This is the official repository of the paper GoMatching: A Simple Baseline for Video Text Spotting via Long and Short Term Matching.
Introduction | News | Usage | Main Results | Statement
- We identify a main bottleneck in the state-of-the-art video text spotter: the limited recognition capability. In response to this issue, we propose to efficiently turn an off-the-shelf query-based image text spotter into a specialist on video and present a simple baseline termed GoMatching.
- We introduce a rescoring mechanism and long-short term matching module to adapt image text spotter to video datasets and enhance the tracker's capabilities.
- We establish the ArTVideo test set for addressing the absence of curved texts in current video text spotting datasets and evaluating the performance of video text spotters on videos with arbitrary-shaped text. ArTVideo contains 20 video clips, featuring 30% curved text approximately.
- GoMatching only requires 3 hours training on one Nvidia RTX 3090 GPU for ICDAR15-video. For video text spotting task, GoMatching achieves 70.52 MOTA on ICDAR15-video, setting a new record on the leaderboard. We reveal the probability of freezing off-the-shelf ITS part and focusing on tracking, thereby saving training budgets while reaching SOTA performance.
13/01/2024
- The paper is uploaded to arxiv!
20/01/2024
- Update ArTVideo and refresh a new record on ICDAR15-video!
Videos in ICDAR15-video and DSText should be extracted into frames. And using json format annotation files [ICDAR15-video & DSText] we provide for training. For ArTVideo, you can download it to ./datasets
. The prepared Data organization is as follows:
|- ./datasets
|--- ICDAR15
| |--- frame
| |--- Video_10_1_1
| |--- 1.jpg
| └--- ...
| └--- ...
| |--- frame_test
| |--- Video_11_4_1
| |--- 1.jpg
| └--- ...
| └--- ...
| |--- vts_train.json
| └--- vts_test_wo_anno.json
|
|--- DSText
| |--- frame
| |--- Activity
| |--- Video_163_6_3
| |--- 1.jpg
| └--- ...
| └--- ...
| └--- ...
| |--- frame_test
| |--- Activity
| |--- Video_162_6_2
| |--- 1.jpg
| └--- ...
| └--- ...
| └--- ...
| |--- vts_train.json
| └--- vts_test_wo_anno.json
|--- ArTVideo
| |--- frame
| |--- video_1
| |--- 1.jpg
| └--- ...
| └--- ...
| |--- json
| |--- video_1.json
| └--- ...
| |--- video
| |--- video_1.mp4
| └--- ...
Python_3.8 + PyTorch_1.9.0 + CUDA_11.1 + Detectron2_v0.6
git clone https://github.com/Hxyz-123/GoMatching.git
cd GoMatching
conda create -n gomatching python=3.8 -y
conda activate gomatching
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu111/torch1.9/index.html
cd third_party
python setup.py build develop
We share the trained deepsolo weights we use in GoMatching. You can download it to ./pretrained_models
. If you want to use other model weights in official deepsolo, run following code to decouple the backbone and transformer in deepsolo before training GoMatching.
python tools/decouple_deepsolo.py --input path_to_original_weights --output output_path
ICDAR15
python train_net.py --num-gpus 1 --config-file configs/GoMatching_ICDAR15.yaml
DSText
python train_net.py --num-gpus 1 --config-file configs/GoMatching_DSText.yaml
ICDAR15
python eval.py --config-file configs/GoMatching_ICDAR15.yaml --input ./datasets/ICDAR15/frame_test/ --output output/icdar15 --opts MODEL.WEIGHTS trained_models/ICDAR15/xxx.pth
cd output/icdar15/preds
zip -r ../preds.zip ./*
Then you can submit the zip
file to the official websit for evaluation.
DSText
python eval.py --config-file configs/GoMatching_DSText.yaml --input ./datasets/DSText/frame_test/ --output output/dstext --opts MODEL.WEIGHTS trained_models/DSText/xxx.pth
cd output/dstext/preds
zip -r ../preds.zip ./*
Then you can submit the zip
file to the official websit for evaluation.
ArTVideo The standard of evaluation is consistent with BOVText.
python eval.py --config-file configs/GoMatching_Eval_ArTVideo.yaml --input ./datasets/ArTVideo/frame/ --output output/artvideo --opts MODEL.WEIGHTS trained_models/ICDAR15/xxx.pth
### evaluation
# 1. eval tracking on straight and curve text
python tools/Evaluation_Protocol_ArtVideo/eval_trk.py --groundtruths ./datasets/ArTVideo/json/ --tests output/artvideo/jsons/
# 2. eval tracking on curve text only
python tools/Evaluation_Protocol_ArtVideo/eval_trk.py --groundtruths ./datasets/ArTVideo/json/ --tests output/artvideo/jsons/ --curve
# 3. eval spotting on straight and curve text
python tools/Evaluation_Protocol_ArtVideo/eval_e2e.py --groundtruths ./datasets/ArTVideo/json/ --tests output/artvideo/jsons/
# 4. eval spotting on curve text only
python tools/Evaluation_Protocol_ArtVideo/eval_e2e.py --groundtruths ./datasets/ArTVideo/json/ --tests output/artvideo/jsons/ --curve
Note: If you want to visualize the results, you can add --show
argument as follow:
python eval.py --config-file configs/GoMatching_ICDAR15.yaml --input ./datasets/ICDAR15/frame_test/ --output output/icdar15 --show --opts MODEL.WEIGHTS trained_models/ICDAR15/xxx.pth
ICDAR15-video Video Text Spotting challenge
Method | MOTA | MOTP | IDF1 | Weight |
---|---|---|---|---|
GoMatching | 72.04 | 78.53 | 80.11 | GoogleDrive |
DSText Video Text Spotting challenge
Method | MOTA | MOTP | IDF1 | Weight |
---|---|---|---|---|
GoMatching | 17.29 | 77.48 | 45.20 | GoogleDrive |
This project is for research purpose only. For any other questions please contact haibinhe@whu.edu.cn.
If you find GoMatching helpful, please consider giving this repo a star and citing:
@article{he2024gomatching,
title={GoMatching: A Simple Baseline for Video Text Spotting via Long and Short Term Matching},
author={He, Haibin and Ye, Maoyuan and Zhang, Jing and Liu, Juhua and Tao, Dacheng},
journal={arXiv preprint arXiv:2401.07080},
year={2024}
}
@inproceedings{ye2023deepsolo,
title={DeepSolo: Let Transformer Decoder with Explicit Points Solo for Text Spotting},
author={Ye, Maoyuan and Zhang, Jing and Zhao, Shanshan and Liu, Juhua and Liu, Tongliang and Du, Bo and Tao, Dacheng},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={19348--19357},
year={2023}
}