forked from jonescompneurolab/hnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparamrw.py
780 lines (659 loc) · 29.1 KB
/
paramrw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
# paramrw.py - routines for reading the param files
#
# v 1.10.0-py35
# rev 2016-05-01 (SL: removed dependence on cartesian, updated for python3)
# last major: (SL: cleanup of self.p_all)
import re
import fileio as fio
import numpy as np
import itertools as it
# from cartesian import cartesian
from params_default import get_params_default
# get dict of ':' separated params from fn; ignore lines starting with #
def quickreadprm (fn):
d = {}
with open(fn,'r') as fp:
ln = fp.readlines()
for l in ln:
s = l.strip()
if s.startswith('#'): continue
sp = s.split(':')
if len(sp) > 1:
d[sp[0].strip()]=str(sp[1]).strip()
return d
# get dict of ':' separated params from fn; ignore lines starting with #
def quickgetprm (fn,k,ty):
d = quickreadprm(fn)
return ty(d[k])
# check if using ongoing inputs
def usingOngoingInputs (d, lty = ['_prox', '_dist']):
if type(d)==str: d = quickreadprm(d)
tstop = float(d['tstop'])
dpref = {'_prox':'input_prox_A_','_dist':'input_dist_A_'}
try:
for postfix in lty:
if float(d['t0_input'+postfix])<= tstop and \
float(d['tstop_input'+postfix])>=float(d['t0_input'+postfix]) and \
float(d['f_input'+postfix])>0.:
for k in ['weight_L2Pyr_ampa','weight_L2Pyr_nmda',\
'weight_L5Pyr_ampa','weight_L5Pyr_nmda',\
'weight_inh_ampa','weight_inh_nmda']:
if float(d[dpref[postfix]+k])>0.:
#print('usingOngoingInputs:',d[dpref[postfix]+k])
return True
except:
return False
return False
# return number of evoked inputs (proximal, distal)
# using dictionary d (or if d is a string, first load the dictionary from filename d)
def countEvokedInputs (d):
if type(d) == str: d = quickreadprm(d)
nprox = ndist = 0
for k,v in d.items():
if k.startswith('t_'):
if k.count('evprox') > 0:
nprox += 1
elif k.count('evdist') > 0:
ndist += 1
return nprox, ndist
# check if using any evoked inputs
def usingEvokedInputs (d, lsuffty = ['_evprox_', '_evdist_']):
if type(d) == str: d = quickreadprm(d)
nprox,ndist = countEvokedInputs(d)
tstop = float(d['tstop'])
lsuff = []
if '_evprox_' in lsuffty:
for i in range(1,nprox+1,1): lsuff.append('_evprox_'+str(i))
if '_evdist_' in lsuffty:
for i in range(1,ndist+1,1): lsuff.append('_evdist_'+str(i))
for suff in lsuff:
k = 't' + suff
if k not in d: continue
if float(d[k]) > tstop: continue
k = 'gbar' + suff
for k1 in d.keys():
if k1.startswith(k):
if float(d[k1]) > 0.0: return True
return False
# check if using any poisson inputs
def usingPoissonInputs (d):
if type(d)==str: d = quickreadprm(d)
tstop = float(d['tstop'])
if 't0_pois' in d and 'T_pois' in d:
t0_pois = float(d['t0_pois'])
if t0_pois > tstop: return False
T_pois = float(d['T_pois'])
if t0_pois > T_pois and T_pois != -1.0:
return False
for cty in ['L2Pyr', 'L2Basket', 'L5Pyr', 'L5Basket']:
for sy in ['ampa','nmda']:
k = cty+'_Pois_A_weight_'+sy
if k in d:
if float(d[k]) != 0.0: return True
return False
# check if using any tonic (IClamp) inputs
def usingTonicInputs (d):
if type(d)==str: d = quickreadprm(d)
tstop = float(d['tstop'])
for cty in ['L2Pyr', 'L2Basket', 'L5Pyr', 'L5Basket']:
k = 'Itonic_A_' + cty + '_soma'
if k in d:
amp = float(d[k])
if amp != 0.0:
print(k,'amp != 0.0',amp)
k = 'Itonic_t0_' + cty
t0,t1 = 0.0,-1.0
if k in d: t0 = float(d[k])
k = 'Itonic_T_' + cty
if k in d: t1 = float(d[k])
if t0 > tstop: continue
#print('t0:',t0,'t1:',t1)
if t0 < t1 or t1 == -1.0: return True
return False
# class controlling multiple simulation files (.param)
class ExpParams():
def __init__ (self, f_psim, debug=False):
self.debug = debug
self.expmt_group_params = []
# self.prng_seedcore = {}
# this list is simply to access these easily
self.prng_seed_list = []
# read in params from a file
p_all_input = self.__read_sim(f_psim)
self.p_template = dict.fromkeys(self.expmt_group_params)
# create non-exp params dict from default dict
self.p_all = self.__create_dict_from_default(p_all_input)
# pop off fixed known vals and create experimental prefix templates
self.__pop_known_values()
# make dict of coupled params
self.coupled_params = self.__find_coupled_params()
# create the list of iterated params
self.list_params = self.__create_paramlist()
self.N_sims = len(self.list_params[0][1])
# return pdict based on that one value, PLUS append the p_ext here ... yes, hack-y
def return_pdict(self, expmt_group, i):
# p_template was always updated to include the ones from exp and others
p_sim = dict.fromkeys(self.p_template)
# go through params in list_params
for param, val_list in self.list_params:
if param.startswith('prng_seedcore_'):
p_sim[param] = int(val_list[i])
else:
p_sim[param] = val_list[i]
# go through the expmt group-based params
for param, val in self.p_group[expmt_group].items():
p_sim[param] = val
# add alpha distributions. A bit hack-y
for param, val in self.alpha_distributions.items():
p_sim[param] = val
# Add coupled params
for coupled_param, val_param in self.coupled_params.items():
p_sim[coupled_param] = p_sim[val_param]
return p_sim
# reads .param file and returns p_all_input dict
def __read_sim(self, f_psim):
lines = fio.clean_lines(f_psim)
# ignore comments
lines = [line for line in lines if line[0] is not '#']
p = {}
for line in lines:
# splits line by ':'
param, val = line.split(": ")
# sim_prefix is not a rotated variable
# not sure why `if param is 'sim_prefix':` does not work here
if param == 'sim_prefix':
p[param] = str(val)
# expmt_groups must be listed before other vals
elif param == 'expmt_groups':
# this list will be the preservation of the original order
self.expmt_groups = [expmt_group for expmt_group in val[1:-1].split(', ')]
# this dict here for easy access
# p_group saves each of the changed params per group
self.p_group = dict.fromkeys(self.expmt_groups)
# create empty dicts in each
for group in self.p_group:
self.p_group[group] = {}
elif param.startswith('prng_seedcore_'):
p[param] = int(val)
# key = param.split('prng_seedcore_')[-1]
# self.prng_seedcore[key] = val
# only add values that will change
if p[param] == -1:
self.prng_seed_list.append(param)
elif param.startswith('distribution_'):
p[param] = str(val)
elif param == 'Run_Date':
pass
else:
# assign group params first
if val[0] is '{':
# check for a linspace as a param!
if val[1] is 'L':
# in this case, val_range must be as long as the correct expmt_group length
# everything beyond that will be truncated by the zip operation below
# param passed will strip away the curly braces and just pass the linspace
val_range = self.__expand_linspace(val[1:-1])
else:
val_range = self.__expand_array(val)
# add the expmt_group param to the list if it's not already present
if param not in self.expmt_group_params:
self.expmt_group_params.append(param)
# parcel out vals to exp groups with assigned param names
for expmt_group, val in zip(self.expmt_groups, val_range):
self.p_group[expmt_group][param] = val
# interpret this as a list of vals
# type floats to a np array
elif val[0] is '[':
p[param] = self.__expand_array(val)
# interpret as a linspace
elif val[0] is 'L':
p[param] = self.__expand_linspace(val)
elif val[0] is 'A':
p[param] = self.__expand_arange(val)
else:
try:
p[param] = float(val)
except ValueError:
p[param] = str(val)
# hack-y. sorry, future
# tstop_* = 0 is valid now, resets to the actual tstop
# with the added bonus of saving this time to the indiv params
for param, val in p.items():
if param.startswith('tstop_'):
if isinstance(val, float):
if val == 0:
p[param] = p['tstop']
elif isinstance(val, np.ndarray):
p[param][p[param] == 0] = p['tstop']
return p
# general function to expand a list of values
def __expand_array(self, str_val):
val_list = str_val[1:-1].split(', ')
val_range = np.array([float(item) for item in val_list])
return val_range
# general function to expand the arange
def __expand_arange(self, str_val):
# strip away the leading character along with the brackets and split the csv values
val_list = str_val[2:-1].split(', ')
# use the values in val_list as params for np.linspace
val_range = np.arange(float(val_list[0]), float(val_list[1]), float(val_list[2]))
# return the final linspace expanded
return val_range
# general function to expand the linspace
def __expand_linspace(self, str_val):
# strip away the leading character along with the brackets and split the csv values
val_list = str_val[2:-1].split(', ')
# use the values in val_list as params for np.linspace
val_range = np.linspace(float(val_list[0]), float(val_list[1]), int(val_list[2]))
# return the final linspace expanded
return val_range
# creates dict of params whose values are to be coupled
def __find_coupled_params(self):
coupled_params = {}
# iterates over all key/value pairs to find vals that are strings
for key, val in self.p_all.items():
if isinstance(val, str):
# check that string is another param in p_all
if val in self.p_all.keys():
coupled_params[key] = val
else:
print("Unknown key: %s. Probably going to error." % (val))
# Pop coupled params
for key in coupled_params:
self.p_all.pop(key)
return coupled_params
# pop known values & strings off of the params list
def __pop_known_values(self):
self.sim_prefix = self.p_all.pop('sim_prefix')
# create an experimental string prefix template
self.exp_prefix_str = self.sim_prefix+"-%03d"
self.trial_prefix_str = self.exp_prefix_str+"-T%02d"
# self.N_trials = int(self.p_all.pop('N_trials'))
# self.prng_state = self.p_all.pop('prng_state')[1:-1]
# Save alpha distribution types in dict for later use
self.alpha_distributions = {
'distribution_prox': self.p_all.pop('distribution_prox'),
'distribution_dist': self.p_all.pop('distribution_dist'),
}
# create the dict based on the default param dict
def __create_dict_from_default (self, p_all_input):
nprox, ndist = countEvokedInputs(p_all_input)
# print('found nprox,ndist ev inputs:', nprox, ndist)
# create a copy of params_default through which to iterate
p_all = get_params_default(nprox, ndist)
# now find ONLY the values that are present in the supplied p_all_input
# based on the default dict
for key in p_all.keys():
# automatically expects that keys are either in p_all_input OR will resort
# to default value
if key in p_all_input:
# pop val off so the remaining items in p_all_input are extraneous
p_all[key] = p_all_input.pop(key)
# now display extraneous keys, if there were any
if len(p_all_input):
if self.debug: print("Invalid keys from param file not found in default params: %s" % str(p_all_input.keys()))
return p_all
# creates all combination of non-exp params
def __create_paramlist (self):
# p_all is the dict specifying all of the changing params
plist = []
# get all key/val pairs from the all dict
list_sorted = [item for item in self.p_all.items()]
# sort the list by the key (alpha)
list_sorted.sort(key=lambda x: x[0])
# grab just the keys (but now in order)
self.keys_sorted = [item[0] for item in list_sorted]
self.p_template.update(dict.fromkeys(self.keys_sorted))
# grab just the values (but now in order)
# plist = [item[1] for item in list_sorted]
for item in list_sorted:
if isinstance(item[1], np.ndarray):
plist.append(item[1])
else:
plist.append(np.array([item[1]]))
# print(plist)
# vals_all = cartesian(plist)
vals_new = np.array([np.array(val) for val in it.product(*plist)])
vals_new = vals_new.transpose()
return [item for item in zip(self.keys_sorted, vals_new)]
# Find keys that change anytime during simulation
# (i.e. have more than one associated value)
def get_key_types(self):
key_dict = {
'expmt_keys': [],
'dynamic_keys': [],
'static_keys': [],
}
# Save exmpt keys
key_dict['expmt_keys'] = self.expmt_group_params
# Save expmt keys as dynamic keys
key_dict['dynamic_keys'] = self.expmt_group_params
# Find keys that change run to run within experiments
for key in self.p_all.keys():
# if key has length associated with it, must change run to run
try:
len(self.p_all[key])
# Before storing key, check to make sure it has not already been stored
if key not in key_dict['dynamic_keys']:
key_dict['dynamic_keys'].append(key)
except TypeError:
key_dict['static_keys'].append(key)
# Check if coupled params are dynamic
for dep_param, ind_param in self.coupled_params.items():
if ind_param in key_dict['dynamic_keys']:
key_dict['dynamic_keys'].append(dep_param)
else:
key_dict['static_keys'].append(dep_param)
return key_dict
# reads params from a generated txt file and returns gid dict and p dict
def read (fparam):
lines = fio.clean_lines(fparam)
p = {}
gid_dict = {}
for line in lines:
if line.startswith('#'): continue
keystring, val = line.split(": ")
key = keystring.strip()
if val[0] is '[':
val_range = val[1:-1].split(', ')
if len(val_range) is 2:
ind_start = int(val_range[0])
ind_end = int(val_range[1]) + 1
gid_dict[key] = np.arange(ind_start, ind_end)
else:
gid_dict[key] = np.array([])
else:
try:
p[key] = float(val)
except ValueError:
p[key] = str(val)
return gid_dict, p
# write the params to a filename
def write(fparam, p, gid_list):
""" now sorting
"""
# sort the items in the dict by key
# p_sorted = [item for item in p.items()]
p_keys = [key for key, val in p.items()]
p_sorted = [(key, p[key]) for key in p_keys]
# for some reason this is now crashing in python/mpi
# specifically, lambda sorting in place?
# p_sorted = [item for item in p.items()]
# p_sorted.sort(key=lambda x: x[0])
# open the file for writing
with open(fparam, 'w') as f:
pstring = '%26s: '
# write the gid info first
for key in gid_list.keys():
f.write(pstring % key)
if len(gid_list[key]):
f.write('[%4i, %4i] ' % (gid_list[key][0], gid_list[key][-1]))
else:
f.write('[]')
f.write('\n')
# do the params in p_sorted
for param in p_sorted:
key, val = param
f.write(pstring % key)
if key.startswith('N_'):
f.write('%i\n' % val)
else:
f.write(str(val)+'\n')
# Searches f_param for any match of p
def find_param(fparam, param_key):
_, p = read(fparam)
try:
return p[param_key]
except KeyError:
return "There is no key by the name %s" % param_key
# reads the simgroup name from fparam
def read_sim_prefix(fparam):
lines = fio.clean_lines(fparam)
param_list = [line for line in lines if line.split(': ')[0].startswith('sim_prefix')]
# Assume we found something ...
if param_list:
return param_list[0].split(" ")[1]
else:
print("No sim_prefix found")
return 0
# Finds the experiments list from the simulation param file (.param)
def read_expmt_groups(fparam):
lines = fio.clean_lines(fparam)
lines = [line for line in lines if line.split(': ')[0] == 'expmt_groups']
try:
return lines[0].split(': ')[1][1:-1].split(', ')
except:
print("Couldn't get a handle on expmts")
return 0
# qnd function to add feeds if they are sensible
def feed_validate(p_ext, d, tstop):
""" whips into shape ones that are not
could be properly made into a meaningful class.
"""
# only append if t0 is less than simulation tstop
if tstop > d['t0']:
# # reset tstop if the specified tstop exceeds the
# # simulation runtime
# if d['tstop'] == 0:
# d['tstop'] = tstop
if d['tstop'] > tstop:
d['tstop'] = tstop
# if stdev is zero, increase synaptic weights 5 fold to make
# single input equivalent to 5 simultaneous input to prevent spiking <<---- SN: WHAT IS THIS RULE!?!?!?
if not d['stdev'] and d['distribution'] != 'uniform':
for key in d.keys():
if key.endswith('Pyr'):
d[key] = (d[key][0] * 5., d[key][1])
elif key.endswith('Basket'):
d[key] = (d[key][0] * 5., d[key][1])
# if L5 delay is -1, use same delays as L2 unless L2 delay is 0.1 in which case use 1. <<---- SN: WHAT IS THIS RULE!?!?!?
if d['L5Pyr_ampa'][1] == -1:
for key in d.keys():
if key.startswith('L5'):
if d['L2Pyr'][1] != 0.1:
d[key] = (d[key][0], d['L2Pyr'][1])
else:
d[key] = (d[key][0], 1.)
p_ext.append(d)
return p_ext
#
def checkevokedsynkeys (p, nprox, ndist):
# make sure ampa,nmda gbar values are in the param dict for evoked inputs(for backwards compatibility)
lctprox = ['L2Pyr','L5Pyr','L2Basket','L5Basket'] # evoked distal target cell types
lctdist = ['L2Pyr','L5Pyr','L2Basket'] # evoked proximal target cell types
lsy = ['ampa','nmda'] # synapse types used in evoked inputs
for nev,pref,lct in zip([nprox,ndist],['evprox_','evdist_'],[lctprox,lctdist]):
for i in range(nev):
skey = pref + str(i+1)
for sy in lsy:
for ct in lct:
k = 'gbar_'+skey+'_'+ct+'_'+sy
# if the synapse-specific gbar not present, use the existing weight for both ampa,nmda
if k not in p:
p[k] = p['gbar_'+skey+'_'+ct]
#
def checkpoissynkeys (p):
# make sure ampa,nmda gbar values are in the param dict for Poisson inputs (for backwards compatibility)
lct = ['L2Pyr','L5Pyr','L2Basket','L5Basket'] # target cell types
lsy = ['ampa','nmda'] # synapse types used in Poisson inputs
for ct in lct:
for sy in lsy:
k = ct + '_Pois_A_weight_' + sy
# if the synapse-specific weight not present, set it to 0 in p
if k not in p:
p[k] = 0.0
# creates the external feed params based on individual simulation params p
def create_pext (p, tstop):
# indexable py list of param dicts for parallel
# turn off individual feeds by commenting out relevant line here.
# always valid, no matter the length
p_ext = []
# p_unique is a dict of input param types that end up going to each cell uniquely
p_unique = {}
# default params for proximal rhythmic inputs
feed_prox = {
'f_input': p['f_input_prox'],
't0': p['t0_input_prox'],
'tstop': p['tstop_input_prox'],
'stdev': p['f_stdev_prox'],
'L2Pyr_ampa': (p['input_prox_A_weight_L2Pyr_ampa'], p['input_prox_A_delay_L2']),
'L2Pyr_nmda': (p['input_prox_A_weight_L2Pyr_nmda'], p['input_prox_A_delay_L2']),
'L5Pyr_ampa': (p['input_prox_A_weight_L5Pyr_ampa'], p['input_prox_A_delay_L5']),
'L5Pyr_nmda': (p['input_prox_A_weight_L5Pyr_nmda'], p['input_prox_A_delay_L5']),
'L2Basket_ampa': (p['input_prox_A_weight_L2Basket_ampa'], p['input_prox_A_delay_L2']),
'L2Basket_nmda': (p['input_prox_A_weight_L2Basket_nmda'], p['input_prox_A_delay_L2']),
'L5Basket_ampa': (p['input_prox_A_weight_L5Basket_ampa'], p['input_prox_A_delay_L5']),
'L5Basket_nmda': (p['input_prox_A_weight_L5Basket_nmda'], p['input_prox_A_delay_L5']),
'events_per_cycle': p['events_per_cycle_prox'],
'prng_seedcore': int(p['prng_seedcore_input_prox']),
'distribution': p['distribution_prox'],
'lamtha': 100.,
'loc': 'proximal',
'repeats': p['repeats_prox'],
't0_stdev': p['t0_input_stdev_prox'],
'threshold': p['threshold']
}
# ensures time interval makes sense
p_ext = feed_validate(p_ext, feed_prox, tstop)
# default params for distal rhythmic inputs
feed_dist = {
'f_input': p['f_input_dist'],
't0': p['t0_input_dist'],
'tstop': p['tstop_input_dist'],
'stdev': p['f_stdev_dist'],
'L2Pyr_ampa': (p['input_dist_A_weight_L2Pyr_ampa'], p['input_dist_A_delay_L2']),
'L2Pyr_nmda': (p['input_dist_A_weight_L2Pyr_nmda'], p['input_dist_A_delay_L2']),
'L5Pyr_ampa': (p['input_dist_A_weight_L5Pyr_ampa'], p['input_dist_A_delay_L5']),
'L5Pyr_nmda': (p['input_dist_A_weight_L5Pyr_nmda'], p['input_dist_A_delay_L5']),
'L2Basket_ampa': (p['input_dist_A_weight_L2Basket_ampa'], p['input_dist_A_delay_L2']),
'L2Basket_nmda': (p['input_dist_A_weight_L2Basket_nmda'], p['input_dist_A_delay_L2']),
'events_per_cycle': p['events_per_cycle_dist'],
'prng_seedcore': int(p['prng_seedcore_input_dist']),
'distribution': p['distribution_dist'],
'lamtha': 100.,
'loc': 'distal',
'repeats': p['repeats_dist'],
't0_stdev': p['t0_input_stdev_dist'],
'threshold': p['threshold']
}
p_ext = feed_validate(p_ext, feed_dist, tstop)
nprox, ndist = countEvokedInputs(p)
# print('nprox,ndist evoked inputs:', nprox, ndist)
# NEW: make sure all evoked synaptic weights present (for backwards compatibility)
# could cause differences between output of param files since some nmda weights should
# be 0 while others > 0
checkevokedsynkeys(p,nprox,ndist)
# Create proximal evoked response parameters
# f_input needs to be defined as 0
for i in range(nprox):
skey = 'evprox_' + str(i+1)
p_unique['evprox' + str(i+1)] = {
't0': p['t_' + skey],
'L2_pyramidal':(p['gbar_'+skey+'_L2Pyr_ampa'],p['gbar_'+skey+'_L2Pyr_nmda'],0.1,p['sigma_t_'+skey]),
'L2_basket':(p['gbar_'+skey+'_L2Basket_ampa'],p['gbar_'+skey+'_L2Basket_nmda'],0.1,p['sigma_t_'+skey]),
'L5_pyramidal':(p['gbar_'+skey+'_L5Pyr_ampa'],p['gbar_'+skey+'_L5Pyr_nmda'],1.,p['sigma_t_'+skey]),
'L5_basket':(p['gbar_'+skey+'_L5Basket_ampa'],p['gbar_'+skey+'_L5Basket_nmda'],1.,p['sigma_t_'+skey]),
'prng_seedcore': int(p['prng_seedcore_' + skey]),
'lamtha_space': 3.,
'loc': 'proximal',
'sync_evinput': p['sync_evinput'],
'threshold': p['threshold'],
'numspikes': p['numspikes_' + skey]
}
# Create distal evoked response parameters
# f_input needs to be defined as 0
for i in range(ndist):
skey = 'evdist_' + str(i+1)
p_unique['evdist' + str(i+1)] = {
't0': p['t_' + skey],
'L2_pyramidal':(p['gbar_'+skey+'_L2Pyr_ampa'],p['gbar_'+skey+'_L2Pyr_nmda'],0.1,p['sigma_t_'+skey]),
'L5_pyramidal':(p['gbar_'+skey+'_L5Pyr_ampa'],p['gbar_'+skey+'_L5Pyr_nmda'],0.1,p['sigma_t_'+skey]),
'L2_basket':(p['gbar_'+skey+'_L2Basket_ampa'],p['gbar_'+skey+'_L2Basket_nmda'],0.1,p['sigma_t_' + skey]),
'prng_seedcore': int(p['prng_seedcore_' + skey]),
'lamtha_space': 3.,
'loc': 'distal',
'sync_evinput': p['sync_evinput'],
'threshold': p['threshold'],
'numspikes': p['numspikes_' + skey]
}
# this needs to create many feeds
# (amplitude, delay, mu, sigma). ordered this way to preserve compatibility
p_unique['extgauss'] = { # NEW: note double weight specification since only use ampa for gauss inputs
'stim': 'gaussian',
'L2_basket':(p['L2Basket_Gauss_A_weight'],p['L2Basket_Gauss_A_weight'],1.,p['L2Basket_Gauss_mu'],p['L2Basket_Gauss_sigma']),
'L2_pyramidal':(p['L2Pyr_Gauss_A_weight'],p['L2Pyr_Gauss_A_weight'],0.1,p['L2Pyr_Gauss_mu'],p['L2Pyr_Gauss_sigma']),
'L5_basket':(p['L5Basket_Gauss_A_weight'],p['L5Basket_Gauss_A_weight'],1.,p['L5Basket_Gauss_mu'],p['L5Basket_Gauss_sigma']),
'L5_pyramidal':(p['L5Pyr_Gauss_A_weight'],p['L5Pyr_Gauss_A_weight'],1.,p['L5Pyr_Gauss_mu'],p['L5Pyr_Gauss_sigma']),
'lamtha': 100.,
'prng_seedcore': int(p['prng_seedcore_extgauss']),
'loc': 'proximal',
'threshold': p['threshold']
}
checkpoissynkeys(p)
# define T_pois as 0 or -1 to reset automatically to tstop
if p['T_pois'] in (0, -1): p['T_pois'] = tstop
# Poisson distributed inputs to proximal
p_unique['extpois'] = {# NEW: setting up AMPA and NMDA for Poisson inputs; why delays differ?
'stim': 'poisson',
'L2_basket': (p['L2Basket_Pois_A_weight_ampa'],p['L2Basket_Pois_A_weight_nmda'],1.,p['L2Basket_Pois_lamtha']),
'L2_pyramidal': (p['L2Pyr_Pois_A_weight_ampa'],p['L2Pyr_Pois_A_weight_nmda'], 0.1,p['L2Pyr_Pois_lamtha']),
'L5_basket': (p['L5Basket_Pois_A_weight_ampa'],p['L5Basket_Pois_A_weight_nmda'],1.,p['L5Basket_Pois_lamtha']),
'L5_pyramidal': (p['L5Pyr_Pois_A_weight_ampa'],p['L5Pyr_Pois_A_weight_nmda'],1.,p['L5Pyr_Pois_lamtha']),
'lamtha_space': 100.,
'prng_seedcore': int(p['prng_seedcore_extpois']),
't_interval': (p['t0_pois'], p['T_pois']),
'loc': 'proximal',
'threshold': p['threshold']
}
return p_ext, p_unique
# Finds the changed variables
# sort of inefficient, probably should be part of something else
# not worried about all that right now, as it appears to work
# brittle in that the match string needs to be correct to find all the changed params
# is redundant with(?) get_key_types() dynamic keys information
def changed_vars(fparam):
# Strip empty lines and comments
lines = fio.clean_lines(fparam)
lines = [line for line in lines if line[0] != '#']
# grab the keys and vals in a list of lists
# each item of keyvals is a pair [key, val]
keyvals = [line.split(": ") for line in lines]
# match the list for changed items starting with "AKL[(" on the 1st char of the val
var_list = [line for line in keyvals if re.match('[AKL[\(]', line[1][0])]
# additional default info to add always
list_meta = [
'N_trials',
'N_sims',
'Run_Date'
]
# list concatenate these lists
var_list += [line for line in keyvals if line[0] in list_meta]
# return the list of "changed" or "default" vars
return var_list
# Takes two dictionaries (d1 and d2) and compares the keys in d1 to those in d2
# if any match, updates the (key, value) pair of d1 to match that of d2
# not real happy with variable names, but will have to do for now
def compare_dictionaries(d1, d2):
# iterate over intersection of key sets (i.e. any common keys)
for key in d1.keys() and d2.keys():
# update d1 to have same (key, value) pair as d2
d1[key] = d2[key]
return d1
# get diff on 2 dictionaries
def diffdict (d1, d2, verbose=True):
print('d1,d2 num keys - ', len(d1.keys()), len(d2.keys()))
for k in d1.keys():
if not k in d2:
if verbose: print(k, ' in d1, not in d2')
for k in d2.keys():
if not k in d1:
if verbose: print(k, ' in d2, not in d1')
for k in d1.keys():
if k in d2:
if d1[k] != d2[k]:
print('d1[',k,']=',d1[k],' d2[',k,']=',d2[k])
# debug test function
if __name__ == '__main__':
fparam = 'param/debug.param'
p = ExpParams(fparam,debug=True)
# print(find_param(fparam, 'WhoDat')) # ?