forked from luka0714/VFIDKR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_test_ourdata.py
391 lines (309 loc) · 14 KB
/
demo_test_ourdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import time
import os
from torch.autograd import Variable
import math
import torch
import random
import numpy as np
import numpy
import networks
from my_args import args
import datasets
import torch.nn.functional as F
from torchvision import transforms
from scipy.misc import imread, imsave
from AverageMeter import *
import warnings
warnings.filterwarnings("ignore")
torch.backends.cudnn.benchmark = True # to speed up the
def _fspecial_gauss_1d(size, sigma):
r"""Create 1-D gauss kernel
Args:
size (int): the size of gauss kernel
sigma (float): sigma of normal distribution
Returns:
torch.Tensor: 1D kernel (1 x 1 x size)
"""
coords = torch.arange(size, dtype=torch.float)
coords -= size // 2
g = torch.exp(-(coords ** 2) / (2 * sigma ** 2))
g /= g.sum()
return g.unsqueeze(0).unsqueeze(0)
def ssim(
X,
Y,
data_range=1,
size_average=True,
win_size=11,
win_sigma=1.5,
win=None,
K=(0.01, 0.03),
nonnegative_ssim=False,
):
r""" interface of ssim
Args:
X (torch.Tensor): a batch of images, (N,C,H,W)
Y (torch.Tensor): a batch of images, (N,C,H,W)
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
win_size: (int, optional): the size of gauss kernel
win_sigma: (float, optional): sigma of normal distribution
win (torch.Tensor, optional): 1-D gauss kernel. if None, a new kernel will be created according to win_size and win_sigma
K (list or tuple, optional): scalar constants (K1, K2). Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results.
nonnegative_ssim (bool, optional): force the ssim response to be nonnegative with relu
Returns:
torch.Tensor: ssim results
"""
if not X.shape == Y.shape:
raise ValueError("Input images should have the same dimensions.")
# for d in range(len(X.shape) - 1, 1, -1):
# X = np.squeeze(X, d)
# Y = np.squeeze(Y, d)
if len(X.shape) not in (4, 5):
raise ValueError(f"Input images should be 4-d or 5-d tensors, but got {X.shape}")
if not X.type() == Y.type():
raise ValueError("Input images should have the same dtype.")
if win is not None: # set win_size
win_size = win.shape[-1]
if not (win_size % 2 == 1):
raise ValueError("Window size should be odd.")
if win is None:
win = _fspecial_gauss_1d(win_size, win_sigma)
win = win.repeat([X.shape[1]] + [1] * (len(X.shape) - 1))
ssim_per_channel, cs = _ssim(X, Y, data_range=data_range, win=win, size_average=False, K=K)
if nonnegative_ssim:
ssim_per_channel = torch.relu(ssim_per_channel)
if size_average:
return ssim_per_channel.mean()
else:
return ssim_per_channel.mean(1)
def gaussian_filter(input, win):
r""" Blur input with 1-D kernel
Args:
input (torch.Tensor): a batch of tensors to be blurred
window (torch.Tensor): 1-D gauss kernel
Returns:
torch.Tensor: blurred tensors
"""
assert all([ws == 1 for ws in win.shape[1:-1]]), win.shape
if len(input.shape) == 4:
conv = F.conv2d
elif len(input.shape) == 5:
conv = F.conv3d
else:
raise NotImplementedError(input.shape)
C = input.shape[1]
out = input
for i, s in enumerate(input.shape[2:]):
if s >= win.shape[-1]:
out = conv(out, weight=win.transpose(2 + i, -1), stride=1, padding=0, groups=C)
else:
warnings.warn(
f"Skipping Gaussian Smoothing at dimension 2+{i} for input: {input.shape} and win size: {win.shape[-1]}"
)
return out
def _ssim(X, Y, data_range, win, size_average=True, K=(0.01, 0.03)):
r""" Calculate ssim index for X and Y
Args:
X (torch.Tensor): images
Y (torch.Tensor): images
win (torch.Tensor): 1-D gauss kernel
data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
Returns:
torch.Tensor: ssim results.
"""
K1, K2 = K
# batch, channel, [depth,] height, width = X.shape
compensation = 1.0
C1 = (K1 * data_range) ** 2
C2 = (K2 * data_range) ** 2
win = win.to(X.device, dtype=X.dtype)
mu1 = gaussian_filter(X, win)
mu2 = gaussian_filter(Y, win)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = compensation * (gaussian_filter(X * X, win) - mu1_sq)
sigma2_sq = compensation * (gaussian_filter(Y * Y, win) - mu2_sq)
sigma12 = compensation * (gaussian_filter(X * Y, win) - mu1_mu2)
cs_map = (2 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2) # set alpha=beta=gamma=1
ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * cs_map
ssim_per_channel = torch.flatten(ssim_map, 2).mean(-1)
cs = torch.flatten(cs_map, 2).mean(-1)
return ssim_per_channel, cs
DO_MiddleBurryOther = True
# MB_Other_DATA = "./MiddleBurySet/other-color-allframes/other-data/"
# MB_Other_RESULT = "./MiddleBurySet/other-result-author/"
# MB_Other_GT = "./MiddleBurySet/other-gt-interp/"
# if not os.path.exists(MB_Other_RESULT):
# os.mkdir(MB_Other_RESULT)
txtfile_path = "./vimeo_interp_test/tri_testlist.txt"
data_root_path = "./vimeo_interp_test/target/"
MB_Other_RESULT = "./vimeo_interp_test/other-result-author/"
model = networks.__dict__[args.netName](channel=args.channels,
filter_size = args.filter_size ,
timestep=args.time_step,
training=False)
if args.use_cuda:
model = model.cuda()
# args.SAVED_MODEL = './model_weights/MEMC-epoch50-1batch/best.pth'
# args.SAVED_MODEL = './model_weights/MEMC+Deforconv2.0-epoch50-1batch/best.pth'
# args.SAVED_MODEL = './model_weights/MEMC+Deforconv2.0-new/best.pth'
# args.SAVED_MODEL = './checkpoints/pre40_modLoss/best_pre41.pth'
args.SAVED_MODEL = './model_weights/ablation_nopost/best.pth'
# args.SAVED_MODEL = './model_weights/Deformable2.0_occ_50epoch.pth'
if os.path.exists(args.SAVED_MODEL):
print("The testing model weight is: " + args.SAVED_MODEL)
if not args.use_cuda:
pretrained_dict = torch.load(args.SAVED_MODEL, map_location=lambda storage, loc: storage)
# model.load_state_dict(torch.load(args.SAVED_MODEL, map_location=lambda storage, loc: storage))
else:
pretrained_dict = torch.load(args.SAVED_MODEL)
# model.load_state_dict(torch.load(args.SAVED_MODEL))
model_dict = model.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model.load_state_dict(model_dict)
# 4. release the pretrained dict for saving memory
pretrained_dict = []
else:
print("*****************************************************************")
print("**** We don't load any trained weights **************************")
print("*****************************************************************")
model = model.eval() # deploy mode
use_cuda=args.use_cuda
save_which=args.save_which
dtype = args.dtype
unique_id =str(random.randint(0, 100000))
print("The unique id for current testing is: " + str(unique_id))
interp_error = AverageMeter()
final_psnr = AverageMeter()
if DO_MiddleBurryOther:
# subdir = os.listdir(MB_Other_DATA)
gen_dir = os.path.join(MB_Other_RESULT, unique_id)
os.mkdir(gen_dir)
tot_timer = AverageMeter()
proc_timer = AverageMeter()
end = time.time()
# count = 0
# count_psnr = 0
# for dir in subdir:
avgssim = 0
count = 0
sort_list = []
if txtfile_path != "":
fh = open(txtfile_path, 'r')
for line in fh:
line = line.strip('\n')
line = line.rstrip()
MB_Other_DATA = line
# count += 1
print(MB_Other_DATA)
os.makedirs(os.path.join(gen_dir, MB_Other_DATA))
arguments_strFirst = os.path.join(data_root_path, MB_Other_DATA, "im1.png")
arguments_strSecond = os.path.join(data_root_path, MB_Other_DATA, "im3.png")
arguments_strOut = os.path.join(gen_dir, MB_Other_DATA, "output-im2.png")
gt_path = os.path.join(data_root_path, MB_Other_DATA, "im2.png")
X0 = torch.from_numpy( np.transpose(imread(arguments_strFirst) , (2,0,1)).astype("float32")/ 255.0).type(dtype)
X1 = torch.from_numpy( np.transpose(imread(arguments_strSecond) , (2,0,1)).astype("float32")/ 255.0).type(dtype)
y_ = torch.FloatTensor()
assert (X0.size(1) == X1.size(1))
assert (X0.size(2) == X1.size(2))
intWidth = X0.size(2)
intHeight = X0.size(1)
channel = X0.size(0)
if not channel == 3:
continue
if intWidth != ((intWidth >> 7) << 7):
intWidth_pad = (((intWidth >> 7) + 1) << 7) # more than necessary
intPaddingLeft =int(( intWidth_pad - intWidth)/2)
intPaddingRight = intWidth_pad - intWidth - intPaddingLeft
else:
intWidth_pad = intWidth
intPaddingLeft = 32
intPaddingRight= 32
if intHeight != ((intHeight >> 7) << 7):
intHeight_pad = (((intHeight >> 7) + 1) << 7) # more than necessary
intPaddingTop = int((intHeight_pad - intHeight) / 2)
intPaddingBottom = intHeight_pad - intHeight - intPaddingTop
else:
intHeight_pad = intHeight
intPaddingTop = 32
intPaddingBottom = 32
pader = torch.nn.ReplicationPad2d([intPaddingLeft, intPaddingRight , intPaddingTop, intPaddingBottom])
torch.set_grad_enabled(False)
X0 = Variable(torch.unsqueeze(X0,0))
X1 = Variable(torch.unsqueeze(X1,0))
X0 = pader(X0)
X1 = pader(X1)
if use_cuda:
X0 = X0.cuda()
X1 = X1.cuda()
proc_end = time.time()
y_s,offset,filter = model(torch.stack((X0, X1),dim = 0))
y_ = y_s[save_which]
proc_timer.update(time.time() -proc_end)
tot_timer.update(time.time() - end)
end = time.time()
# print("*****************current image process time \t " + str(time.time()-proc_end )+"s ******************" )
if use_cuda:
X0 = X0.data.cpu().numpy()
y_ = y_.data.cpu().numpy()
offset = [offset_i.data.cpu().numpy() for offset_i in offset]
filter = [filter_i.data.cpu().numpy() for filter_i in filter] if filter[0] is not None else None
X1 = X1.data.cpu().numpy()
else:
X0 = X0.data.numpy()
y_ = y_.data.numpy()
offset = [offset_i.data.numpy() for offset_i in offset]
filter = [filter_i.data.numpy() for filter_i in filter]
X1 = X1.data.numpy()
X0 = np.transpose(255.0 * X0.clip(0,1.0)[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0))
y_ = np.transpose(255.0 * y_.clip(0,1.0)[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0))
# offset = [np.transpose(offset_i[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0)) for offset_i in offset]
# filter = [np.transpose(
# filter_i[0, :, intPaddingTop:intPaddingTop + intHeight, intPaddingLeft: intPaddingLeft + intWidth],
# (1, 2, 0)) for filter_i in filter] if filter is not None else None
X1 = np.transpose(255.0 * X1.clip(0,1.0)[0, :, intPaddingTop:intPaddingTop+intHeight, intPaddingLeft: intPaddingLeft+intWidth], (1, 2, 0))
imsave(arguments_strOut, np.round(y_).astype(numpy.uint8))
rec_rgb = imread(arguments_strOut)
gt_rgb = imread(gt_path)
diff_rgb = 128.0 + rec_rgb - gt_rgb
avg_interp_error_abs = np.mean(np.abs(diff_rgb - 128.0))
interp_error.update(avg_interp_error_abs, 1)
mse = numpy.mean((diff_rgb - 128.0) ** 2)
PIXEL_MAX = 255.0
psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
final_psnr.update(psnr, 1)
tensor_rec = transforms.ToTensor()(rec_rgb)
tensor_rec = tensor_rec.unsqueeze(1)
tensor_gt = transforms.ToTensor()(gt_rgb)
tensor_gt = tensor_gt.unsqueeze(1)
imgssim = ssim(tensor_rec, tensor_gt).item()
avgssim += imgssim
count += 1
sort_list.append((str(MB_Other_DATA), psnr))
# count_psnr += psnr
# print("interpolation error / PSNR : " + str(round(avg_interp_error_abs,4)) + " / " + str(round(psnr,4)))
# metrics = "The average interpolation error / PSNR for all images are : " + str(round(interp_error.avg, 4))
# print(metrics)
# sort_list.sort(key=lambda x:x[1])
# aaapsnr = 0
# coun = 0
# for i in sort_list:
# coun += 1
# if coun >= 50:
# break
# aaapsnr += i[1]
# print(i)
# print("avg aaapsnr: " + str(round(aaapsnr/coun, 4)))
# metrics_IE = "The average interpolation error for all images are : " + str(round(interp_error.avg, 4))
metrics_psnr = "The average interpolation psnr for all images are : " + str(round(final_psnr.avg, 4))
metrics_ssim = "The average interpolation ssim for all images are : " + str(round(avgssim/count, 4))
# print(metrics_IE)
print(metrics_psnr)
print(metrics_ssim)