From eb2b15b73a4ec6072a2087b25195155da129839b Mon Sep 17 00:00:00 2001 From: Werner Van Geit Date: Wed, 4 Sep 2024 12:49:22 +0200 Subject: [PATCH] Add tests after building the wheel --- .github/workflows/build-wheels.yml | 6 ++- Makefile | 3 ++ pyproject.toml | 3 ++ tests/adasampling/adasampling.in | 48 ++++++++++++++++++++ tests/adasampling/test_adasampling.py | 36 +++++++++++++++ tests/moga/moga.in | 46 +++++++++++++++++++ tests/moga/test_moga.py | 43 ++++++++++++++++++ tests/simple/simple.in | 44 ++++++++++++++++++ tests/simple/test_simple.py | 37 +++++++++++++++ tests/simple_batch/simple_batch.in | 42 +++++++++++++++++ tests/simple_batch/test_simple_batch.py | 38 ++++++++++++++++ tests/simple_restart/dakota.rst | Bin 0 -> 1841 bytes tests/simple_restart/simple.in | 41 +++++++++++++++++ tests/simple_restart/test_simple_restart.py | 30 ++++++++++++ tests/test_import.py | 5 ++ 15 files changed, 421 insertions(+), 1 deletion(-) create mode 100644 tests/adasampling/adasampling.in create mode 100644 tests/adasampling/test_adasampling.py create mode 100644 tests/moga/moga.in create mode 100644 tests/moga/test_moga.py create mode 100644 tests/simple/simple.in create mode 100644 tests/simple/test_simple.py create mode 100644 tests/simple_batch/simple_batch.in create mode 100644 tests/simple_batch/test_simple_batch.py create mode 100644 tests/simple_restart/dakota.rst create mode 100644 tests/simple_restart/simple.in create mode 100644 tests/simple_restart/test_simple_restart.py create mode 100644 tests/test_import.py diff --git a/.github/workflows/build-wheels.yml b/.github/workflows/build-wheels.yml index 3fc5384..f5fcd7e 100644 --- a/.github/workflows/build-wheels.yml +++ b/.github/workflows/build-wheels.yml @@ -54,12 +54,16 @@ jobs: - name: Set up Python uses: actions/setup-python@v5 with: - python-version: 3.11 + python-version: ${{ matrix.python }} - name: Get dakota src run: make get-dakota-src - uses: pypa/cibuildwheel@v2.16 env: CIBW_BUILD: ${{ matrix.python }}*${{ matrix.arch }} + - name: Run tests + run: + pip install ./wheelhouse/*.whl + make test - name: Upload wheels uses: actions/upload-artifact@v4 with: diff --git a/Makefile b/Makefile index b013de1..7014eb6 100644 --- a/Makefile +++ b/Makefile @@ -4,6 +4,9 @@ all: wheel: cache-clean clean CIBW_BUILD=cp311*x86_64 cibuildwheel --platform linux +test: + pytest + install: pip install -v . diff --git a/pyproject.toml b/pyproject.toml index dd3256a..4d67d3e 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -77,3 +77,6 @@ DAKOTA_PYTHON_WRAPPER = "ON" DAKOTA_PYTHON_DIRECT_INTERFACE = "ON" BUILD_SHARED_LIBS = "OFF" CMAKE_POSITION_INDEPENDENT_CODE = "ON" + +[tool.pytest.ini_options] +addopts = "--ignore=dakota/" diff --git a/tests/adasampling/adasampling.in b/tests/adasampling/adasampling.in new file mode 100644 index 0000000..6aee67e --- /dev/null +++ b/tests/adasampling/adasampling.in @@ -0,0 +1,48 @@ +environment + tabular_data + tabular_data_file + 'dakota_tabular.dat' + top_method_pointer = 'ADAPTIVE_SAMPLING' + + method + id_method = 'ADAPTIVE_SAMPLING' + adaptive_sampling + max_iterations 5 + samples_on_emulator 20 + fitness_metric gradient + initial_samples = 1 + model_pointer = "TRUE_MODEL" + seed 41 + batch_selection + naive + misc_options + 'batch_size=10' + + model + id_model = 'TRUE_MODEL' + single + interface_pointer = 'INTERFACE' + variables_pointer = 'VARIABLES' + responses_pointer = 'RESPONSES' + + variables + id_variables = 'VARIABLES' + continuous_design = 2 + descriptors 'PARAM1' 'PARAM2' + initial_point 0.5 1.0 + lower_bounds 0.0 0.0 + upper_bounds 1.0 2.0 + + interface, + id_interface = 'INTERFACE' + batch + python + analysis_drivers + 'evaluator' + + responses + id_responses = 'RESPONSES' + descriptors 'OBJ1' 'OBJ2' + objective_functions = 2 + no_gradients + no_hessians diff --git a/tests/adasampling/test_adasampling.py b/tests/adasampling/test_adasampling.py new file mode 100644 index 0000000..7e15b68 --- /dev/null +++ b/tests/adasampling/test_adasampling.py @@ -0,0 +1,36 @@ +import os +import pathlib as pl + +import dakota.environment as dakenv + +script_dir = pl.Path(__file__).parent + + +def evaluator(inputs): + # Get the continuous variables out of the input provided by dakota + params = inputs["cv"] + print(f"Evaluating {params}") + + # Put the objective in the dakota 'fns' field of the output + outputs = {"fns": params} + return outputs + + +def batch_evaluator(batch_input): + return map(evaluator, batch_input) + + +def test_adasampling(tmp_path): + print("Starting dakota") + os.chdir(tmp_path) + dakota_conf_path = script_dir / "adasampling.in" + dakota_conf = dakota_conf_path.read_text() + study = dakenv.study( + callbacks={"evaluator": batch_evaluator}, input_string=dakota_conf + ) + + study.execute() + + +if __name__ == "__main__": + test_adasampling() diff --git a/tests/moga/moga.in b/tests/moga/moga.in new file mode 100644 index 0000000..16e42a2 --- /dev/null +++ b/tests/moga/moga.in @@ -0,0 +1,46 @@ +# Specify the output file for tabular data +environment + tabular_data + tabular_data_file + 'dakota_tabular.dat' + top_method_pointer = 'MULTIOBJ_OPTIMIZATION' + +# Define the optimization method +method + id_method = 'MULTIOBJ_OPTIMIZATION' + moga # Multi-Objective Genetic Algorithm + model_pointer = "TRUE_MODEL" + seed 1234 # Set random seed for reproducibility + max_function_evaluations 100 # Maximum number of function evaluations + +# Define the model +model + id_model = 'TRUE_MODEL' + single + interface_pointer = 'INTERFACE' + variables_pointer = 'VARIABLES' + responses_pointer = 'RESPONSES' + +# Define the variables +variables + id_variables = 'VARIABLES' + continuous_design = 3 # Number of continuous design variables + descriptors 'PARAM1' 'PARAM2' 'PARAM3' + initial_point 2.0 3.0 4.0 + lower_bounds 0.0 0.0 0.0 + upper_bounds 10.0 10.0 10.0 + +# Define the interface +interface + id_interface = 'INTERFACE' + python + analysis_drivers + 'evaluator' # Python script to evaluate the objectives + +# Define the responses +responses + id_responses = 'RESPONSES' + descriptors 'OBJ1' 'OBJ2' + objective_functions = 2 # Number of objective functions + no_gradients # Gradients will not be provided + no_hessians # Hessians will not be provided diff --git a/tests/moga/test_moga.py b/tests/moga/test_moga.py new file mode 100644 index 0000000..9f95e1f --- /dev/null +++ b/tests/moga/test_moga.py @@ -0,0 +1,43 @@ +import os +import pathlib as pl + +import dakota.environment as dakenv + +script_dir = pl.Path(__file__).parent + +def evaluate(x, y, z): + # Objective 1: Minimize the sum of squares + obj1 = x**2 + y**2 + z**2 + + # Objective 2: Maximize the product + obj2 = -(x * y * z) # Negated because we conventionally minimize + + return obj1, obj2 + + +def evaluator(inputs): + # Get the continuous variables out of the input provided by dakota + params = inputs["cv"] + #print(f"Evaluating {params}") + + # Put the objective in the dakota 'fns' field of the output + outputs = {"fns": evaluate(*params)} + return outputs + + +def test_moga(tmp_path): + print("Starting dakota") + + os.chdir(tmp_path) + dakota_conf_path = script_dir / "moga.in" + dakota_conf = dakota_conf_path.read_text() + study = dakenv.study( + callbacks={"evaluator": evaluator}, + input_string=dakota_conf, + ) + + study.execute() + + +if __name__ == "__main__": + test_moga() diff --git a/tests/simple/simple.in b/tests/simple/simple.in new file mode 100644 index 0000000..0fc5070 --- /dev/null +++ b/tests/simple/simple.in @@ -0,0 +1,44 @@ +environment + tabular_data + tabular_data_file + 'dakota_tabular.dat' + top_method_pointer = 'SAMPLING' + + method + id_method = 'SAMPLING' + sampling + sample_type lhs + samples 10 + model_pointer = "TRUE_MODEL" + seed 1234 + + model + id_model = 'TRUE_MODEL' + single + interface_pointer = 'INTERFACE' + variables_pointer = 'VARIABLES' + responses_pointer = 'RESPONSES' + + variables + id_variables = 'VARIABLES' + continuous_design = 2 + descriptors 'PARAM1' 'PARAM2' + initial_point 0.5 1.0 + lower_bounds 0.0 0.0 + upper_bounds 1.0 2.0 + + interface, + id_interface = 'INTERFACE' + python + analysis_drivers + 'evaluator' + failure_capture + recover + NaN NaN + + responses + id_responses = 'RESPONSES' + descriptors 'OBJ1' 'OBJ2' + objective_functions = 2 + no_gradients + no_hessians diff --git a/tests/simple/test_simple.py b/tests/simple/test_simple.py new file mode 100644 index 0000000..4d1b983 --- /dev/null +++ b/tests/simple/test_simple.py @@ -0,0 +1,37 @@ +import os +import pathlib as pl + +import dakota.environment as dakenv + +script_dir = pl.Path(__file__).parent + + +def evaluator(inputs): + # Get the continuous variables out of the input provided by dakota + params = inputs["cv"] + print(f"Evaluating {params}") + + # Put the objective in the dakota 'fns' field of the output + outputs = {"fns": params, "failure": 1} + + #return Exception() + return outputs + + +def test_simple(tmp_path): + os.chdir(tmp_path) + + print("Starting dakota") + + dakota_conf_path = script_dir / "simple.in" + dakota_conf = dakota_conf_path.read_text() + study = dakenv.study( + callbacks={"evaluator": evaluator}, + input_string=dakota_conf, + ) + + study.execute() + + +if __name__ == "__main__": + test_simple() diff --git a/tests/simple_batch/simple_batch.in b/tests/simple_batch/simple_batch.in new file mode 100644 index 0000000..c603c1b --- /dev/null +++ b/tests/simple_batch/simple_batch.in @@ -0,0 +1,42 @@ +environment + tabular_data + tabular_data_file + 'dakota_tabular.dat' + top_method_pointer = 'SAMPLING' + + method + id_method = 'SAMPLING' + sampling + sample_type lhs + samples 10 + model_pointer = "TRUE_MODEL" + seed 1234 + + model + id_model = 'TRUE_MODEL' + single + interface_pointer = 'INTERFACE' + variables_pointer = 'VARIABLES' + responses_pointer = 'RESPONSES' + + variables + id_variables = 'VARIABLES' + continuous_design = 2 + descriptors 'PARAM1' 'PARAM2' + initial_point 0.5 1.0 + lower_bounds 0.0 0.0 + upper_bounds 1.0 2.0 + + interface, + id_interface = 'INTERFACE' + batch + python + analysis_drivers + 'evaluator' + + responses + id_responses = 'RESPONSES' + descriptors 'OBJ1' 'OBJ2' + objective_functions = 2 + no_gradients + no_hessians diff --git a/tests/simple_batch/test_simple_batch.py b/tests/simple_batch/test_simple_batch.py new file mode 100644 index 0000000..311e836 --- /dev/null +++ b/tests/simple_batch/test_simple_batch.py @@ -0,0 +1,38 @@ +import os +import pathlib as pl + +import dakota.environment as dakenv + +script_dir = pl.Path(__file__).parent + + +def evaluator(inputs): + # Get the continuous variables out of the input provided by dakota + params = inputs["cv"] + print(f"Evaluating {params}") + + # Put the objective in the dakota 'fns' field of the output + outputs = {"fns": params} + return outputs + + +def batch_evaluator(batch_input): + return map(evaluator, batch_input) + + +def test_simple_batch(tmp_path): + print("Starting dakota") + + os.chdir(tmp_path) + dakota_conf_path = script_dir / "simple_batch.in" + dakota_conf = dakota_conf_path.read_text() + study = dakenv.study( + callbacks={"evaluator": batch_evaluator}, + input_string=dakota_conf, + ) + + study.execute() + + +if __name__ == "__main__": + test_simple_batch() diff --git a/tests/simple_restart/dakota.rst b/tests/simple_restart/dakota.rst new file mode 100644 index 0000000000000000000000000000000000000000..5630828613df0ed69f458e60741d115b73c250fc GIT binary patch literal 1841 zcmWe*fPmuEqRhmc%&Nqa%=|nntHh$@jLfoBK?W8M77j+B5=IaK0*nm|46I-l1B02K zp{2G6lw)FPVqj#Rq@ZDBU}U0eV4`besR@;WQy@cF8Nf!t%wymHiU~kfFu_$0b_UF) zY*2>=I0iZT8lv!w@cIE{z}YiA+J#>q+A}aH{MAhV1EjG4PN&%Z5eQ)#f?R_G{QZJmgTV&C91P;HfJGP>{GGfEk=Q5>hN*|qP%W4gOaaJh z1RJ6b#>eedkozGi0;G1<%#(?I5^wB{jfGc#(Ef`NATY1N!-5g$d5}h!Mfe?o%XpA( zWJgF|ov`hxy@|0g=dG8ksqYBv#xtWh!o>Kqg20IjKu2t@y-;$N+K#|wJSa6FheTv} zxAtNCvuD<5CGUPmZAZ+SiQRZm@q%zfdfGN0pL;Lt)6>+ZNxOWbwj*#E56a32N6ea; z8G5JpJuoDE7PctgrM4q*8PAU52nL3R*GJRt*fTO5U?{10LTyLjG9FYwBSHemaho`2 tGRP4r4KJu39k`4K<$Q!AOpJpYRr7Dyr==a^J2CqcwL=1z@mxSh005vH#>M~u literal 0 HcmV?d00001 diff --git a/tests/simple_restart/simple.in b/tests/simple_restart/simple.in new file mode 100644 index 0000000..7addeee --- /dev/null +++ b/tests/simple_restart/simple.in @@ -0,0 +1,41 @@ +environment + tabular_data + tabular_data_file + 'dakota_tabular.dat' + top_method_pointer = 'SAMPLING' + + method + id_method = 'SAMPLING' + sampling + sample_type lhs + samples 10 + model_pointer = "TRUE_MODEL" + seed 1234 + + model + id_model = 'TRUE_MODEL' + single + interface_pointer = 'INTERFACE' + variables_pointer = 'VARIABLES' + responses_pointer = 'RESPONSES' + + variables + id_variables = 'VARIABLES' + continuous_design = 2 + descriptors 'PARAM1' 'PARAM2' + initial_point 0.5 1.0 + lower_bounds 0.0 0.0 + upper_bounds 1.0 2.0 + + interface, + id_interface = 'INTERFACE' + python + analysis_drivers + 'evaluator' + + responses + id_responses = 'RESPONSES' + descriptors 'OBJ1' 'OBJ2' + objective_functions = 2 + no_gradients + no_hessians diff --git a/tests/simple_restart/test_simple_restart.py b/tests/simple_restart/test_simple_restart.py new file mode 100644 index 0000000..7af79fa --- /dev/null +++ b/tests/simple_restart/test_simple_restart.py @@ -0,0 +1,30 @@ +import os +import pathlib as pl + +import dakota.environment as dakenv + +script_dir = pl.Path(__file__).parent + + +def evaluator(inputs): + raise Exception("We are supposed to restart from old file") + + +def test_simple_restart(tmp_path): + print("Starting dakota") + + os.chdir(tmp_path) + + dakota_conf_path = script_dir / "simple.in" + dakota_conf = dakota_conf_path.read_text() + study = dakenv.study( + callbacks={"evaluator": evaluator}, + input_string=dakota_conf, + read_restart=str(script_dir / "dakota.rst"), + ) + + study.execute() + + +if __name__ == "__main__": + test_simple_restart() diff --git a/tests/test_import.py b/tests/test_import.py new file mode 100644 index 0000000..d9d66bb --- /dev/null +++ b/tests/test_import.py @@ -0,0 +1,5 @@ +def test_import_dakota(): + import dakota + +def test_import_env(): + import dakota.environment as dakenv