diff --git a/idaes/core/surrogate/pysmo/sampling.py b/idaes/core/surrogate/pysmo/sampling.py index e2851cbe61..becd8d9ca6 100644 --- a/idaes/core/surrogate/pysmo/sampling.py +++ b/idaes/core/surrogate/pysmo/sampling.py @@ -597,10 +597,11 @@ def __init__( self.x_data = bounds_array # Only x data will be present in this case if rand_seed is not None: - if not isinstance(rand_seed, int): - raise TypeError("Random seed must be an integer.") - self.seed_value = rand_seed - np.random.seed(self.seed_value) + try: + self.seed_value = int(rand_seed) + np.random.seed(self.seed_value) + except ValueError: + raise ValueError("Random seed must be an integer.") def variable_sample_creation(self, variable_min, variable_max): """ @@ -1423,10 +1424,11 @@ def __init__( self.eps = tolerance if rand_seed is not None: - if not isinstance(rand_seed, int): - raise TypeError("Random seed must be an integer.") - self.seed_value = rand_seed - np.random.seed(self.seed_value) + try: + self.seed_value = int(rand_seed) + np.random.seed(self.seed_value) + except ValueError: + raise ValueError("Random seed must be an integer.") @staticmethod def random_sample_selection(no_samples, no_features): @@ -1751,9 +1753,12 @@ def __init__( self.normal_bounds_enforced = strictly_enforce_gaussian_bounds if rand_seed is not None: - if not isinstance(rand_seed, int): - raise TypeError("Random seed must be an integer.") - self.seed_value = rand_seed + try: + self.seed_value = int(rand_seed) + except ValueError: + raise ValueError("Random seed must be an integer.") + else: + self.seed_value = rand_seed def generate_from_dist(self, dist_name): if dist_name.lower() in ["uniform", "random"]: diff --git a/idaes/core/surrogate/pysmo/tests/test_sampling.py b/idaes/core/surrogate/pysmo/tests/test_sampling.py index 1996c53289..c104ea8d6e 100644 --- a/idaes/core/surrogate/pysmo/tests/test_sampling.py +++ b/idaes/core/surrogate/pysmo/tests/test_sampling.py @@ -510,6 +510,24 @@ def test__init__selection_right_behaviour_with_specified_random_seed( np.testing.assert_array_equal(LHSClass.x_data, np.array(input_array)[:, :-1]) assert LHSClass.seed_value == rand_seed + @pytest.mark.unit + @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) + def test__init__selection_right_behaviour_with_specified_float_random_seed( + self, array_type + ): + input_array = array_type(self.input_array) + rand_seed = 15.1 + LHSClass = LatinHypercubeSampling( + input_array, + number_of_samples=6, + sampling_type="selection", + rand_seed=rand_seed, + ) + np.testing.assert_array_equal(LHSClass.data, input_array) + np.testing.assert_array_equal(LHSClass.number_of_samples, 6) + np.testing.assert_array_equal(LHSClass.x_data, np.array(input_array)[:, :-1]) + assert LHSClass.seed_value == int(rand_seed) + @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test__init__selection_zero_samples(self, array_type): @@ -569,12 +587,12 @@ def test__init__selection_wrong_input_data_type(self, array_type): @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test__init__selection_non_integer_random_seed(self, array_type): input_array = array_type(self.input_array) - with pytest.raises(TypeError, match="Random seed must be an integer."): + with pytest.raises(ValueError, match="Random seed must be an integer."): LHSClass = LatinHypercubeSampling( input_array, number_of_samples=5, sampling_type="selection", - rand_seed=1.2, + rand_seed="1.2", ) @pytest.mark.unit @@ -2105,6 +2123,26 @@ def test__init__selection_right_behaviour_with_specified_random_seed( np.testing.assert_array_equal(CVTClass.eps, 1e-7) assert CVTClass.seed_value == rand_seed + @pytest.mark.unit + @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) + def test__init__selection_right_behaviour_with_specified_float_random_seed( + self, array_type + ): + input_array = array_type(self.input_array) + rand_seed = 2.2 + CVTClass = CVTSampling( + input_array, + number_of_samples=6, + tolerance=None, + sampling_type="selection", + rand_seed=rand_seed, + ) + np.testing.assert_array_equal(CVTClass.data, input_array) + np.testing.assert_array_equal(CVTClass.number_of_centres, 6) + np.testing.assert_array_equal(CVTClass.x_data, np.array(input_array)[:, :-1]) + np.testing.assert_array_equal(CVTClass.eps, 1e-7) + assert CVTClass.seed_value == int(rand_seed) + @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test__init__selection_zero_samples(self, array_type): @@ -2208,12 +2246,12 @@ def test__init__selection_tolerance_too_tight(self, array_type): @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test__init__selection_non_integer_random_seed(self, array_type): input_array = array_type(self.input_array) - with pytest.raises(TypeError, match="Random seed must be an integer."): + with pytest.raises(ValueError, match="Random seed must be an integer."): CVTClass = CVTSampling( input_array, number_of_samples=5, sampling_type="selection", - rand_seed=1.2, + rand_seed="1.2", tolerance=None, ) @@ -2799,6 +2837,26 @@ def test__init__selection_right_behaviour_with_specified_random_seed( assert CSClass.dist_vector == ["uniform", "normal"] assert CSClass.seed_value == rand_seed + @pytest.mark.unit + @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) + def test__init__selection_right_behaviour_with_specified_float_random_seed( + self, array_type + ): + input_array = array_type(self.input_array) + rand_seed = 1.2 + CSClass = CustomSampling( + input_array, + number_of_samples=6, + sampling_type="selection", + list_of_distributions=["uniform", "normal"], + rand_seed=rand_seed, + ) + np.testing.assert_array_equal(CSClass.data, input_array) + np.testing.assert_array_equal(CSClass.number_of_samples, 6) + np.testing.assert_array_equal(CSClass.x_data, np.array(input_array)[:, :-1]) + assert CSClass.dist_vector == ["uniform", "normal"] + assert CSClass.seed_value == int(rand_seed) + @pytest.mark.unit @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test__init__selection_zero_samples(self, array_type): @@ -2960,13 +3018,13 @@ def test__init__selection_distribution_not_available(self, array_type): @pytest.mark.parametrize("array_type", [np.array, pd.DataFrame]) def test__init__selection_non_integer_random_seed(self, array_type): input_array = array_type(self.input_array) - with pytest.raises(TypeError, match="Random seed must be an integer."): + with pytest.raises(ValueError, match="Random seed must be an integer."): CSClass = CustomSampling( input_array, number_of_samples=5, sampling_type="selection", list_of_distributions=["uniform", "normal"], - rand_seed=1.2, + rand_seed="1.2", ) @pytest.mark.unit