[(i-2+BLOCK_SIZE)%BLOCK_SIZE] = '*';
ret[(i-8+BLOCK_SIZE)%BLOCK_SIZE] = '*';
}
else if (in[i] == '1') {
ret[(i-1+BLOCK_SIZE)%BLOCK_SIZE] = '*';
ret[(i-8+BLOCK_SIZE)%BLOCK_SIZE] = '*';
if (ret[(i-2+BLOCK_SIZE)%BLOCK_SIZE] == '0')
ret[(i-2+BLOCK_SIZE)%BLOCK_SIZE] = '1';
}
}
return ret;
}
void impossible_diff_attack() {
// out pattern: **************** 0******1******0*
// in pattern : **************** 0******1******0*
setup_random_key();
// make set with all key candidates
std::set<u64> key_candidates;
for (u64 kg = 0; kg <= WORD_MASK; ++kg)
key_candidates.insert(kg);
// start timing
//omp_set_num_threads(THREADS);
clock_t start = clock();
double start_d = omp_get_wtime();
/*#pragma omp parallel default(none), shared(key_candidates), private(k)
{
#pragma omp single
{
printf("# of threads : %d\n", omp_get_num_threads());
}
int tid = omp_get_thread_num();
printf("thread %d reporting for duty!\n", tid);
*/
u64 x, y, aL, aR, bL, bR, aQ, bQ, Fx, Fxp;
u64 ind, outd1, outd2;
std::set<u64>::iterator candit;
unsigned int removedByMe = 0;
ind = 0x1;
outd1 = rotate(ind, 7);
outd2 = rotate(ind, 9);
// #pragma omp for
for (x = 0; x <= WORD_MASK; ++x) {
Fx = F(x);
/* for (int rot = 0; rot < BLOCK_SIZE; ++rot) {
ind = rotate(0x1, rot);
outd1 = rotate(ind, 7);
outd2 = rotate(ind, 9);
*/
Fxp = F(x ^ ind);
for (y = 0; y < 0x4000; ++y) {
// construct input
aL = x;
bL = x ^ ind;
aR = y;
bR = y ^ Fx ^ Fxp;
// encrypt
encrypt(aL, aR, 14);
encrypt(bL, bR, 14);
/*if ( ((aR^bR) & rotate(0x8102, rot)) != rotate(0x0100, rot) )
printf("shit hit the fan!\n");*/
// key recovery
aQ = F(aR);
bQ = F(bR);
if ( (aQ ^ bQ ^ aL ^ bL) == outd1 || (aQ ^ bQ ^ aL ^ bL) == outd2 ) { // first filter
//for (candit = key_candidates.begin(); candit != key_candidates.end(); ++candit) {
//if ( (F(aL^aQ^(*candit)) ^ F(bL^bQ^(*candit)) ^ aR ^ bR) == 0x0 ) {
for (u64 keyguess = 0; keyguess <= WORD_MASK; ++keyguess) {
if ( (F(aL^aQ^keyguess) ^ F(bL^bQ^keyguess) ^ aR ^ bR) == 0x0 ) {
key_candidates.erase(keyguess);
removedByMe++;
//printf("%d ", key_candidates.size()); // contained : %d\n", key_candidates.size(), key_candidates.count(k[12]));
}
}
}
}
//}
}
printf("I removed %d key candidates\n", removedByMe);
//printf("thread %d removed %d keys\n", tid, removedByMe);
//} // end omp parallel
/*for (int tid = 0; tid < THREADS; ++tid) {
for (set<u64>::iterator keyguess = removed_keys[tid].begin(); keyguess != removed_keys[tid].end(); ++keyguess)
key_candidates.erase((*keyguess));
}*/
printf("time.h : %f sec.\nomp.h : %f sec.\n", (double)(clock()-start)/CLOCKS_PER_SEC, (omp_get_wtime()-start_d));
printf("real sub key : %016llx is contained ? %d\nthere are %d possible keys left\n", k[13], key_candidates.count(k[13]), key_candidates.size());
}
std::string dL, dR, tm;
std::string zeroes(BLOCK_SIZE, '0');
int impossible_diff(std::string leftDiff, std::string rightDiff) {
dL = leftDiff; //(BLOCK_SIZE, '0'); dL[BLOCK_SIZE-1] = '1';
dR = rightDiff;
tm = zeroes;
short c = 0;
do {
printf("%s %s\n", dL.c_str(), dR.c_str());
tm = dL;
dL = cxor(rot_func(dL), dR);
dR = tm;
c++;
} while(cweight(dL) < BLOCK_SIZE || cweight(dR) < BLOCK_SIZE);
printf("rounds = %d\n", c-1);
return c-1;
}
void imp_diff_attack3() {
setup_random_key();
std::set<u64> remaining_keys;
for (u64 keyguess = 0; keyguess <= WORD_MASK; ++keyguess)
remaining_keys.insert(keyguess);
clock_t start_time = clock();
std::set<u64>::iterator siter;
u64 keyguess, x, y, xPlusAlpha, afterFdiff, tmp1, tmp2, m1L, m1R, m2L, m2R, alpha, outdiff1, outdiff2;
unsigned short rot, xinnerl;
for (rot = 0; rot < BLOCK_SIZE; ++rot) {
alpha = rotate(0x1, rot);
outdiff1 = rotate(alpha, 7);
outdiff2 = rotate(alpha, 9);
x = 0;
while (x <= 18860) {
// use the next 2^rot values of x
for (xinnerl = 0; xinnerl < alpha; ++xinnerl) {
afterFdiff = F(x) ^ F(x ^ alpha);
xPlusAlpha = x ^ alpha;
for (y = 0; y <= WORD_MASK; ++y) {
m1L = x;
m1R = y;
m2L = xPlusAlpha;
m2R = y ^ afterFdiff;
encrypt(m1L, m1R, 14);
encrypt(m2L, m2R, 14);
// SNIPPET FOR TESTING THE IMPOSSIBLE 10-ROUND DIFFERENTIAL
// UNCOMMENT TO USE, AND MAKE SURE USING RIGHT INPUT DIFFERENCE AND ENCRYPTING 10 ROUNDS ABOVE
/*if ((m1R ^ m2R) == 0x0) {
if ((m1L ^ m2L) == outdiff1 || (m1L ^ m2L) == outdiff2)
printf("the impossible differential was seen :(!\n");
}*/
if ( (F(m1R) ^ F(m2R) ^ m1L ^ m2L) == outdiff1 || (F(m1R) ^ F(m2R) ^ m1L ^ m2L) == outdiff2) {
for (siter = remaining_keys.begin(); siter != remaining_keys.end(); ++siter) {
keyguess = *siter;
tmp1 = F(m1R) ^ m1L ^ keyguess;
tmp2 = F(m2R) ^ m2L ^ keyguess;
if ( (F(tmp1) ^ F(tmp2) ^ m1R ^ m2R) == 0x0 )
remaining_keys.erase(keyguess);
}
}
}
x++;
}
// skip the next 2^rot values of x
x += alpha;
}
printf("Remaining after rot = %d : %d\n", rot, remaining_keys.size());
}
printf("Attacked key : %04x\n", k[13]);
printf("Remaining keys : %d correct key contained (y/n) : %d\n", remaining_keys.size(), remaining_keys.count(k[13]));
printf("Time (one thread) : %f s.\n", ((double)clock() - start_time) / CLOCKS_PER_SEC);
}
//////////////////////////////////////////
// DFS DIFFERENTIAL SEARCH STUFF
//////////////////////////////////////////
void H(u64 diff, u64 &m, u64 &w) {
u64 m1 = 0;
u64 m8 = 0;
w = 0;
int i;
for (i = 0; i < BLOCK_SIZE; ++i) {
if ((diff >> i) & 1) {
// saw a 1 on position i
// put zeroes on positions i+1 and i+8
m1 |= (0x1 << ((i+1)%BLOCK_SIZE));
m8 |= (0x1 << ((i+8)%BLOCK_SIZE));
}
}
m = (m1 | m8) ^ WORD_MASK;
for (i = 0; i < BLOCK_SIZE; ++i) {
if (
((m1 >> i) & 1) == 0 &&
((m8 >> i) & 1) == 1 &&
((m1 >> ((i+7) % BLOCK_SIZE)) & 1) == 1 &&
((m8 >> ((i+7) % BLOCK_SIZE)) & 1) == 0
)
w ^= (0x1ull << ((i+7) % BLOCK_SIZE));
}
m |= w;
}
const int SEARCH_ROUNDS = 12;
std::map<std::pair<u64,u64>, double> out_diffs;
std::pair<u64,u64> best_outdiff;
double best_prob = 0.0f;
double round_best_prob[SEARCH_ROUNDS+1] = { 0.0f };
std::map<std::pair<u64,u64>, std::map<int, u64> > prob_counts;
void diff_BB(u64 leftDiff, u64 rightDiff, int round, double prob) {
round_best_prob[round] = (prob > round_best_prob[round]) ? prob : round_best_prob[round];
if (round == SEARCH_ROUNDS) {
// we reached a leaf, what is the probability??
std::pair<u64,u64> diff = std::make_pair(leftDiff, rightDiff);
//if (leftDiff == 0x0100 && rightDiff == 0x0000)
prob_counts[diff][floor(log2(prob))]++;
out_diffs[diff] += prob;
if (out_diffs[diff] > best_prob) {
best_prob = out_diffs[diff];
printf("New best %016llx %016llx prob. : 2^{%f}\n", diff.first, diff.second, log2(best_prob));
best_outdiff = diff;
}
return;
}
u64 m, w, x, beta, rotLeftDiff = rotate(leftDiff, 2);
const u64 v = 0;
double next_prob;
unsigned int c, branches;
H(leftDiff, m, w);
branches = (1 << (BLOCK_SIZE - weight(m)));
next_prob = prob * (1.0 / (double)branches);
//if (branches > 128) // branches is always a power of 2
// return;
if (next_prob >= (round_best_prob[round+1] / 4096.0f) ) {