-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrends_gen.py
136 lines (118 loc) · 3.58 KB
/
trends_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
import wheelpy.muc as muc
import matplotlib.pyplot as plt
# import tclab
# import time
from scipy.integrate import solve_ivp, odeint
from scipy.optimize import minimize
import pickle
un = muc.uReg
un.setup_matplotlib()
proj_dir = "./data/"
HP0 = 100
NPts = 6000
time = np.arange(NPts+1)
dt = time[1]-time[0]
Nsim = 100
# Generate a summary plot across skill level, style types
col_list = ["blue", "green", "red"]
lab_list = ["conservative", "moderate", "reckless"]
full_list = []
sk_list = range(1, 11)
st_list = lab_list
for i, st in enumerate(st_list):
sub_list = []
for sk in sk_list:
dat_aa = np.loadtxt(proj_dir+f"enem_results_skill{sk}_style{st[0]}.txt")
sub_list.append(dat_aa)
full_list.append(sub_list)
full_arr = np.array(full_list)
print(full_arr.shape)
tau_arr = []
gain_arr = []
trends_list = []
for i, st in enumerate(full_arr):
# print(f)
# plt.plot(st, "x", color=col_list[i])
# print(st.shape)
trend_sub1 = []
for j, sk in enumerate(st):
# print(len(sk))
# tau_list = []
# gain_list = []
trend_sub2 = []
for sim in sk.T:
trend_sub3 = []
hp_prev = 10
life_list = [0]
for k, hp in enumerate(sim):
if hp == hp_prev:
continue
elif hp == 0:
life_list.append(k+1)
hp_prev = hp
# trend_sub2.append(life_list)
# print(life_list)
life_list = np.array(life_list)
# plt.plot(life_list, 0*life_list, "o")
# plt.plot(sim)
# plt.xlim(0, 300)
# plt.show()
# pass
for l, ll in enumerate(life_list[1:]-life_list[:-1]):
if len(trend_sub2)<=l:
trend_sub2.append([ll])
else:
trend_sub2[l].append(ll)
# print(trend_sub2)
sub2_mean = [np.mean(tr) for tr in trend_sub2]
print(sk_list[j], st_list[i], len(trend_sub2), sub2_mean)
trend_sub1.append(sub2_mean)
trends_list.append(trend_sub1)
# print(trends_list)
# full_trend = np.array(trends_list)
# Style, skill, sim #
coord = (0, 7, 4)
sample = full_arr[1, 5, :, 9]
hp_prev = 10
life_list = [0]
for k, hp in enumerate(sample):
if hp == hp_prev:
continue
elif hp == 0:
life_list.append(k+1)
hp_prev = hp
life_list = np.array(life_list)
len_list = life_list[1:]-life_list[:-1]
print(len_list)
sample_ave = trends_list[2][4]
print(sample_ave)
def SSE(ti, kind):
trend = trends_list[kind[0]][kind[1]]
max_ti = np.min([len(len_list)-1, len(trend)-1])
if ti >= max_ti:
ti = max_ti
x1 = len_list[:ti]
x2 = trend[:ti]
SSE = np.sum((x1-x2)**2)/len(x1)
return SSE
def all_SSE(ti):
coord_list = [[(i, j) for j in range(10)] for i in range(3)]
coord_list = np.reshape(coord_list, (30,2))
SSE_list = [SSE(ti, coord) for coord in coord_list]
return SSE_list
def opt_kind(ti):
SSE = all_SSE(ti)
opt = np.where(SSE==np.min(SSE))[0][0]
kind1 = int(opt % 10)
kind0 = int((opt-kind1)/10)
return kind0, kind1
print(opt_kind(10))
with open("trendslist.data", "wb") as filehandle:
pickle.dump(trends_list, filehandle)
col_list = ["red", "green", "blue"]
for i, ts1 in enumerate(trends_list):
for ts2 in ts1:
plt.plot(ts2, color=col_list[i])
plt.xlim(-.5,5)
plt.ylim(10,30)