Skip to content

IPCC-WG1/Chapter-6_Fig12_22_24

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Description

DOI

Contact: Sara Marie Blichner, University of Oslo

s.m.blichner@geo.uio.no or sara.blichner@aces.su.no

Code for analyzing and plotting for AR6 IPCC.

Note: Thanks to Zebedee Nicholls Zebedee Nicholls (zebedee.nicholls@climate-energy-college.org) and Chris Smith https://github.com/chrisroadmap for supplying data and answering questions.

Also, code in ar6_ch6_rcmipfigs/notebooks/fig6_12_and_ts15_spm2/utils_hist_att/attribution_1750_2019_newBC_smb.py is is only slightly modified version of code Bill Collins has written (only technical changes).

RESULTS:

The resulting figures can be found in /ar6_ch6_rcmipfigs/results. Each folder contains the plot and data for that plot.

Installation

git clone https://github.com/sarambl/AR6_CH6_RCMIPFIGS.git
cd AR6_CH6_RCMIPFIGS
conda env create -f env_rcmip_ch6.yml
conda activate rcmip_ch6
pip install -e .
cd ar6_ch6_rcmipfigs/notebooks/
python X-shortcuts.py

Input data:

The correct source citations will be updated soon.

In this work we use:

  1. Impulse response function (IRF) from AR6 ar6_ch6_rcmipfigs/data_in_badc_csv/recommended_irf_from_2xCO2_2021_02_25_222758.csv
  2. SSP scenario ERF from FAIR ar6_ch6_rcmipfigs/data_in_badc_csv/SSPs/
  3. ERF from Thornhill et al (2021) ar6_ch6_rcmipfigs/data_in_badc_csv/table2_thornhill2020.csv
  4. Radiative forcing for HFCs from Hodnebrog et al (2020) ar6_ch6_rcmipfigs/data_in_badc_csv/hodnebrog_tab3.csv
  5. Historical emissions of SLCFs from CEDS from here: DOI ar6_ch6_rcmipfigs/data_in/historical_delta_GSAT/CEDS_v2021-02-05_emissions
  6. Historical concentrations from AR6 ar6_ch6_rcmipfigs/data_in/historical_delta_GSAT/LLGHG_history_AR6_v9_updated.xlsx
  7. Uncertainties in $\Delta$ GSAT from FAIR ar6_ch6_rcmipfigs/data_in_badc_csv/slcf_warming_ranges
  8. ERF derived from FAiR and downloaded from (github.com/chrisroadmap/ar6)[https://github.com/chrisroadmap/ar6/tree/main/data_output]

Data used in each figure

Figure 6.12/TS15 and data for SMP2:

Figures 6.22 and 6.24

Usage:

To run all code:

  1. Simply run X_shortcuts.ipynb

Run notebooks:

Figures 6.12/TS15 and data for SMP2:

Run notebooks in given order in folder ar6_ch6_rcmipfigs/notebooks/fig6_12_and_ts15_spm2:

Figures 6.22 and 6.24:

Run notebooks in given order in folder ar6_ch6_rcmipfigs/notebooks/fig6_22_and_fig6_24:

Plot figures:

The figures are produced in notebooks:

Directory overview:

Libraries, software etc:

A list of the required packages for these figures can be found in env_rcmip_ch6.yml

References:

  • Hodnebrog, Ø, B. Aamaas, J. S. Fuglestvedt, G. Marston, G. Myhre, C. J. Nielsen, M. Sandstad, K. P. Shine, and T. J. Wallington. “Updated Global Warming Potentials and Radiative Efficiencies of Halocarbons and Other Weak Atmospheric Absorbers.” Reviews of Geophysics 58, no. 3 (2020): e2019RG000691. https://doi.org/10.1029/2019RG000691.

  • Thornhill, Gillian D., William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O’Connor, Nathan Luke Abraham, et al. “Effective Radiative Forcing from Emissions of Reactive Gases and Aerosols – a Multi-Model Comparison.” Atmospheric Chemistry and Physics 21, no. 2 (January 21, 2021): 853–74. https://doi.org/10.5194/acp-21-853-2021.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 97.2%
  • Python 2.8%