-
Notifications
You must be signed in to change notification settings - Fork 0
/
DFND_DeiT-train.py
478 lines (407 loc) · 19.7 KB
/
DFND_DeiT-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
#Copyright (C) 2019. Huawei Technologies Co., Ltd. All rights reserved.
#This program is free software; you can redistribute it and/or modify it under the terms of the BSD 3-Clause License.
#This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the BSD 3-Clause License for more details.
import os
cpu_num = 4
import resnet
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
# from torch.autograd import Variable
from resnet import ResNet18,ResNet34
from torchvision.datasets import CIFAR100,ImageFolder,CIFAR10
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from timm.models import create_model
import vision_transformer
from loss import kdloss, csloss, patch_attention_probe_loss, robust_kdloss
from utils import accuracy, AverageMeter
from functools import partial
import random
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import pdb
import numpy as np
import warnings
os.environ['OMP_NUM_THREADS'] = str(cpu_num)
os.environ['OPENBLAS_NUM_THREADS'] = str(cpu_num)
os.environ['MKL_NUM_THREADS'] = str(cpu_num)
os.environ['VECLIB_MAXIMUM_THREADS'] = str(cpu_num)
os.environ['NUMEXPR_NUM_THREADS'] = str(cpu_num)
torch.set_num_threads(cpu_num)
warnings.filterwarnings('ignore')
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--num_select', type=int, default=600000)
parser.add_argument('--data_cifar', type=str, default='/home/wjh19/database/cifar10/')
parser.add_argument('--data_imagenet', type=str, default='/home/wjh19/database/imagenet/train/')
parser.add_argument('--teacher', default='deit_base_patch4_32_teacher', type=str, metavar='MODEL',
help='Name of teacher model to train (default: "regnety_160"')
parser.add_argument('--teacher_dir', type=str, default='/home/wjh19/mage/DFND_DeiT/output/cifar10/teacher/checkpoint.pth')
parser.add_argument('--nb_classes', type=int, default=10, help='number of classes')
parser.add_argument('--lr_S', type=float, default=7.5e-4, help='learning rate')
parser.add_argument('--robust', action='store_true', default=False,
help='Robust distillation enabled (if avail)')
parser.add_argument('--attnprobe_sel', action='store_true', default=False,
help='Distillation by attention prime enabled (if avail)')
parser.add_argument('--random', action='store_true', default=False,
help='Randomly select wild data (if avail)')
parser.add_argument('--attnprobe_dist', action='store_true', default=False,
help='Distillation by attention prime enabled (if avail)')
parser.add_argument('--attnlier', type=float, default=0.05, help='weight of attention layer to sample the wild data')
parser.add_argument('--outlier', type=float, default=0.9, help='weight of output layer to sample the wild data')
parser.add_argument('--patchattn', type=float, default=0.8, help='weight of patch attention loss')
parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10','cifar100', 'imagenet', 'mnist'])
parser.add_argument('--epochs', type=float, default=800)
parser.add_argument('--output_dir', type=str, default='/home/wjh19/mage/DFND_DeiT/output/cifar10/')
parser.add_argument('--selected_file', type=str, default='/home/wjh19/mage/DFND_DeiT/selected/cifar10/')
parser.add_argument('--schedule', default=[200, 300], nargs='*', type=int,
help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--cos', action='store_true',
help='use cosine lr schedule')
args,_ = parser.parse_known_args()
acc = 0
acc_best = 0
acc5_best = 0
teacher = None
assert args.teacher_dir, 'need to specify teacher-path when using distillation'
print(f"Creating teacher model: {args.teacher}")
teacher = create_model(
args.teacher,
pretrained=False,
num_classes=args.nb_classes,
)
if args.dataset == 'imagenet':
embed_dim = 768
num_heads = 12
img_size = 224
else:
embed_dim = 384
num_heads = 3
img_size = 32
checkpoint = torch.load(args.teacher_dir, map_location='cpu')
teacher.load_state_dict(checkpoint['model'])
teacher.cuda()
teacher.eval()
teacher = nn.DataParallel(teacher)
# teacher = torch.load(args.teacher_dir + 'teacher').cuda()
# teacher.eval()
for parameter in teacher.parameters():
parameter.requires_grad = False
def get_class_weight(model, dataloader, num_classes=10, T=1):
classes_outputs = np.zeros(num_classes)
model.eval()
if os.path.exists(args.selected_file + 'class_weights.pth'):
class_weights = torch.load(args.selected_file + 'class_weights.pth')
else:
for i,(inputs, labels) in enumerate(dataloader):
inputs = inputs.cuda()
with torch.set_grad_enabled(False):
outputs, output_feature_t = model(inputs)
outputs = F.softmax(outputs/T, dim=1)
for j in range(inputs.shape[0]):
classes_outputs += outputs[j].cpu().data.numpy()
class_weights = 1/classes_outputs
weights_sum = np.sum(class_weights)
class_weights /= weights_sum
class_weights *= num_classes
torch.save(class_weights, args.selected_file + 'class_weights.pth')
return class_weights
def perturb(weight, epsilon=0.1, perturb_num=1):
weights = []
weights.append(weight)
for i in range(perturb_num):
p = np.random.rand(weight.shape[0]) * epsilon
weight_new = weight + p
weights.append(weight_new)
return weights
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
data_train = ImageFolder(args.data_imagenet, transforms.Compose([
transforms.Resize((img_size,img_size)),
transforms.ToTensor(),
normalize,
]))
data_train_transform = ImageFolder(args.data_imagenet, transforms.Compose([
transforms.Resize((img_size,img_size)),
transforms.RandomCrop(img_size, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
transform_train = transforms.Compose([
transforms.RandomCrop(img_size, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test_imagenet = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
if args.dataset == 'cifar100':
data_test = CIFAR100(args.data_cifar,
train=False,
transform=transform_test)
teacher_acc = torch.tensor([0.7630])
n_classes = 100
if args.dataset == 'cifar10':
data_test = CIFAR10(args.data_cifar,
train=False,
transform=transform_test)
teacher_acc = torch.tensor([0.9665])
n_classes = 10
if args.dataset == 'imagenet':
data_test = ImageFolder(os.path.join(args.data_cifar, 'val'),
transform_test_imagenet)
teacher_acc = torch.tensor([0.8118])
n_classes = 1000
data_test_loader = DataLoader(data_test, batch_size=1000, num_workers=0)
noise_adaptation = torch.nn.Parameter(torch.zeros(n_classes,n_classes-1))
def noisy(noise_adaptation):
# noise_adaptation_softmax: (n_classes,n_classes-1)
noise_adaptation_softmax = torch.nn.functional.softmax(noise_adaptation,dim=1) * (1 - teacher_acc)
# noise_adaptation_layer: (n_classes,n_classes)
noise_adaptation_layer = torch.zeros(n_classes,n_classes)
for i in range(n_classes):
if i == 0:
noise_adaptation_layer[i] = torch.cat([teacher_acc,noise_adaptation_softmax[i][i:]])
if i == n_classes-1:
noise_adaptation_layer[i] = torch.cat([noise_adaptation_softmax[i][:i],teacher_acc])
else:
noise_adaptation_layer[i] = torch.cat([noise_adaptation_softmax[i][:i],teacher_acc,noise_adaptation_softmax[i][i:]])
# noise_adaptation_layer: (n_classes,n_classes)
return noise_adaptation_layer.cuda()
# net = ResNet18(n_classes).cuda()
if args.dataset == 'imagenet':
print("Creating student model: deiT_tiny_patch16_224")
net = vision_transformer.TeacherVisionTransformer(img_size=224, patch_size=16, in_chans=3, num_classes=args.nb_classes, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)).cuda()
else:
print("Creating student model: deiT_xtiny_patch4_32")
net = vision_transformer.TeacherVisionTransformer(img_size=32, patch_size=4, in_chans=3, num_classes=args.nb_classes, embed_dim=128, depth=12, num_heads=2, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)).cuda()
net = torch.nn.DataParallel(net)
criterion = torch.nn.CrossEntropyLoss().cuda()
celoss = torch.nn.CrossEntropyLoss(reduction = 'none').cuda()
# optimizer = torch.optim.SGD(list(net.parameters()), lr=0.1, momentum=0.9, weight_decay=5e-4)
optimizer = torch.optim.AdamW(net.parameters(), lr=args.lr_S, weight_decay=0.025)
optimizer_noise = torch.optim.Adam([noise_adaptation], lr=0.001)
data_train_loader_noshuffle = DataLoader(data_train, batch_size=256, shuffle=False, num_workers=8)
def identify_attnlier(checkpoint, embed_dim, num_heads):
value_blk3 = []
value_blk7 = []
# pred_list = []
attn_inputs_blk3 = []
attn_inputs_blk7 = []
index = 0
embed_dim = int(embed_dim/num_heads)
scale = embed_dim ** -0.5
teacher.eval()
# Obtain weights and bias
# linear_weight_blk_3: (1152, 384). linear_bias_blk_3: (1152)
linear_weight_blk_3 = checkpoint['model']['blocks.3.attn.qkv.weight'].cuda()
linear_bias_blk_3 = checkpoint['model']['blocks.3.attn.qkv.bias'].cuda()
# linear_weight_q_blk_3, linear_weight_k_blk_3, linear_weight_v_blk_3 = torch.split(linear_weight_blk_3, [384, 384, 384], dim=0)
linear_weight_blk_7 = checkpoint["model"]['blocks.7.attn.qkv.weight'].cuda()
linear_bias_blk_7 = checkpoint["model"]['blocks.7.attn.qkv.bias'].cuda()
# linear_weight_q_blk_7, linear_weight_k_blk_7, linear_weight_v_blk_7 = torch.split(linear_weight_blk_7, [384, 384, 384], dim=0)
hooksadd = [
teacher.module.blocks[3].attn.register_forward_hook(
lambda self, input, output: attn_inputs_blk3.append(input)
),
teacher.module.blocks[7].attn.register_forward_hook(
lambda self, input, output: attn_inputs_blk7.append(input)
),
]
for i,(inputs, labels) in enumerate(data_train_loader_noshuffle):
inputs = inputs.cuda()
outputs, output_feature = teacher(inputs)
# calculate input × weights and view the shape
# B, N, C = 256, 65, 384
B, N, C = attn_inputs_blk3[index][0].shape
uniform = (torch.ones(B, N-1)/(N-1)).float().cuda()
qkv_blk_3 = torch.bmm(attn_inputs_blk3[0][0], linear_weight_blk_3.unsqueeze(0).repeat(B, 1, 1).permute(0, 2, 1)) + linear_bias_blk_3
qkv_blk_3 = qkv_blk_3.reshape(B, N, 3, num_heads, embed_dim).permute(2, 0, 3, 1, 4)
q_blk_3, k_blk_3, v_blk_3 = qkv_blk_3[0], qkv_blk_3[1], qkv_blk_3[2] # make torchscript happy (cannot use tensor as tuple)
# attn_blk_3: (B, num_heads, N, N) = (256, num_heads, 65, 65)
attn_blk_3 = (q_blk_3 @ k_blk_3.transpose(-2, -1)) * scale
attn_blk_3 = attn_blk_3.softmax(dim=-1)
# attnprime_blk_3: (B, N-1) = (256, 64)
attnprime_blk_3 = attn_blk_3[:,0,0,1:]
qkv_blk_7 = torch.bmm(attn_inputs_blk7[0][0], linear_weight_blk_7.unsqueeze(0).repeat(B, 1, 1).permute(0, 2, 1)) + linear_bias_blk_7
qkv_blk_7 = qkv_blk_7.reshape(B, N, 3, num_heads, embed_dim).permute(2, 0, 3, 1, 4)
q_blk_7, k_blk_7, v_blk_7 = qkv_blk_7[0], qkv_blk_7[1], qkv_blk_7[2] # make torchscript happy (cannot use tensor as tuple)
# attn_blk_7: (B, num_heads, N, N)
attn_blk_7 = (q_blk_7 @ k_blk_7.transpose(-2, -1)) * scale
attn_blk_7 = attn_blk_7.softmax(dim=-1)
# attnprime_blk_7: (B, N-1)
attnprime_blk_7 = attn_blk_7[:,0,0,1:]
loss_blk3 = csloss(attnprime_blk_3, uniform)
loss_blk7 = csloss(attnprime_blk_7, uniform)
value_blk3.append(loss_blk3.detach().clone())
value_blk7.append(loss_blk7.detach().clone())
attn_inputs_blk3.clear()
attn_inputs_blk7.clear()
print('Considering attnlier of batch %d from the wild massive unlabeled dataset.' % i)
for hook in hooksadd:
hook.remove()
return torch.cat(value_blk3,dim=0), torch.cat(value_blk7,dim=0)
def identify_outlier():
value = []
pred_list = []
index = 0
teacher.eval()
for i,(inputs, labels) in enumerate(data_train_loader_noshuffle):
inputs = inputs.cuda()
# outputs: (bs, n_classes)
outputs, output_feature = teacher(inputs)
# pred: (bs, 1)
pred = outputs.data.max(1)[1]
loss = celoss(outputs, pred)
value.append(loss.detach().clone())
index += inputs.shape[0]
pred_list.append(pred)
print('Considering outlier of batch %d from the wild massive unlabeled dataset.' % i)
return torch.cat(value,dim=0), torch.cat(pred_list,dim=0)
def train(epoch, trainloader, nll, class_weights):
net.train()
loss_list, batch_list = [], []
interval = len(trainloader) // 6
for i, (images, labels) in enumerate(trainloader):
images, labels = images.cuda(), labels.cuda()
optimizer.zero_grad()
optimizer_noise.zero_grad()
output, output_feature_s = net(images)
output_t, output_feature_t = teacher(images)
output_t = output_t.detach()
output_feature_t = output_feature_t.detach()
pred = output_t.data.max(1)[1]
preds_t = pred.cpu().data.numpy()
if args.robust:
for class_weight in class_weights:
weights = torch.from_numpy(class_weight[preds_t]).float().cuda()
loss = robust_kdloss(output, output_t, weights)
else:
loss = kdloss(output, output_t)
output_s = F.softmax(output, dim=1)
output_s_adaptation = torch.matmul(output_s, noisy(noise_adaptation))
loss += nll(torch.log(output_s_adaptation), pred)
if args.attnprobe_dist:
loss_patch_attn = args.patchattn * patch_attention_probe_loss(output_feature_t, output_feature_s)
loss += loss_patch_attn
loss_list.append(loss.data.item())
batch_list.append(i+1)
if (i % interval) == 0:
if args.attnprobe_dist:
print('Train - Epoch %d, Batch: %d, Loss: %f, Loss_attn: %f' % (epoch, i, loss.data.item(), loss_patch_attn.data.item()))
else:
print('Train - Epoch %d, Batch: %d, Loss: %f' % (epoch, i, loss.data.item()))
loss.backward()
optimizer.step()
optimizer_noise.step()
def test(epoch):
global acc, acc_best, epoch_best, acc5_best
net.eval()
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
total_correct = 0
avg_loss = 0.0
with torch.no_grad():
for i, (images, labels) in enumerate(data_test_loader):
images, labels = images.cuda(), labels.cuda()
output, output_feature_s = net(images)
avg_loss += criterion(output, labels).sum()
pred = output.data.max(1)[1]
total_correct += pred.eq(labels.data.view_as(pred)).sum()
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
avg_loss /= len(data_test)
acc = float(total_correct) / len(data_test)
if acc_best < acc:
torch.save(net.state_dict(), args.output_dir + 'student/' + 'checkpoint.pth')
acc_best = acc
epoch_best = epoch
if acc5_best < top5:
acc5_best = top5
print('Test Avg. Loss: %f, Accuracy: %f. Epoch: %d' % (avg_loss.data.item(), acc, epoch))
print('******** ******** ********')
print('Test Avg Best. Accuracy: %f. Accuracy-5: %f. Epoch: %d' % (acc_best, acc5_best, epoch_best))
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format(top1=top1, top5=top5))
def train_and_test(epoch, trainloader3, nll, class_weight):
train(epoch, trainloader3, nll, class_weight)
test(epoch)
# def adjust_learning_rate(optimizer, epoch, max_epoch):
# """For resnet, the lr starts from 0.1, and is divided by 10 at 80 and 120 epochs"""
# if epoch < (max_epoch/200.0*80.0):
# lr = 0.1
# elif epoch < (max_epoch/200.0*160.0):
# lr = 0.01
# else:
# lr = 0.001
# for param_group in optimizer.param_groups:
# param_group['lr'] = lr
def adjust_learning_rate(optimizer, epoch, max_epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr_S
if args.cos: # cosine lr schedule
lr *= 0.5 * (1. + math.cos(math.pi * epoch / max_epoch))
else: # stepwise lr schedule
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def get_positive(value_blk3, value_blk7, value_out, args):
positive_index = []
if args.attnprobe_sel:
value = value_out
else:
value = args.attnlier * (value_blk3 + value_blk7) + args.outlier * value_out
if args.random:
print('randomly selected!')
positive_index = torch.tensor(random.sample(range(1281167), args.num_select))
else:
positive_index = value.topk(args.num_select,largest=False)[1]
return positive_index
def main():
global acc_best
if os.path.exists(args.selected_file + 'value_out.pth'):
value_out = torch.load(args.selected_file + 'value_out.pth').cuda()
pred_out = torch.load(args.selected_file + 'pred_out.pth').cuda()
value_blk3 = torch.load(args.selected_file + 'value_blk3.pth').cuda()
value_blk7 = torch.load(args.selected_file + 'value_blk7.pth').cuda()
# value_numpy = np.loadtxt(args.selected_file + '/value.txt')
# value = torch.Tensor(value_numpy)
# pred_numpy = np.loadtxt(args.selected_file + '/pred.txt')
# pred = torch.Tensor(pred_numpy)
else:
value_blk3, value_blk7 = identify_attnlier(checkpoint, embed_dim, num_heads)
value_out, pred_out = identify_outlier()
torch.save(value_out, args.selected_file + 'value_out.pth')
torch.save(pred_out, args.selected_file + 'pred_out.pth')
torch.save(value_blk3, args.selected_file + 'value_blk3.pth')
torch.save(value_blk7, args.selected_file + 'value_blk7.pth')
# np.savetxt(args.selected_file + '/value.txt', value.numpy(), fmt='%d',delimiter=None)
# np.savetxt(args.selected_file + '/pred.txt', pred.numpy(), fmt='%d',delimiter=None)
positive_index = get_positive(value_blk3, value_blk7, value_out, args)
nll = torch.nn.NLLLoss().cuda()
positive_index = positive_index.tolist()
data_train_select = torch.utils.data.Subset(data_train_transform, positive_index)
trainloader3 = torch.utils.data.DataLoader(data_train_select, batch_size=256, shuffle=True, num_workers=8, pin_memory=True)
class_weight = get_class_weight(teacher, trainloader3, num_classes=args.nb_classes)
print(class_weight)
class_weights = perturb(class_weight)
epoch = int(320000/args.num_select * 512)
for e in range(1, epoch):
adjust_learning_rate(optimizer, e, epoch, args)
train_and_test(e, trainloader3, nll, class_weights)
print(acc_best)
if __name__ == '__main__':
main()