-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
548 lines (465 loc) · 23.5 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{graphicx, color}
\usepackage{amssymb, amsmath, amsfonts, amsthm}
\usepackage{dsfont}
\usepackage{vmargin}
\usepackage{bm}
\usepackage{ifthen}
\usepackage{mathrsfs}
% Writing mode
%\usepackage{showkeys}
%\usepackage {pdfsync}
%\usepackage[active]{srcltx} %forward search for .dvi
\everymath{\displaystyle}
\usepackage{hyperref}
\hypersetup{
% backref=true,
% pagebackref=true,
% hyperindex=true,
colorlinks=true,
breaklinks=true,
urlcolor=blue,
linkcolor=red,
% bookmarks=true,
bookmarksopen=true,
pdftitle = MAESTRO,
pdfauthor = MAESTRO,
pdfsubject = MAESTRO,
pdfkeywords = {maestro}
}
\numberwithin{equation}{section} % Numerote les equations en fonction du paragraphe.
\renewcommand{\thefootnote}{\*}
% ********************************************************************
% MATHEMATICAL COMMANDS
% ********************************************************************
\newcommand{\abs}[1]{\ensuremath{\left| #1 \right|}}
\newcommand{\norm}[1]{\ensuremath{\left| \left| #1 \right| \right|}}
\DeclareMathOperator{\im}{Im}
\DeclareMathOperator{\re}{Re}
\DeclareMathOperator{\dg}{dg}
\DeclareMathOperator*{\argmax}{argmax}
\DeclareMathOperator*{\argmin}{argmin}
\newcommand{\f}[2]{\mathchoice%
{\dfrac{#1}{#2}}
{\dfrac{#1}{#2}}
{\frac{#1}{#2}}
{\frac{#1}{#2}}}
\newcommand{\tf}[2]{\ensuremath{#1/#2}}
\newcommand{\Sum}[2]{\sum\limits_{#1}^{#2}}
\newcommand{\ddf}[3][]{\ifthenelse{\equal{#1}{}}{\ensuremath{\f{\dd#2}{\dd#3}}}
{\ensuremath{\f{\dd^{#1}#2}{\dd{#3}^{#1}}}}}
\newcommand{\Dp}[3][]{\ifthenelse{\equal{#1}{}}{\ensuremath{\f{\partial#2}{\partial#3}}}
{\ensuremath{\f{\partial^{#1}#2}{\partial{#3}^{#1}}}}}
\newcommand{\vect}[1]{\bm{#1}}
\newcommand{\Id}{{\textrm Id}}
\renewcommand{\hat}[1]{\ensuremath{\widehat{#1}}}
\renewcommand{\tilde}[1]{\ensuremath{\widetilde{#1}}}
\renewcommand{\leq}{\ensuremath{\leqslant}}
\renewcommand{\geq}{\ensuremath{\geqslant}}
\newcommand{\avg}[1]{\ensuremath{\left\langle #1 \right\rangle}}
\newcommand{\expec}[1]{\ensuremath{{\rm I\kern-.3em \rm E}\left[#1\right]}}
\newcommand{\prob}[1]{\ensuremath{\mathbb{P}\left(#1\right)}}
\newcommand{\Var}[1]{\mbox{Var}(#1)}
\newcommand{\sprod}[2]{\langle#1,#2\rangle}
\newcommand{\e}[1]{\ensuremath{{}_{\text{#1}}}}
\newcommand{\h}[1]{\ensuremath{{}^{\text{#1}}}}
\renewcommand{\rm}[1]{\mathrm{#1}}%Pour la compatibilite avec amsmath
\newcommand{\T}{\rm{T}}
\newcommand{\etal}{\textit{et al}. }
\newcommand{\ie}{\textit{i}.\textit{e}. }
\newcommand{\eg}{\textit{e}.\textit{g}. }
\DeclareMathOperator{\diver}{div}
\DeclareMathOperator{\grad}{\nabla}
\newcommand{\note}[1]{{\footnotesize \textbf{Note:} #1}}
% Les commandes pour les lettres classiques.
\newcommand{\R}{\mathbb{R}} % Les nombres reels
\newcommand{\B}{\mathbf{B}} % Le mouvement Brownien
\newcommand{\N}{\mathbb{N}} % Les entiers naturels
\newcommand{\E}{\mathbb{E}} % L'esperance
\newcommand{\F}{\mathcal{F}} % Les filtrations
\newcommand{\sL}{\mathrm{L}}
\newcommand{\sH}{\mathrm{H}}
\newcommand{\sV}{\mathrm{V}}
\newcommand{\1}{\mathds{1}} % L'indicatrice
\newcommand{\dd}{\mathrm{d}} % L'\'el\'ement infinit\'esimal.
\newcommand{\dds}{\mathrm{d}s}
\newcommand{\ddt}{\mathrm{d}t}
\newcommand{\ddtheta}{\mathrm{d\theta}}
\newcommand{\ddx}{\mathrm{d}x}
\newcommand{\ddy}{\mathrm{d}y}
\newcommand{\Div}{\mathrm{div\,}} % divergence
\newcommand{\Prb}{\mathbb{P}} % Proba
\newcommand{\Tr}{\mathrm{Tr}} % Trace
\newcommand{\la}{\langle}
\newcommand{\ra}{\rangle}
\newcommand{\lp}{\left(}
\newcommand{\rp}{\right)}
% Proof and examples.
\newcommand{\Proof}{\noindent {\bf{\underline{Proof} : }}}
\newcommand{\EProof}{\begin{flushright}$\Box$\end{flushright}}
\newcommand{\Ex}{\noindent \emph{\underline{Example} : }}
\newcommand{\Step[1]}{\indent \textbf{Step {#1}.}}
\newcommand{\EStep[1]}{\begin{flushright}$\Box$\end{flushright}}
\newcommand{\Case[1]}{\textbf{Case {#1}}}
% Les newtheorem.
\newtheorem{Th}{Theorem}[section]
\newtheorem{Def}[Th]{Definition}
\newtheorem{Coro}[Th]{Corollary}
\newtheorem{Le}[Th]{Lemma}
\newtheorem{Prop}[Th]{Proposition}
\newtheorem{Rem}[Th]{Remark}
\newtheorem{Hyp}[Th]{Hypothesis}
\title{MAESTRO}
\author{
Ludovic Gouden\`ege\footnotemark[1] \and
Pierre Monmarché\footnotemark[2] \and
Benjamin Rotenberg\footnotemark[3] \and
Hadrien Vroylandt\footnotemark[4] \and
Rodolphe Vuilleumier\footnotemark[5] \and
Fabio Pietrucci\footnotemark[6] }
\date{}
\begin{document}
\maketitle
\renewcommand{\thefootnote}{\*}
\footnotetext[0]{\!\!\!\!\!\!\!\!\!\!\!AMS 2000 subject classifications.\\
{\em Key words and phrases} : \\}
\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\footnotetext[1]{CNRS, FR 3487, Fédération de Mathématiques de CentraleSupélec, CentraleSupélec, 91190 Gif-sur-Yvette, Université Paris-Saclay, France, goudenege@math.cnrs.fr}
\footnotetext[2]{Sorbonne Université, France, pierre.monmarche@upmc.fr}
\footnotetext[3]{Sorbonne Université, France, benjamin.rotenberg@sorbonne-universite.fr}
\footnotetext[4]{Sorbonne Université, France, hadrien@hvroylandt.eu}
\footnotetext[5]{Sorbonne Université, France, rodolphe.vuilleumier@ens.fr}
\footnotetext[6]{Sorbonne Université, France, fabio.pietrucci@sorbonne-universite.fr}
\begin{abstract}
MAESTRO
\end{abstract}
\newpage
%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Introduction and main results}
%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Derivation of the generalized Langevin equation}
Let's consider a first order differential equation on the state $\vect{X}(t)$
\begin{equation}
\label{eq:operatorEvolution}
\dd \vect{X} (t) = \mathcal{L} \vect{X}(t) \ddt
\end{equation}
where $\mathcal{L}$ denote the evolution operator, that can be a Liouville operator for Hamiltonian dynamics, or a Markov operator for stochastic dynamics. We assume that we have only a partial view of the system trough a set of observables.
Most common choices of observables are either a subset of coordinates (like the coordinates of a particular particle) or coarse-grained function of the coordinates (like the center of mass of some of the particles).
\subsection{Projection operator}
%The choice of the projection operator appears to be not so innocent.
To define projection, we need to introduce a scalar product, we have using equilibrium probability $\rho_{eq}$
\begin{equation}
\label{eq:scalarproduct}
\sprod{f}{g} = \int \dd \vect{X} \rho_{eq}(\vect{X}) f^\T(\vect{X}) g(\vect{X})
\end{equation}
\paragraph{Orthogonal projection}
For orthogonal projection onto a set of $m$ basis function $\{b\}$ (we don't really restrict $m$ to be finite or event the family to be countable), we introduce the matrix $B \in \R^{m\times \cdot}$ such that each column of $B$ is a basis function, then the orthogonal projection onto $\{b\}$ applied on a function $F(\vect{X})$ is
\begin{equation}
\label{eq:ortho_proj}
\mathcal{P}_{\{b\}}F = B\cdot\sprod{B}{B}^{-1} \cdot\sprod{B}{F}
\end{equation}
\paragraph{Oblique projection}
We can also define an oblique projection\footnote{that is more or less what \cite{Meyer2017} are doing} still using the same matrix $B$ that is a basis for the range of the projector, but we also define the orthogonal complement $D$ to the null space of the projector
\begin{equation}
\label{eq:oblique_proj}
\mathcal{P}^o_{\{b\}}F = B\cdot\sprod{D}{B}^{-1} \cdot\sprod{D}{F}
\end{equation}
\paragraph{Examples of family basis}
\begin{itemize}
\item $\{b\} = \{\mathcal{O}(\vect{X})\}$; we project onto the observable, that is the Mori projection.
\item $\{b\} = \{\delta(\alpha - \mathcal{O}(\vect{X}))\}_{\alpha \in \R} = \text{Span}(\delta(\alpha - \mathcal{O}(\vect{X})))$; we project onto the set of function of the observable, that is the Zwanzig projection\footnote{In this case, the family is not countable and the product part of the projector is $\int \dd \alpha $}
\item $\{b\} = \{b_k(\mathcal{O}(\vect{X}))\}_{k=1}^{m}$; we project onto a set of basis function $b_k$ of the observable (Hermite polynomial, Legendre polynomial,\ldots)
\item $\{b\} = \{\{b_k(\mathcal{O}(\vect{X}))\}_{k=1}^{m}, \{h_j(\vect{X}))\}\}$; we project onto a set of basis function of the observable and linear projection onto a set of hidden variable.
\end{itemize}
\subsection{Mori-Zwanzig formalism}
Let's denote the projection operator onto the set of basis family as $\mathcal{P}_{\{b\}}$, this operator have several properties
The evolution equation of our observables are given by
\begin{equation}
\label{eq:obs_evol}
\Dp{\mathcal{O}(\vect{X},t)}{t} = \mathcal{L} \mathcal{O}(\vect{X},t) = e^{t\mathcal{L}}\mathcal{L} \mathcal{O}(\vect{X},0) = e^{t\mathcal{L}}\mathcal{P}_{\{b\}}\mathcal{L} \mathcal{O}(\vect{X},0)+e^{t\mathcal{L}}(1-\mathcal{P}_{\{b\}})\mathcal{L} \mathcal{O}(\vect{X},0)
\end{equation}
We have the operator identity (Duhamel-Dyson)
\begin{equation}
\label{eq:operator_iden}
e^{t\mathcal{L}} = e^{t(1-\mathcal{P}_{\{b\}})\mathcal{L}} + \int \dd s e^{(t-s)\mathcal{L}} \mathcal{P}_{\{b\}} \mathcal{L} e^{s(1-\mathcal{P}_{\{b\}})\mathcal{L}}
\end{equation}
Both equations can be combined to get
\begin{align}
\label{eq:GLE_general_form}
\Dp{\mathcal{O}(\vect{X},t)}{t} =& e^{t\mathcal{L}}\mathcal{P}_{\{b\}}\mathcal{L} \mathcal{O}(\vect{X},0)+\int \dd s e^{(t-s)\mathcal{L}} \mathcal{P}_{\{b\}} \mathcal{L} e^{s(1-\mathcal{P}_{\{b\}})\mathcal{L}} (1-\mathcal{P}_{\{b\}})\mathcal{L} \mathcal{O}(\vect{X},0)\\
&+e^{t(1-\mathcal{P}_{\{b\}})\mathcal{L}}(1-\mathcal{P}_{\{b\}})\mathcal{L} \mathcal{O}(\vect{X},0)\nonumber
\end{align}
We define
\begin{equation}
\label{eq:noise_gle}
F(\vect{X},t) = e^{t(1-\mathcal{P}_{\{b\}})\mathcal{L}}(1-\mathcal{P}_{\{b\}})\mathcal{L} \mathcal{O}(\vect{X},0)
\end{equation}
that allow to simplify a bit the Eq.~\eqref{eq:GLE_general_form}
\begin{equation}
\label{eq:GLE_general_form_noise}
\Dp{\mathcal{O}(\vect{X},t)}{t} = e^{t\mathcal{L}}\mathcal{P}_{\{b\}}\mathcal{L} \mathcal{O}(\vect{X},0)+\int \dd s e^{(t-s)\mathcal{L}} \mathcal{P}_{\{b\}} \mathcal{L} F(\vect{X},s)+
F(\vect{X},t)
\end{equation}
\subsection{Hamiltonian case}
The global evolution of the system is given by the Hamilton's equations
\begin{equation}
\label{eq:Hamilton}
\begin{cases}
\dot{\bm{q}}= \bm{M}^{-1} \bm{p} \\
\dot{\bm{p}} = -\bm{\nabla} U(\bm{q})
\end{cases}
\end{equation}
We choose as observable a subset of positions and velocities $\mathcal{O}(\vect{X},t) = (\delta(x-\vect{X}),\delta(p-\vect{X}))$.\footnote{The $x$ part of the projection is exact is the function $p$ is included into the basis}
\begin{equation}
\label{eq:GLE_Hamilton}
\begin{cases}
\dot{x}= M^{-1} \bm{p} \\
\dot{\bm{p}} = F_\text{eff}(x) + \int_0^t K(\bm{p}(\tau),t-\tau) \dd \tau +R(t)
\end{cases}
\end{equation}
\subsection{Langevin case}
The main difference with Hamiltonian case is the presence of an extra heat bath on observed variable.
\subsection{Second Fluctuation-Dissipation Theorem}
\section{Short memory and auxiliary variable approach}
\begin{equation}
\label{eq:aux_var_sys}
\begin{cases}
\dot q &= M^{-1} p \\
\dot p &= F(q) - \bm{A}_{ph} \bm{h} -A_{pp} p + \Sigma_p \xi(t) \\
\dot{\bm{h}} &= -\bm{A}_{hh} \bm{h} - \bm{A}_{hp} p + \bm{\Sigma}_h \bm{W}(t)
\end{cases}
\end{equation}
\subsection{Fluctuation-Dissipation Theorem}
\subsection{Equivalence of GLE and extended Markov system}
\subsection{Alternative derivation via Markovian approximation}
Can we use an extended basis directly from the beginning
\subsection{Path probability for extended system}
For the extended system, the transition probability follow from the gaussian nature of the noise
\paragraph{Transition probability}
First we discretize evolution of \eqref{eq:parameters} following a ABOBA scheme, \ie position-Verlet instead of velocity-Verlet that would be OBABO.
\textit{A-step} Generator for the A-step is $\mathcal{L}_A = v \grad _x$ leading to propagator
\begin{equation}
\label{eq:propagator_Astep}
x_{t+\Delta t} = x_t + \Delta t v_t
\end{equation}
\textit{B-step} Generator for the B-step is $\mathcal{L}_B = F(x)\cdot \grad_v$ leading to propagator
\begin{equation}
\label{eq:propagator_Bstep}
v_{t+\Delta t} = v_t + \Delta t F(x_t)
\end{equation}
\textit{O-step} Generator for the O-step is $\mathcal{L}_O = - A \grad_{v,z} + A\Delta_{v,z}$ leading to the (exact) propagator
\begin{equation}
\label{eq:propagator_Ostep}
\begin{pmatrix} v_{t+\Delta t} \\ z_{t+\Delta t} \end{pmatrix} = \exp\left[- \Delta t \bm{A} \right]\begin{pmatrix} v_{t} \\ z_{t} \end{pmatrix} + \bm{S} \cdot \bm{G}
\end{equation}
where $\bm{G}$ is a vector of gaussian number of mean 0 and variance $1$ and the matrix $\bm{S}$ is obtained trough
\begin{align}
\label{eq:FDT_OStep}
\bm{S}\bm{S}^\T &= k_B T \left( \Id - \exp\left[- \Delta t \bm{A} \right]\exp\left[- \Delta t \bm{A}^\T \right]\right) \\
&= k_B T \left( \begin{pmatrix} \Id_{vv} - {e^{- \Delta t \bm{A}}}_{vv}{e^{- \Delta t \bm{A}}}_{vv}^\T -{e^{- \Delta t \bm{A}}}_{vz}{e^{- \Delta t \bm{A}}}_{vz}^\T& -{e^{- \Delta t \bm{A}}}_{vv}{e^{- \Delta t \bm{A}}}_{zv}^\T-{e^{- \Delta t \bm{A}}}_{vz}{e^{- \Delta t \bm{A}}}_{zz}^\T \\
- {e^{- \Delta t \bm{A}}}_{zv}{e^{- \Delta t \bm{A}}}_{vv}^\T -{e^{- \Delta t \bm{A}}}_{zz}{e^{- \Delta t \bm{A}}}_{vz}^\T& \Id_{zz} - {e^{- \Delta t \bm{A}}}_{zz}{e^{- \Delta t \bm{A}}}_{zz}^\T -{e^{- \Delta t \bm{A}}}_{zv}{e^{- \Delta t \bm{A}}}_{zv}^\T\\
\end{pmatrix}\right)
\end{align}
In case of a velocity dependent, we could take instead an Euler-Maruyama step with
\begin{equation}
\label{eq:propagator_Ostep_Euler_Maruyama}
\begin{pmatrix} v_{t+\Delta t} \\ z_{t+\Delta t} \end{pmatrix} = \begin{pmatrix} v_{t} \\ z_{t} \end{pmatrix} - \Delta t \bm{A} \begin{pmatrix} v_{t} \\ z_{t} \end{pmatrix} + \bm{S}_\text{Euler} \cdot \bm{G}
\end{equation}
with matrix $\bm{S}_\text{Euler}$ now being
\begin{align}
\label{eq:FDT_OStep_Euler_Maruyama}
\bm{S}_\text{Euler}\bm{S}_\text{Euler}^\T &= k_B T \Delta t \bm{A} \bm{A}^\T
\end{align}
\textit{ABOBA scheme} This lead to the following scheme for one timestep evolution
\begin{align}
\label{eq:ABOBA_scheme}
x_{\tf{1}{2}}& = x_0 + v_0 \tf{\Delta t}{2} & \textrm{(A)}\\
v_{\tf{1}{2}}& = v_0 + F(x_{\tf{1}{2}}) \tf{\Delta t}{2} & \textrm{(B)}\\
v'_{\tf{1}{2}}& = \exp\left[- \Delta t \bm{A} \right]_{vv}v_{\tf{1}{2}} +\exp\left[- \Delta t \bm{A} \right]_{vz} \bm{z}_{0} + [\bm{S} \cdot \bm{G}]_{v} & \textrm{(O)} \\
\bm{z}_1& = \exp\left[- \Delta t \bm{A} \right]_{zv}v_{\tf{1}{2}} +\exp\left[- \Delta t \bm{A} \right]_{zz} \bm{z}_{0} + [\bm{S} \cdot \bm{G}]_{z} & \textrm{(O)} \\
v_1&= v'_{\tf{1}{2}} + F(x_{\tf{1}{2}}) \tf{\Delta t}{2} & \textrm{(B)}\\
x_1 &= x_{\tf{1}{2}}+ v_1 \tf{\Delta t}{2}& \textrm{(A)}
\end{align}
%\exp\left[- \Delta t \bm{A} \right]_{vv}
That lead to the final transition as
\begin{align}
\label{eq:ABOBA_transition}
\begin{pmatrix}
x_1 \\ v_1 \\ z_1
\end{pmatrix}=
\begin{pmatrix}
1 & \f{\Delta t}{2}(1+\exp\left[- \Delta t \bm{A} \right]_{vv}) & \f{\Delta t}{2}\exp\left[- \Delta t \bm{A} \right]_{vz} \\0 & \exp\left[- \Delta t \bm{A} \right]_{vv} & \exp\left[- \Delta t \bm{A} \right]_{vz} \\0 &\exp\left[- \Delta t \bm{A} \right]_{zv} &\exp\left[- \Delta t \bm{A} \right]_{zz}
\end{pmatrix}
\begin{pmatrix}
x_0 \\ v_0 \\ z_0
\end{pmatrix}\nonumber\\+
\begin{pmatrix}
(1+\exp\left[- \Delta t \bm{A} \right]_{vv})\tf{\Delta t ^2}{4} \\(1+\exp\left[- \Delta t \bm{A} \right]_{vv}) \tf{\Delta t}{2}\\
\exp\left[- \Delta t \bm{A} \right]_{zv} \tf{\Delta t}{2}
\end{pmatrix} F\left(x_0 + v_0 \f{\Delta t}{2}\right)\\
+\begin{pmatrix}
0 & \f{\Delta t}{2} \bm{S}_{vv} & \f{\Delta t}{2} \bm{S}_{vz}\\
0 & \bm{S}_{vv} & \bm{S}_{vz} \\
0 & \bm{S}_{zv} & \bm{S}_{zz}
\end{pmatrix} \cdot
\begin{pmatrix}
\bm{G}_x\\ \bm{G}_v\\ \bm{G}_z
\end{pmatrix}.\nonumber
\end{align}
Then we have the gaussian probability transition from $(x_t,v_t,z_t)$ to $(x_{t+\Delta t},v_{t+\Delta t},z_{t+\Delta t})$
\begin{align}
\label{eq:probaTransition}
& \prob{(x_{t+\Delta t},v_{t+\Delta t},z_{t+\Delta t} | (x_t,v_t,z_t) } = \sqrt{(2\pi)^M\det \bm{\Sigma}_{\Theta} }\\ \nonumber& e^{-\f{1}{2}\left[\begin{pmatrix}
x_{t+\Delta t} \\ v_{t+\Delta t} \\ z_{t+\Delta t}
\end{pmatrix}-\bm{M}_{\Theta}\cdot\begin{pmatrix}
x_t \\ v_t \\ z_t
\end{pmatrix} - F_{\Theta}\begin{pmatrix}
x_t \\ v_t \\ z_t
\end{pmatrix} \bm{\Gamma}_{\Theta}\right]^\T\bm{\Sigma}_{\Theta}^{-1}\left[ \begin{pmatrix}
x_{t+\Delta t} \\ v_{t+\Delta t} \\ z_{t+\Delta t}
\end{pmatrix}-\bm{M}_{\Theta}\cdot\begin{pmatrix}
x_t \\ v_t \\ z_t
\end{pmatrix} - F_{\Theta}\begin{pmatrix}
x_t \\ v_t \\ z_t
\end{pmatrix} \bm{\Gamma}_{\Theta}\right]}
\end{align}
where we define
\begin{equation}
\label{eq:covariance_trans_gauss}
\bm{\Sigma}_{\Theta} =
\begin{pmatrix}
0 & \f{\Delta t}{2} \bm{S}_{vv} & \f{\Delta t}{2} \bm{S}_{vz}\\
0 & \bm{S}_{vv} & \bm{S}_{vz} \\
0 & \bm{S}_{zv} & \bm{S}_{zz}
\end{pmatrix} \cdot \begin{pmatrix}
0 & \f{\Delta t}{2} \bm{S}_{vv} & \f{\Delta t}{2} \bm{S}_{vz}\\
0 & \bm{S}_{vv} & \bm{S}_{vz} \\
0 & \bm{S}_{zv} & \bm{S}_{zz}
\end{pmatrix}^\T
\end{equation}
\paragraph{Initial probability}
We assume that the hidden degree of freedom are equilibrated, therefore the initial probability is
\begin{equation}
\label{eq:initProbhidden}
\prob{(x_0,v_0,z_0)} =
\end{equation}
\paragraph{Complete path probability} Given the Markovian nature of the model, the path probability to observe trajectory $\{(x_t,v_t,z_t) \}_0^T $ is given by
\begin{equation}
\label{eq:pathProbhidden}
\prob{\{(x_t,v_t,z_t) \}_0^T } =
\end{equation}
that can be written under the form of an exponential family as
\begin{equation}
\label{eq:pathProbhidden_exp_fam}
\prob{\{(x_t,v_t,z_t) \}_0^T } =
\end{equation}
Therefore the log-likelihood of the model is
\begin{equation}
\label{eq:log_likelihood_hidden_model}
-\log \mathcal{L}
\end{equation}
\section{Data-driven parametrization of GLE}
\subsection{Computation of memory kernel trough correlation function}
For reference, see \cite{Kowalik2019}
We start from the GLE
\begin{equation}
\label{eq:GLE_mem}
\dot{x}(t)= \bm{v}(t) \\
M\dot{v}(t) = F_\text{eff}(x(t)) - \int_0^t K(t-\tau) v(\tau) \dd \tau +R(t)
\end{equation}
Since, the correlation between the initial velocity and the noise term is zero, $\avg{v(0) R(t)} = 0$, we get the Volterra equation between velocity correlation and force correlation
\begin{equation}
\label{eq:volterra}
\avg{v(0) (M \dot v(t) - F_\text{eff}(x(t)))} = - \int_0^t K(t-\tau) \avg{v(0)v(\tau)} \dd \tau
\end{equation}
\paragraph{Iterative solution}
To solve the Volterra equation \eqref{eq:volterra}, we can discretize the integral using trapezoidal rule. Denoting $C_i^{vv} = \avg{v(0)v(i\Delta t)}$, and $C_i^{vf}= \avg{v(0) [M \dot{v} (i\Delta t) - F_\text{eff}(x(i\Delta t))]}$, and $K_i = K(i\Delta t)$, we get
\begin{equation}
\label{eq:iterative_volterra}
K_i = -\f{2}{\Delta t C_0^{vv}} \left( C_i^{vf} + \f{\Delta t}{2} K_0 C_{i}^{vv} +\sum_{j=1}^{i-1} \Delta t K_j C_{i-j}^{vv} \right)
\end{equation}
\paragraph{Laplace/Fourier transform}
The Volterra equation \eqref{eq:volterra} can also be solved through Laplace or Fourier transform.
\paragraph{Other approaches}
We can also transform the equation into a second order Volterra equation.
There exist more involved method to solve the Volterra integral equation, see \href{http://www.math.hkbu.edu.hk/~hbrunner/harbin10/HL1.pdf}{collocation method}
\subsection{Hidden Markov approach}
As the extended system is Markov, it is amendable to maximum likelihood approach. Due to the hidden nature of the auxillary variable, we turn to EM-type algorithm.
\paragraph{Parametrization of the system}
We consider the following system of SDE.
\begin{equation}
\label{eq:parameters}
\begin{cases}
\dot x = M^{-1} p \\
\dot p = F(x)+ A_{ph} \bm{h} -\gamma p + \Sigma_p \xi(t) \\
\dot{\bm{h}} = \bm{A}_{hh} \bm{h}+ \bm{A}_{hp} p + \bm{\Sigma}_h \bm{W}(t)
\end{cases}
\end{equation}
We are given time series of corrected force $ \{\dot p-F(q)\}_0^T$.
The parameters to compute are therefore only the dissipative part of the dynamics and the stochastic part is retrieved through the FDT
\begin{itemize}
\item A parametrization of the mean force over a chosen functionnal basis.
\item $A_{ph}$ and $\gamma$
\item $\bm{A}_{hh}$ and $ \bm{A}_{hp}$
\end{itemize}
\paragraph{Sufficient statistics}
As our complete probabilistic model~\eqref{eq:log_likelihood_hidden_model} is an exponential family, there is a complete set of sufficient statistic $T_1(\{(x_t,v_t,z_t) \}_0^T) $ and $T_2(\{(x_t,v_t,z_t) \}_0^T)$ (Pitman–Koopman–Darmois theorem) given by
\begin{align}
\label{eq:sufficient_stats}
T_1(\{(x_t,v_t,z_t) \}_0^T) &= \expec{\begin{pmatrix}
x_{t+\Delta t} \\ v_{t+\Delta t} \\ z_{t+\Delta t}
\end{pmatrix}-\begin{pmatrix}
x_t \\ v_t \\ z_t
\end{pmatrix}\Big| (x,v,z)} \\
T_2(\{(x_t,v_t,z_t) \}_0^T) &= \expec{\left( \begin{pmatrix}
x_{t+\Delta t} \\ v_{t+\Delta t} \\ z_{t+\Delta t}
\end{pmatrix}-\begin{pmatrix}
x_t \\ v_t \\ z_t
\end{pmatrix}\right) \left( \begin{pmatrix}
x_{t+\Delta t} \\ v_{t+\Delta t} \\ z_{t+\Delta t}
\end{pmatrix}-\begin{pmatrix}
x_t \\ v_t \\ z_t
\end{pmatrix}\right)^\T}
\end{align}
They are associated with natural parameters
\begin{align}
\label{eq:naturals_parameters}
\bm{\eta}_1(\bm{\Theta},(x,v,z)) &= \bm{\Sigma}_{\Theta}^{-1}\left( (\bm{M}_{\Theta}-\Id)\cdot\begin{pmatrix}
x \\ v \\ z
\end{pmatrix} + F_{\Theta}\begin{pmatrix}
x \\ v \\ z
\end{pmatrix} \bm{\Gamma}_{\Theta}\right) \\
\bm{\eta}_2(\bm{\Theta}) &= -\f{1}{2} \bm{\Sigma}_{\Theta}^{-1}
\end{align}
and the log-partition function is
\begin{equation}
\label{eq:log-partion-exp-family}
f(\Theta,(x,v,z)) = -\f{1}{4} \int \dd (x,v,z) \bm{\eta}_1(\bm{\Theta},(x,v,z))^\T \bm{\eta}_2(\bm{\Theta})^{-1} \bm{\eta}_1(\bm{\Theta},(x,v,z)) -\f{1}{2} \log( -2 \det \bm{\eta}_2(\bm{\Theta}))
\end{equation}
\paragraph{Expectation step}
The first step is computing the probability of the hidden variables given the parameters and the observables. That means we need $\prob{ \bm{h}_t | \{y_\tau\}_0^T, \bm{\Theta}_{k-1}}$\footnote{For a multivariate gaussian $p(x_A,x_B)=\mathcal{N}((\mu_A,\mu_B),\Sigma)$, the conditionnal gaussian is $p(x_A|x_B)= \mathcal{N}(\mu_A+\Sigma_{AB}\Sigma_{BB}^{-1}(x_B-\mu_B),\Sigma_{AA}-\Sigma_{AB}\Sigma_{BB}^{-1}\Sigma_{BA})$}
Once we have $\prob{ \bm{h}_t | \{y_\tau\}_0^T, \bm{\Theta}_{k-1}}$, we can compute the sufficient statistics averaged over this probability distribution
Foward-Backward algorithm
\begin{align}
\label{eq:sufficient_stats_avg}
T^h_1(\{(x_t,v_t,z_t) \}_0^T) &= \expec{ T_1(\{(x_t,v_t,z_t) \}_0^T)}_{\bm{h}_t | \{y_\tau\}_0^T, \bm{\Theta}_{k-1}} \\
T^h_2(\{(x_t,v_t,z_t) \}_0^T) &= \expec{ T_2(\{(x_t,v_t,z_t) \}_0^T)}_{\bm{h}_t | \{y_\tau\}_0^T, \bm{\Theta}_{k-1}}
\end{align}
\paragraph{Maximisation step}
The derivative of the MLE are given by
\begin{align}
TEST
\end{align}
The maximum likelihood estimators from transition probabilities \eqref{eq:ABOBA_transition} write
\paragraph{Stochastic approximation}
Given that we are unable to fully obtain the probability distribution of the hidden variable given the observed variables, we can instead sample the hidden variables and use Robbins–Monro algorithm or Polyak–Ruppert averaging. That is going to lead to the SAEM algorithm.
\begin{thebibliography}{10}
\bibitem{FPL}
Fokker, Planck and Langevin. A new equation. Nature, 1 (2020), 03K91L.
\end{thebibliography}
%\bibliographystyle{abbrv}
%\bibliography{bibli}
\end{document}