Train | Inference | Model | Public LB | CV | Comment |
---|---|---|---|---|---|
resnext-v1 | resnext-inf-v1 | resnext50_32x4d | 0.894 | 0.89069 | - |
efficient-v1 | efficient-inf-v1 | efficientnet_b4_ns | 0.900 | 0.89103 | CutMix, freeze batch normalization |
efficient-v2 | efficient-inf-v3 | efficientnet_b4_ns | 0.897 | 0.88814 | gradient accumulation, CosineAnnealingWarmupRestarts |
efficient-v3 | efficient-inf-v4 | efficientnet_b4_ns | 0.898 | 0.89137 | MixUp |
vt-v1 | vt-inf-v1 | vit_base_patch16_384 | 0.897 | 0.88958 | based on efficient-v3 |
deit-v1 | deit-inf-v1 | deit_base_patch16_384 | 0.895 | 0.89019 | based on efficient-v1 |
efnet-b3-v1 | efnet-b3-inf-v1 | tf_efficientnet_b3_ns | 0.895 | 0.89255 | based on deit-v1, batch update, increase min lr |
seres-v1 | seres-inf-v1 | seresnext50_32x4d | 0.900 | 0.89422 | based on efnet-b3-v1, MixUp |
seres-v2 | seres-inf-v3 | seresnext50_32x4d | 0.899 | 0.89532 | label smoothing |
vt-v2 | vt-inf-v2 | vit_base_patch16_384 | 0.899 | 0.89220 | label smoothing, freeze BN, etc |
Train | Inference | Model | Public LB | CV | Comment |
---|---|---|---|---|---|
efnet-dist-v1 | efnet-dist-inf-v1 | efficientnet_b4_ns | 0.898 | 0.94961 | label ensemble-v3, soft label only |
efnet-dist-v2 | efnet-dist-inf-v1 | efficientnet_b4_ns | 0.894 | 0.94848 | label ensemble-v3, soft label 0.3 |
efnet-dist-v3 | efnet-dist-inf-v1 | efficientnet_b4_ns | 0.897 | 0.94980 | label ensemble-v3, soft label 0.9 |
efnet-dist-v4 | efnet-dist-inf-v2 | efficientnet_b4_ns | 0.892 | 0.94510 | label ensemble-tta-v2 TTA x7, soft label 0.9 |
deit-dist-v1 | deit_base_patch16_384 | label ensemble-tta-v2 TTA x7, soft label 0.9 |
Train | Inference | Model | Public LB | CV | Comment |
---|---|---|---|---|---|
efficient-v1 | efficient-inf-v2 | efficientnet_b4_ns | 0.898 | - | TTA x10 |
efficient-v1 | efficient-inf-v5 | efficientnet_b4_ns | 0.901 | - | TTA x7 |
seres-v1 | seres-inf-v2 | seresnext50_32x4d | 0.900 | - | TTA x7 (flip) |
Train | Inference | Model | Public LB | CV | Comment |
---|---|---|---|---|---|
- | ensemble-v2 | seresnext50_32x4d | 0.903 | - | seres-v1, seres-v2 |
- | ensemble-v3 | efficientnet_b4_ns, seresnext50_32x4d | 0.903 | - | efficient-v1, seres-v1, seres-v2 |
- | ensemble-v4 | efficientnet_b4_ns, seresnext50_32x4d | 0.902 | - | efficient-v1, seres-v1 |
- | ensemble-v5 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.903 | - | efficient-v1, seres-v1, seres-v2, vt-v2 |
Train | Inference | Model | Public LB | CV | Comment |
---|---|---|---|---|---|
- | ensemble-tta-v1 | efficientnet_b4_ns, seresnext50_32x4d | 0.904 | - | efficient-v1, seres-v1, seres-v2, TTA x9 |
- | ensemble-tta-v2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | Time out | - | efficient-v1, seres-v1, seres-v2, vt-v2, TTA x8 |
- | ensemble-tta-v2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.906 | - | efficient-v1, seres-v1, seres-v2, vt-v2, TTA x7 |
- | ensemble-tta-v2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.906 | - | efficient-v1, seres-v1, seres-v2, vt-v2, TTA x6 |
- | ensemble-tta-v2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.905 | - | efficient-v1, seres-v1, seres-v2, vt-v2, TTA x5 |
- | ensemble-tta-v2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.905 | - | efficient-v1, seres-v1, seres-v2, vt-v2, TTA x4 |
- | ensemble-tta-v3 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | Time out | - | efficient-v1, seres-v1, vt-v2, TTA x10 |
- | ensemble-tta-v3 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.906 | - | efficient-v1, seres-v1, vt-v2, TTA x9 |
- | ensemble-tta-v3 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.904 | - | efficient-v1, seres-v1, vt-v2, TTA x8 |
- | ensemble-tta-v3 *1 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | efficient-v1, seres-v1, vt-v2, TTA x7 |
- | ensemble-tta-v3 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.906 | - | efficient-v1, seres-v1, vt-v2, TTA x6 |
- | ensemble-tta-v4 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | Time out | - | efficient-v1, seres-v2, vt-v2, TTA x10 |
- | ensemble-tta-v4 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.906 | - | efficient-v1, seres-v2, vt-v2, TTA x9 |
- | ensemble-tta-v4 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.906 | - | efficient-v1, seres-v2, vt-v2, TTA x8 |
- | ensemble-tta-v4 *2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | efficient-v1, seres-v2, vt-v2, TTA x7 |
Train | Inference | Model | Public LB | CV | Comment |
---|---|---|---|---|---|
- | w-ensemble-v1 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *1, weight 1 :1 :1.1 |
- | w-ensemble-v1 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.906 | - | based on *1, weight 1 :1 :0.9 |
- | w-ensemble-v2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *2, weight 1 :1 :1.1 |
- | w-ensemble-v2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *2, weight 1 :1 :0.9 |
- | w-ensemble-v1 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *1, weight 1 :1.1 :1 |
- | w-ensemble-v1 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *1, weight 1 :0.9 :1 |
- | w-ensemble-v1 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | 0.9328321372973384 | based on *1, weight 1 :0.8 :1 |
- | w-ensemble-v1 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *1, weight 1 :0.7 :1 |
- | w-ensemble-v2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *2, weight 1 :1.2 :1 |
- | w-ensemble-v2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *2, weight 1 :1.1 :1 |
- | w-ensemble-v2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *2, weight 1 :0.9 :1 |
- | w-ensemble-v1 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *1, weight 1.1 :1 :1 |
- | w-ensemble-v1 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *1, weight 0.9 :1 :1 |
- | w-ensemble-v2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *2, weight 1.1 :1 :1 |
- | w-ensemble-v2 | efficientnet_b4_ns, seresnext50_32x4d, vit_base_patch16_384 | 0.907 | - | based on *2, weight 0.9 :1 :1 |
- w-ensemble-v1
- efficientnet_b4_ns: <1
- seresnext50_32x4d: 0.7<<1 -> 0.8
- vit_base_patch16_384: >1
- w-ensemble-v2
- efficientnet_b4_ns: =1
- seresnext50_32x4d: 1.2>>1 -> 1.1
- vit_base_patch16_384: =1
- CV: 0.9328321372973384
- LB: 0.907
precision recall f1-score support
0 0.82 0.79 0.81 1492
1 0.93 0.89 0.91 3476
2 0.91 0.87 0.89 3017
3 0.96 0.98 0.97 15462
4 0.86 0.85 0.85 2890
accuracy 0.93 26337
macro avg 0.90 0.88 0.89 26337
weighted avg 0.93 0.93 0.93 26337