-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdlib_global_optimizer.py
97 lines (84 loc) · 3.42 KB
/
dlib_global_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# import the necessary packages
from utils import config
from collections import OrderedDict
import multiprocessing
import dlib
import sys
import os
# determine the number of processes/threads to use
procs = multiprocessing.cpu_count()
procs = config.PROCS if config.PROCS > 0 else procs
def test_shape_predictor_params(treeDepth, nu, cascadeDepth,
featurePoolSize, numTestSplits, oversamplingAmount,
oversamplingTransJitter, padding, lambdaParam):
# grab the default options for dlib's shape predictor and then
# set the values based on our current hyperparameter values,
# casting to ints when appropriate
options = dlib.shape_predictor_training_options()
options.tree_depth = int(treeDepth)
options.nu = nu
options.cascade_depth = int(cascadeDepth)
options.feature_pool_size = int(featurePoolSize)
options.num_test_splits = int(numTestSplits)
options.oversampling_amount = int(oversamplingAmount)
options.oversampling_translation_jitter = oversamplingTransJitter
options.feature_pool_region_padding = padding
options.lambda_param = lambdaParam
# tell dlib to be verbose when training and utilize our supplied
# number of threads when training
options.be_verbose = True
options.num_threads = procs
# display the current set of options to our terminal
print("[INFO] starting training...")
print(options)
sys.stdout.flush()
# train the model using the current set of hyperparameters
dlib.train_shape_predictor(config.TRAIN_LAND_PATH,
config.LAND_MODEL_PATH, options)
# take the newly trained shape predictor model and evaluate it on
# both our training and testing set
trainingError = dlib.test_shape_predictor(config.TRAIN_LAND_PATH,
config.LAND_MODEL_PATH)
testingError = dlib.test_shape_predictor(config.VAL_LAND_PATH,
config.LAND_MODEL_PATH)
# display the training and testing errors for the current trial
print("[INFO] train error: {}".format(trainingError))
print("[INFO] validation error: {}".format(testingError))
sys.stdout.flush()
# return the error on the testing set
return testingError
# define the hyperparameters to dlib's shape predictor that we are
# going to explore/tune where the key to the dictionary is the
# hyperparameter name and the value is a 3-tuple consisting of the
# lower range, upper range, and is/is not integer boolean,
# respectively
params = OrderedDict([
("tree_depth", (4, 8, True)),
("nu", (0.01, 0.05, False)),
("cascade_depth", (15, 25, True)),
("feature_pool_size", (500, 1000, True)),
("num_test_splits", (50, 150, True)),
("oversampling_amount", (15, 25, True)),
("oversampling_translation_jitter", (0.05, 0.15, False)),
("feature_pool_region_padding", (-0.2, 0.2, False)),
("lambda_param", (0.01, 0.99, False))
])
# use our ordered dictionary to easily extract the lower and upper
# boundaries of the hyperparamter range, include whether or not the
# parameter is an integer or not
lower = [v[0] for (k, v) in params.items()]
upper = [v[1] for (k, v) in params.items()]
isint = [v[2] for (k, v) in params.items()]
# utilize dlib to optimize our shape predictor hyperparameters
(bestParams, bestLoss) = dlib.find_min_global(
test_shape_predictor_params,
bound1=lower,
bound2=upper,
is_integer_variable=isint,
num_function_calls=10)
# display the optimal hyperparameters so we can reuse them in our
# training script
print("[INFO] optimal parameters: {}".format(bestParams))
print("[INFO] optimal error: {}".format(bestLoss))
# delete the temporary model file
os.remove(config.TEMP_MODEL_PATH)