-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
116 lines (96 loc) · 4.42 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.layers import *
import logging
criterion_kl = nn.KLDivLoss(size_average=False)
mart_kl = nn.KLDivLoss(reduction='none')
def BPTT_attack(model, image, T, surrogate='PCW', gamma=1.0):
model.set_simulation_time(T, mode='bptt')
model.set_surrogate_gradient(surrogate=surrogate, gamma=gamma, mode='bptt')
output = model(image).mean(0)
return output
def BPTR_attack(model, image, T, surrogate='PCW', gamma=1.0):
model.set_simulation_time(T, mode='bptr')
output = model(image).mean(0)
model.set_simulation_time(T)
return output
def Act_attack(model, image, T, surrogate='PCW', gamma=1.0):
model.set_simulation_time(0)
output = model(image)
model.set_simulation_time(T)
return output
def val(model, test_loader, device, T, adv_train=None):
correct = 0
total = 0
model.eval()
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs = inputs.to(device)
if adv_train is not None:
adv_train.set_model_training_mode(model_training=False,
batchnorm_training=False,
dropout_training=False)
inputs = adv_train(inputs, targets.to(device))
model.set_simulation_time(T)
with torch.no_grad():
outputs = model(inputs).mean(0) if T > 0 else model(inputs)
_, predicted = outputs.cpu().max(1)
total += float(targets.size(0))
correct += float(predicted.eq(targets).sum().item())
final_acc = 100 * correct / total
return final_acc
def train(model, device, train_loader, criterion, optimizer, T, adv_train, trades_beta=0., mart_beta=0.):
running_loss = 0
model.train()
total = 0
correct = 0
for i, data in enumerate(train_loader):
images, labels = data[0].to(device), data[1].to(device)
batch_size = images.shape[0]
optimizer.zero_grad()
if trades_beta != 0. or mart_beta != 0.:
outputs_clean = model(images).mean(0) if T > 0 else model(images)
loss_natural = criterion(outputs_clean, labels)
if adv_train is not None:
adv_train.set_model_training_mode(model_training=False,
batchnorm_training=False,
dropout_training=False)
images_adv = adv_train(images, labels)
outputs = model(images_adv).mean(0) if T > 0 else model(images_adv)
else:
outputs = model(images).mean(0) if T > 0 else model(images)
if trades_beta != 0.:
loss_robust = (1.0 / batch_size) * criterion_kl(F.log_softmax(outputs, dim=1), F.softmax(outputs_clean, dim=1))
loss = loss_natural + trades_beta * loss_robust
else:
if mart_beta != 0.:
adv_probs = F.softmax(outputs, dim=1)
tmp1 = torch.argsort(adv_probs, dim=1)[:, -2:]
new_y = torch.where(tmp1[:, -1] == labels, tmp1[:, -2], tmp1[:, -1])
loss_adv = F.cross_entropy(outputs, labels) + F.nll_loss(torch.log(1.0001 - adv_probs + 1e-12), new_y)
nat_probs = F.softmax(outputs_clean, dim=1)
true_probs = torch.gather(nat_probs, 1, (labels.unsqueeze(1)).long()).squeeze()
loss_robust = (1.0 / batch_size) * torch.sum(
torch.sum(mart_kl(torch.log(adv_probs + 1e-12), nat_probs), dim=1) * (1.0000001 - true_probs))
loss = loss_adv + float(mart_beta) * loss_robust
else:
loss = criterion(outputs, labels)
running_loss += loss.item()
loss.mean().backward()
optimizer.step()
total += float(labels.size(0))
_, predicted = outputs.cpu().max(1)
correct += float(predicted.eq(labels.cpu()).sum().item())
return running_loss, 100 * correct / total
def get_logger(filename, verbosity=1, name=None):
level_dict = {0: logging.DEBUG, 1: logging.INFO, 2: logging.WARNING}
formatter = logging.Formatter("[%(asctime)s][%(filename)s][line:%(lineno)d][%(levelname)s] %(message)s")
logger = logging.getLogger(name)
logger.setLevel(level_dict[verbosity])
fh = logging.FileHandler(filename, "w")
fh.setFormatter(formatter)
logger.addHandler(fh)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
logger.addHandler(sh)
return logger