-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_net.py
198 lines (164 loc) · 6.54 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import logging
import os
import torch
from torch.nn.parallel import DistributedDataParallel
import time
import datetime
import sys
from fvcore.common.timer import Timer
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.modeling import build_model
from detectron2.solver import build_lr_scheduler
from detectron2.utils.events import (
CommonMetricPrinter,
EventStorage,
JSONWriter,
TensorboardXWriter,
)
from detectron2.solver import build_optimizer
from detectron2.utils.logger import setup_logger
sys.path.insert(0, 'third_party/')
from adet.config import add_deepsolo_cfg
from gomatching.config import add_gom_config
from gomatching.data.custom_build_augmentation import build_custom_augmentation
from gomatching.data.vts_dataset_dataloader import build_vts_train_loader
from gomatching.data.vts_dataset_mapper import GoMDatasetMapper
from gomatching.costom_solver import build_custom_optimizer
from gomatching.modeling.freeze_layers import check_if_freeze_model
logger = logging.getLogger("detectron2")
def get_total_grad_norm(parameters, norm_type=2):
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
device = parameters[0].grad.device
total_norm = torch.norm(
torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]),
norm_type)
return total_norm
def do_train(cfg, model, resume=False):
model = check_if_freeze_model(model, cfg)
model.train()
if cfg.SOLVER.USE_CUSTOM_SOLVER:
optimizer = build_custom_optimizer(cfg, model)
else:
assert cfg.SOLVER.OPTIMIZER == 'SGD'
assert cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE != 'full_model'
assert cfg.SOLVER.BACKBONE_MULTIPLIER == 1.
optimizer = build_optimizer(cfg, model)
scheduler = build_lr_scheduler(cfg, optimizer)
checkpointer = DetectionCheckpointer(
model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
)
start_iter = (
checkpointer.resume_or_load(
cfg.MODEL.WEIGHTS, resume=resume,
).get("iteration", -1) + 1
)
if not resume:
start_iter = 0
max_iter = cfg.SOLVER.MAX_ITER if cfg.SOLVER.TRAIN_ITER < 0 else cfg.SOLVER.TRAIN_ITER
periodic_checkpointer = PeriodicCheckpointer(
checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
)
writers = (
[
CommonMetricPrinter(max_iter),
JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")),
TensorboardXWriter(cfg.OUTPUT_DIR),
]
if comm.is_main_process()
else []
)
DatasetMapperClass = GoMDatasetMapper
mapper = DatasetMapperClass(
cfg, True, augmentations=build_custom_augmentation(cfg, True))
data_loader = build_vts_train_loader(cfg, mapper=mapper)
logger.info("Starting training from iteration {}".format(start_iter))
for param_k, param_q in zip(model.roi_heads.rescoring_head.parameters(), model.detection_transformer.ctrl_point_class[-1].parameters()):
param_k.data = param_q.data.clone().detach()
with EventStorage(start_iter) as storage:
step_timer = Timer()
data_timer = Timer()
start_time = time.perf_counter()
for data, iteration in zip(data_loader, range(start_iter, max_iter)):
data_time = data_timer.seconds()
storage.put_scalars(data_time=data_time)
step_timer.reset()
iteration = iteration + 1
storage.step()
loss_dict = model(data)
losses = sum(
loss for k, loss in loss_dict.items() if 'loss' in k)
assert torch.isfinite(losses).all(), loss_dict
loss_dict_reduced = {k: v.item() \
for k, v in comm.reduce_dict(loss_dict).items()}
losses_reduced = sum(loss for k, loss in loss_dict_reduced.items() \
if 'loss' in k)
if comm.is_main_process():
storage.put_scalars(
total_loss=losses_reduced, **loss_dict_reduced)
optimizer.zero_grad()
losses.requires_grad_(True)
losses.backward()
optimizer.step()
storage.put_scalar(
"lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
step_time = step_timer.seconds()
storage.put_scalars(time=step_time)
data_timer.reset()
scheduler.step()
if iteration - start_iter > 5 and \
(iteration % 20 == 0 or iteration == max_iter):
for writer in writers:
writer.write()
periodic_checkpointer.step(iteration)
total_time = time.perf_counter() - start_time
logger.info(
"Total training time: {}".format(
str(datetime.timedelta(seconds=int(total_time)))))
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_deepsolo_cfg(cfg)
add_gom_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.MODEL.TRANSFORMER.INFERENCE_TH_TEST = cfg.MODEL.TRANSFORMER.INFERENCE_TH_TRAIN
if '/auto' in cfg.OUTPUT_DIR:
file_name = os.path.basename(args.config_file)[:-5]
cfg.OUTPUT_DIR = cfg.OUTPUT_DIR.replace('/auto', '/{}'.format(file_name))
logger.info('OUTPUT_DIR: {}'.format(cfg.OUTPUT_DIR))
cfg.freeze()
default_setup(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, \
distributed_rank=comm.get_rank(), name="vts-lstm")
return cfg
def main(args):
cfg = setup(args)
model = build_model(cfg)
logger.info("Model:\n{}".format(model))
distributed = comm.get_world_size() > 1
if distributed:
model = DistributedDataParallel(
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False,
find_unused_parameters=cfg.FIND_UNUSED_PARAM
)
do_train(cfg, model, resume=args.resume)
if __name__ == "__main__":
args = default_argument_parser()
args = args.parse_args()
args.dist_url = 'tcp://127.0.0.1:{}'.format(
torch.randint(11111, 60000, (1,))[0].item())
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)