-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
885 lines (759 loc) · 39.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
import streamlit as st
import ee
from ee import oauth
from google.oauth2 import service_account
import folium
from streamlit_folium import folium_static
from streamlit_elements import elements, mui
from streamlit_elements import nivo
from datetime import datetime, timedelta
import json
st.set_page_config(
page_title="Wildfire Burn Severity Analysis",
page_icon="https://cdn-icons-png.flaticon.com/512/7204/7204183.png",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get help': "https://github.com/IndigoWizard/wildfire-burn-severity",
'Report a bug': "https://github.com/IndigoWizard/wildfire-burn-severity/issues",
'About': "This app was developped by [IndigoWizard](https://github.com/IndigoWizard/wildfire-burn-severity) (original author) for the purpose of environmental monitoring and geospatial analysis. Give proper credit when forking/using the open source code/piece of code."
}
)
### CSS STYLING
st.markdown(
"""
<style>
/* Header*/
/* Dark theme version */
.st-emotion-cache-h4xjwg.ezrtsby2 {
height: 1rem;
background: none;
}
/* Light theme version */
.st-emotion-cache-12fmjuu.ezrtsby2 {
height: 1rem;
background: none;
}
/* Smooth scrolling*/
.main {
scroll-behavior: smooth;
}
/* main app body with less padding*/
.st-emotion-cache-1jicfl2.ea3mdgi5 {
padding-block: 0;
position: relative;
}
/* ******* Sidebar ******* */
/* Main container */
.st-emotion-cache-qeahdt.eczjsme9 {
padding: 0 1rem;
}
.st-emotion-cache-1mi2ry5.eczjsme6 {
height: 0;
}
.st-emotion-cache-12skds7 {
height: 0;
}
.st-emotion-cache-1gv3huu.eczjsme16 {
background-color: rgb(240, 242, 246);
}
/* Logo */
.st-emotion-cache-1kyxreq.e115fcil2 {
justify-content: center;
}
/* Sidebar : inside container */
.css-ge7e53 {
width: fit-content;
}
/*Sidebar : image*/
.css-1kyxreq {
display: block !important;
}
/*Sidebar : Navigation list*/
div.element-container:nth-child(4) > div:nth-child(1) > div:nth-child(1) > ul:nth-child(1) {
margin: 0;
padding: 0;
list-style: none;
}
div.element-container:nth-child(4) > div:nth-child(1) > div:nth-child(1) > ul:nth-child(1) > li {
padding: 0;
margin: 0;
padding: 0;
font-weight: 600;
}
div.element-container:nth-child(4) > div:nth-child(1) > div:nth-child(1) > ul:nth-child(1) > li > a {
text-decoration: none;
transition: 0.2s ease-in-out;
padding-inline: 10px;
}
div.element-container:nth-child(4) > div:nth-child(1) > div:nth-child(1) > ul:nth-child(1) > li > a:hover {
color: rgb(46, 206, 255);
transition: 0.2s ease-in-out;
background: #131720;
border-radius: 4px;
}
/* Sidebar: socials*/
div.css-rklnmr:nth-child(6) > div:nth-child(1) > div:nth-child(1) > p {
display: flex;
flex-direction: row;
gap: 1rem;
}
/* ******* Upload Section ******* */
/* ***** Upload info box */
/* Light theme version */
.st-emotion-cache-1gulkj5 {
background-color: rgb(215, 210, 225);
color: rgb(40, 40, 55);
}
/* ***** Upload SVG: Mobile view */
@media (max-width: 576px) {
/* Dark theme version*/
.st-emotion-cache-wn8ljn.e1b2p2ww13 {
display: unset;
}
/* Light theme version*/
.st-emotion-cache-nwtri.e1b2p2ww13 {
display: unset;
}
}
/* ***** Upload button: dark theme*/
.st-emotion-cache-1erivf3.e1b2p2ww15 {
display: flex;
flex-direction: column;
align-items: inherit;
font-size: 14px;
}
.st-emotion-cache-19rxjzo.ef3psqc12 {
display: flex;
flex-direction: row;
margin-inline: 0;
}
/* ***** Upload button: light theme*/
.st-emotion-cache-1gulkj5.e1b2p2ww15 {
display: flex;
flex-direction: column;
align-items: inherit;
font-size: 14px;
}
.st-emotion-cache-7ym5gk.ef3psqc12 {
display: flex;
flex-direction: row;
margin-inline: 0;
background: rgba(0, 3, 172, 0.15);
}
/* ******* Form Submit ******* */
/* ***** Generate Map */
/* Dark theme version */
.st-emotion-cache-19rxjzo.ef3psqc7 {
width: 100%;
}
/* Light Theme Version */
.st-emotion-cache-7ym5gk.ef3psqc7 {
width: 100%;
background: rgba(0, 3, 172, 0.25);
}
/* Buttons */
/* Light theme verison; hober effect */
.st-emotion-cache-7ym5gk:hover {
border-color: rgb(255, 0, 110);
color: rgb(255, 0, 110);
}
/* ******* Legend style ******* */
.ndwilegend {
transition: 0.2s ease-in-out;
border-radius: 5px;
box-shadow: 0 0 5px rgba(0, 0, 0, 0.2);
background: rgba(0, 0, 0, 0.05);
}
.ndwilegend:hover {
transition: 0.3s ease-in-out;
box-shadow: 0 0 5px rgba(0, 0, 0, 0.8);
background: rgba(0, 0, 0, 0.12);
cursor: pointer;
}
.reclassifieddNBR {
transition: 0.2s ease-in-out;
border-radius: 5px;
box-shadow: 0 0 5px rgba(0, 0, 0, 0.2);
background: rgba(0, 0, 0, 0.05);
}
.reclassifieddNBR:hover {
transition: 0.3s ease-in-out;
box-shadow: 0 0 5px rgba(0, 0, 0, 0.8);
background: rgba(0, 0, 0, 0.12);
cursor: pointer;
}
</style>
""", unsafe_allow_html=True)
# Initializing the Earth Engine library
# GEE Servuce Account Auth+init for cloud deployment
@st.cache_data(persist=True)
def ee_authenticate():
# Check for json key in Streamlit Secrets
if "json_key" in st.secrets:
json_creds = st.secrets["json_key"]
service_account_info = json.loads(json_creds)
# Catching eventual email related error
if "client_email" not in service_account_info:
raise ValueError("Service account email address missing in json key")
creds = service_account.Credentials.from_service_account_info(service_account_info, scopes=oauth.SCOPES)
# Initializing gee for each run of the app
ee.Initialize(creds)
else:
# Fallback to normal init method if no json key/st secrets available. (local machine)
ee.Initialize()
# Earth Engine drawing method setup
def add_ee_layer(self, ee_image_object, vis_params, name):
map_id_dict = ee.Image(ee_image_object).getMapId(vis_params)
layer = folium.raster_layers.TileLayer(
tiles=map_id_dict['tile_fetcher'].url_format,
attr='Map Data © <a href="https://earthengine.google.com/">Google Earth Engine</a>',
name=name,
overlay=True,
control=True
)
layer.add_to(self)
return layer
# Configuring Earth Engine display rendering method in Folium
folium.Map.add_ee_layer = add_ee_layer
# Defining a function to create and filter a GEE image collection for results
def satCollection(cloudRate, initialDate, updatedDate, aoi):
collection = ee.ImageCollection('COPERNICUS/S2_SR') \
.filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", cloudRate)) \
.filterDate(initialDate, updatedDate) \
.filterBounds(aoi)
# Defining a function to clip the colleciton to the area of interst
def clipCollection(image):
return image.clip(aoi).divide(10000)
# clipping the collection
collection = collection.map(clipCollection)
return collection
# Upload function
last_uploaded_centroid = None
def upload_files_proc(upload_files):
# A global variable to track the latest geojson uploaded
global last_uploaded_centroid
# Setting up a variable that takes all polygons/geometries within the same/different geojson
geometry_aoi_list = []
for upload_file in upload_files:
bytes_data = upload_file.read()
geojson_data = json.loads(bytes_data)
if 'features' in geojson_data and isinstance(geojson_data['features'], list):
# Handle GeoJSON files with a 'features' list
features = geojson_data['features']
elif 'geometries' in geojson_data and isinstance(geojson_data['geometries'], list):
# Handle GeoJSON files with a 'geometries' list
features = [{'geometry': geo} for geo in geojson_data['geometries']]
else:
# handling cases of unexpected file format or missing 'features' or 'geometries'
continue
for feature in features:
if 'geometry' in feature and 'coordinates' in feature['geometry']:
coordinates = feature['geometry']['coordinates']
geometry = ee.Geometry.Polygon(coordinates) if feature['geometry']['type'] == 'Polygon' else ee.Geometry.MultiPolygon(coordinates)
geometry_aoi_list.append(geometry)
# Update the last uploaded centroid
last_uploaded_centroid = geometry.centroid(maxError=1).getInfo()['coordinates']
if geometry_aoi_list:
geometry_aoi = ee.Geometry.MultiPolygon(geometry_aoi_list)
else:
geometry_aoi = ee.Geometry.Point([16.25, 36.65])
return geometry_aoi
# Time input processing function
def date_input_proc(input_date, time_range):
end_date = input_date
start_date = input_date - timedelta(days=time_range)
str_start_date = start_date.strftime('%Y-%m-%d')
str_end_date = end_date.strftime('%Y-%m-%d')
return str_start_date, str_end_date
# Raster Area calculation function
def calculate_class_area(classified_image, geometry_aoi, class_value):
class_pixel_area = classified_image.eq(class_value).multiply(ee.Image.pixelArea())
class_area = class_pixel_area.reduceRegion(
reducer=ee.Reducer.sum(),
geometry=geometry_aoi,
scale=10,
maxPixels=1e12
)
area_value = class_area.getInfo()
return area_value.get(list(area_value.keys())[0], 0) # Get the value dynamically
# Geojson Area calculation function
def geojson_area(aoi):
# geojson area: (geometry area)
aoi_area_sqm = aoi.area()
# Convert the area to square kilometers
aoi_area_info = aoi_area_sqm.getInfo()/1e6
aoi_area_rounded = round(aoi_area_info, 4)
return aoi_area_rounded
# Main function to run the Streamlit app
def main():
# initialize gee
ee_authenticate()
# sidebar
with st.sidebar:
st.logo(image="", link=None, icon_image="https://cdn-icons-png.flaticon.com/512/7204/7204183.png")
st.image("https://cdn-icons-png.flaticon.com/512/7204/7204183.png", width=90)
st.markdown("#### Wildfire Burn Severity Analysis")
st.subheader("Navigation:")
st.markdown(
"""
- [Wildfire Map](#wildfire-burn-severity-analysis)
- [Map Legend](#map-legend)
- [Analysis Report](#analysis-report)
- [Interpreting the Results](#interpreting-the-results)
- [Environmental Index](#usage-the-environmental-index-nbr-dnbr)
- [Data](#data)
- [Credit](#credit)
""")
st.subheader("Contact:")
st.markdown("[![LinkedIn](https://static.licdn.com/sc/h/8s162nmbcnfkg7a0k8nq9wwqo)](https://linkedin.com/in/ahmed-islem-mokhtari) [![GitHub](https://github.githubassets.com/favicons/favicon-dark.png)](https://github.com/IndigoWizard) [![Medium](https://miro.medium.com/1*m-R_BkNf1Qjr1YbyOIJY2w.png)](https://medium.com/@Indigo.Wizard/mt-chenoua-forest-fires-analysis-with-remote-sensing-614681f468e9)")
st.caption("ʕ •ᴥ•ʔ Star⭐the [project on GitHub](https://github.com/IndigoWizard/wildfire-burn-severity/)!")
with st.container():
st.title("Wildfire Burn Severity Analysis")
st.markdown("**Evaluate Wildfire Burn Severity through NBR Analysis: Assess the Impact of Wildfires Through Delta NBR Index Values Using Sentinel-2 Satellite Images!**")
#### User input section - START
# columns for input - map
with st.form("input_form"):
c1, c2 = st.columns([3, 1])
with st.container():
with c2:
## Cloud coverage input
st.info("Cloud Coverage 🌥️")
cloud_pixel_percentage = st.slider(label="cloud pixel rate", min_value=5, max_value=100, step=5, value=75 , label_visibility="collapsed")
## File upload
# User input GeoJSON file
st.info("Upload Area Of Interest file:")
upload_files = st.file_uploader("Crete a GeoJSON file at: [geojson.io](https://geojson.io/)", accept_multiple_files=True)
# calling upload files function
geometry_aoi = upload_files_proc(upload_files)
## Accessibility: Color palette input
st.info("Custom Color Palettes")
accessibility = st.selectbox("Accessibility: Colorblind-friendly Palettes", ["Normal", "Deuteranopia", "Protanopia", "Tritanopia", "Achromatopsia"])
# Define default color palettes: used in map layers & map legend
default_dnbr_palette = ["#ffffe5", "#f7fcb9", "#78c679", "#41ab5d", "#238443", "#005a32"]
default_dNBR_classified_palette = ['#1c742c', '#2aae29', '#a1d574', '#f8ebb0', '#f7a769', '#e86c4e', '#902cd6']
default_ndwi_palette = ["#caf0f8", "#00b4d8", "#023e8a"]
# a copy of default colors that can be reaffected
ndwi_palette = default_ndwi_palette.copy()
dnbr_palette = default_dnbr_palette.copy()
dNBR_classified_palette = default_dNBR_classified_palette.copy()
if accessibility == "Deuteranopia":
dnbr_palette = ["#fffaa1","#f4ef8e","#9a5d67","#573f73","#372851","#191135"]
dNBR_classified_palette = ["#95a600","#92ed3e","#affac5","#78ffb0","#69d6c6","#22459c","#000e69"]
elif accessibility == "Protanopia":
dnbr_palette = ["#a6f697","#7def75","#2dcebb","#1597ab","#0c677e","#002c47"]
dNBR_classified_palette = ["#95a600","#92ed3e","#affac5","#78ffb0","#69d6c6","#22459c","#000e69"]
elif accessibility == "Tritanopia":
dnbr_palette = ["#cdffd7","#a1fbb6","#6cb5c6","#3a77a5","#205080","#001752"]
dNBR_classified_palette = ["#ed4700","#ed8a00","#e1fabe","#99ff94","#87bede","#2e40cf","#0600bc"]
elif accessibility == "Achromatopsia":
dnbr_palette = ["#407de0", "#2763da", "#394388", "#272c66", "#16194f", "#010034"]
dNBR_classified_palette = ["#004f3d", "#338796", "#66a4f5", "#3683ff", "#3d50ca", "#421c7f", "#290058"]
with st.container():
## Time range input
with c1:
col1, col2 = st.columns(2)
col1.warning("Pre-Fire NBR Date 📅")
initial_date = col1.date_input("initial", datetime(2023, 7, 12), label_visibility="collapsed")
col2.success("Post-Fire NBR Date 📅")
updated_date = col2.date_input("updated", datetime(2023, 7, 27), label_visibility="collapsed")
time_range = 7
# Process initial date
str_initial_start_date, str_initial_end_date = date_input_proc(initial_date, time_range)
# Process updated date
str_updated_start_date, str_updated_end_date = date_input_proc(updated_date, time_range)
#### User input section - END
#### Map section - START
global last_uploaded_centroid
# Create the initial map
if last_uploaded_centroid is not None:
latitude = last_uploaded_centroid[1]
longitude = last_uploaded_centroid[0]
m = folium.Map(location=[latitude, longitude], tiles=None, zoom_start=11, control_scale=True)
else:
latitude=36.60
longitude=16.00
# Default location if no file is uploaded
m = folium.Map(location=[36.60, 16.00], tiles=None, zoom_start=5, control_scale=True)
## Primary basemap
# OSM
b0 = folium.TileLayer('OpenStreetMap', name="Open Street Map", attr="OSM")
b0.add_to(m)
b1 = folium.TileLayer('cartodbdark_matter', name='Dark Basemap', attr='CartoDB')
b1.add_to(m)
#### Satellite imagery Processing Section - START
## Defining and clipping image collections for both dates:
# Pre-fire
pre_fire_collection = satCollection(cloud_pixel_percentage, str_initial_start_date, str_initial_end_date, geometry_aoi)
# Post-fire
post_fire_collection = satCollection(cloud_pixel_percentage, str_updated_start_date, str_updated_end_date, geometry_aoi)
# setting a sat_imagery variable that could be used for various processes later on (tci, NBR... etc)
pre_fire = pre_fire_collection.median()
post_fire = post_fire_collection.median()
#################### Remote Sensing Index ####################
# Satellite image
pre_fire_satImg = pre_fire
post_fire_satImg = post_fire
# Sat image visual parameters
satImg_params = {
'bands': ['B12', 'B11', 'B4'],
'min': 0,
'max': 1,
'gamma': 1.1
}
# NDWI (Normalized Difference Water Index)
def get_NDWI(image):
return image.normalizedDifference(['B3', 'B11'])
pre_fire_ndwi = get_NDWI(pre_fire)
post_fire_ndwi = get_NDWI(post_fire)
ndwi_params = {
'min': -1,
'max': 0,
'palette': ndwi_palette
}
# NBR (Normalized Burn Ratio)
def get_NBR(image):
return image.normalizedDifference(['B8', 'B12'])
# claculating NBR for pre/post fire
pre_fire_NBR = get_NBR(pre_fire_satImg)
post_fire_NBR = get_NBR(post_fire_satImg)
# Delta NBR (dNBR)
dNBR = pre_fire_NBR.subtract(post_fire_NBR)
dNBR_params = {
'min': -0.5,
'max': 1.3,
'palette': dnbr_palette
}
img_classifier = dNBR
dNBR_classified = ee.Image(img_classifier) \
.where(img_classifier.gte(-0.5).And(img_classifier.lt(-0.251)), 1) \
.where(img_classifier.gte(-0.250).And(img_classifier.lt(-0.101)), 2) \
.where(img_classifier.gte(-0.100).And(img_classifier.lt(0.99)), 3) \
.where(img_classifier.gte(0.100).And(img_classifier.lt(0.269)), 4) \
.where(img_classifier.gte(0.270).And(img_classifier.lt(0.439)), 5) \
.where(img_classifier.gte(0.440).And(img_classifier.lt(0.659)), 6) \
.where(img_classifier.gte(0.660).And(img_classifier.lte(1.300)), 7) \
# Classified dNBR visual parameters
dNBR_classified_params = {
'min': 1,
'max': 7,
'palette': dNBR_classified_palette
}
## Image masking
# making the NDWI show only water part on NDWI layer
masked_pre_fire_ndwi = pre_fire_ndwi.updateMask(pre_fire_ndwi.gt(-0.12))
# post_fire_ndwi = post_fire_ndwi.updateMask(post_fire_ndwi.gt(-0.12))
# The following masks are not depandant/tied to the masked_pre_fire_ndwi variable/layer
# Creating a binary mask based on original NDWI: water = black = 0 | land = white = 1
binaryMask = pre_fire_ndwi.lt(-0.1)
# Creating a water mask based on NDWI binarmy mask using the land area (1)
waterMask = binaryMask.selfMask()
## Clipping raster images to the water mask
# masked_dNBR = dNBR.updateMask(waterMask)
masked_dNBR_classified = dNBR_classified.updateMask(waterMask)
### Burn scar area - vector
# Define arbitrary thresholds on the classified dNBR image.
dNBR_classified = dNBR_classified.gte(4)
dNBR_classified = dNBR_classified.updateMask(dNBR_classified.neq(0))
# Convert the zones of the thresholded burn areas to vectors.
vectors = dNBR_classified.addBands(dNBR_classified).reduceToVectors(
**{
'geometry': geometry_aoi,
'crs': dNBR_classified.projection(),
'scale': 10,
'geometryType': 'polygon',
'eightConnected': False,
'labelProperty': 'zone',
'reducer': ee.Reducer.mean(),
'bestEffort': True
})
# Burn scar based on converted rasters to vectors> Is displayed as its own layer
burn_scar = ee.Image(0).updateMask(0).paint(vectors, '000000', 2)
#### Satellite imagery Processing Section - END
### Layers section - START
# Check if the initial and updated dates are the same
if initial_date == updated_date:
m.add_ee_layer(post_fire_satImg, satImg_params, 'Satellite Imagery')
else:
m.add_ee_layer(pre_fire_satImg, satImg_params, f'Pre-Fire Satellite Imagery: {initial_date}')
m.add_ee_layer(post_fire_satImg, satImg_params, f'Post-Fire Satellite Imagery: {updated_date}')
# m.add_ee_layer(dNBR_classified, dNBR_classified_params, 'dNBR Classes')
m.add_ee_layer(masked_pre_fire_ndwi, ndwi_params, f'NDWI: {initial_date}')
# m.add_ee_layer(updateMask, dNBR_params, 'NBR "_masked')
# m.add_ee_layer(binaryMask, {}, 'binaryMask')
# m.add_ee_layer(waterMask, {}, 'SelfMak')
m.add_ee_layer(masked_dNBR_classified, dNBR_classified_params, 'Reclassified dNBR')
m.add_ee_layer(burn_scar, {'palette': '#87043b'}, 'Burn Scar')
#### Layers section - END
#### Map result display - START
# Folium Map Layer Control: we can see and interact with map layers
folium.LayerControl(collapsed=True).add_to(m)
# Display the map
submitted = c2.form_submit_button("Generate map")
if submitted:
with c1:
folium_static(m)
else:
with c1:
folium_static(m)
#### Map result display - END
#### Legend - START
with st.container():
st.subheader("Map Legend:")
col3, col4, col5 = st.columns([1,2,1])
with col3:
# Create an HTML legend for NDWI classes
ndwi_legend_html = """
<div class="ndwilegend">
<h5>NDWI</h5>
<div style="display: flex; flex-direction: row; align-items: flex-start; gap: 1rem; width: 100%;">
<div style="width: 30px; height: 200px; background: linear-gradient({0},{1},{2}); border-radius: 2px;"></div>
<div style="display: flex; flex-direction: column; justify-content: space-between; height: 200px;">
<span>-1</span>
<span style="align-self: flex-end;">1</span>
</div>
</div>
</div>
""".format(*ndwi_palette)
# Display the NDWI legend using st.markdown
st.markdown(ndwi_legend_html, unsafe_allow_html=True)
with col4:
# Create an HTML legend for dNBR classes
reclassified_dNBR_legend_html = """
<div class="reclassifieddNBR">
<h5>Reclassified Delta NBR</h5>
<ul style="list-style-type: none; padding: 0;">
<li style="margin: 0.2em 0px; padding: 0;"><span style="background-color: {0}; opacity: 0.75; display: inline-block; width: 15px; height: 15px; border-radius: 50%; margin-right: 5px;"></span> Enhanced Regrowth (High).</li>
<li style="margin: 0.2em 0px; padding: 0;"><span style="background-color: {1}; opacity: 0.75; display: inline-block; width: 15px; height: 15px; border-radius: 50%; margin-right: 5px;"></span> Enhanced Regrowth (Low).</li>
<li style="margin: 0.2em 0px; padding: 0;"><span style="background-color: {2}; opacity: 0.75; display: inline-block; width: 15px; height: 15px; border-radius: 50%; margin-right: 5px;"></span> Unburned.</li>
<li style="margin: 0.2em 0px; padding: 0;"><span style="background-color: {3}; opacity: 0.75; display: inline-block; width: 15px; height: 15px; border-radius: 50%; margin-right: 5px;"></span> Low Severity Burns.</li>
<li style="margin: 0.2em 0px; padding: 0;"><span style="background-color: {4}; opacity: 0.75; display: inline-block; width: 15px; height: 15px; border-radius: 50%; margin-right: 5px;"></span> Moderate-Low Severity Burns.</li>
<li style="margin: 0.2em 0px; padding: 0;"><span style="background-color: {5}; opacity: 0.75; display: inline-block; width: 15px; height: 15px; border-radius: 50%; margin-right: 5px;"></span> Moderate-High Severity Burns.</li>
<li style="margin: 0.2em 0px; padding: 0;"><span style="background-color: {6}; opacity: 0.75; display: inline-block; width: 15px; height: 15px; border-radius: 50%; margin-right: 5px;"></span> High Severity Burns.</li>
</ul>
</div>
""".format(*dNBR_classified_palette)
# Display the Reclassified dNBR legend using st.markdown
st.markdown(reclassified_dNBR_legend_html, unsafe_allow_html=True)
#### Legend - END
#### Area Calculation - START
st.write("#### Analysis Report")
with st.form("report_form"):
# geojson area: (geometry area)
geometry_area = geojson_area(geometry_aoi)
# Calculate and display the areas of each dNBR class
dNBR_class_areas = []
for i in range(1, 8):
area = calculate_class_area(masked_dNBR_classified, geometry_aoi, i)
dNBR_class_areas.append(area / 1e6) # Convert to square kilometers
class_names = [ # dNBR class names
"Enhanced Regrowth (High)",
"Enhanced Regrowth (Low)",
"Unburned",
"Low Severity Burns",
"Moderate-Low Severity Burns",
"Moderate-High Severity Burns",
"High Severity Burns",
]
# Report submit button
report_form = st.form_submit_button("Generate report", type="primary")
if report_form:
st.write("#### Wildfire Burn Severity Analysis Report:")
# Stats layout
col1, col2 = st.columns([1,1])
col3, col4 = st.columns([1.5,2])
# setting up stats to print
centroid_info = f"**ROI Location:** [:blue[{round(latitude, 4)}], :blue[{round(longitude, 4)}]]"
area_of_interest = f"**Surface Area of Region of Interest: ~:blue[{geometry_area}] (Km²)**"
initial_date_range = f"**Pre-Fire date range:** :blue-background[{str_initial_start_date}], :blue-background[{str_initial_end_date}]"
updated_date_range = f"**Post-Fire date range:** :blue-background[{str_updated_start_date}], :blue-background[{str_updated_end_date}]"
col1.success(centroid_info) # location
col1.success(area_of_interest) # size of aoi
col2.success(initial_date_range) # pre-fire date range
col2.success(updated_date_range) # post-fire date range
# print area of individual dNBR classes
for i, area in enumerate(dNBR_class_areas, start=1):
class_sq = f"**{class_names[i-1]}: ~** :green[{round(area, 4)}] **(Km²)**"
col3.info(class_sq)
# Display Interactive Pie Chart
with col4:
# Display stat visuals
DATA_PIE = [
{ "id": class_names[i-1], "label": class_names[i-1], "value": round(area, 4), "color": dNBR_classified_palette[i-1] }
for i, area in enumerate(dNBR_class_areas, start=1)
]
# Render the nivo.Pie component with the defined theme
with elements("nivo_pie_chart"):
with mui.Box(sx={"height": 500}):
nivo.Pie(
data=DATA_PIE,
margin={"top": 20, "right": 100, "bottom": 150, "left": 100},
innerRadius=0.5,
padAngle=0.7,
cornerRadius=3,
activeOuterRadiusOffset=8,
borderWidth=1,
borderColor={"from": "color", "modifiers": [["darker", 0.8]]},
arcLinkLabelsSkipAngle=2,
arcLinkLabelsTextColor={"from": "color"},
arcLinkLabelsColor={"from": "color"},
colors={"datum": 'data.color'},
arcLinkLabel="value",
arcLinkLabelsThickness=2,
arcLabelsSkipAngle=10,
arcLinkLabelsDiagonalLength=10,
arcLinkLabelsStraightLength=10,
arcLinkLabelsTextOffset=4,
arcLabelsTextColor={"from": "color", "modifiers": [["darker", 4]]},
defs = [
{
"id": "EnhancedRegrowthHigh",
"type": "patternLines",
# "color": "#1c742cbf",
"color": f"{dNBR_classified_palette[0]}",
"background": f"{dNBR_classified_palette[0]}bf",
"rotation": 105,
"lineWidth": 3,
"spacing": 10,
},
{
"id": "EnhancedRegrowthLow",
"type": "patternLines",
# "color": "#2aae29bf",
"color": f"{dNBR_classified_palette[1]}",
"background": f"{dNBR_classified_palette[1]}bf",
"rotation": -15,
"lineWidth": 4,
"spacing": 9,
},
{
"id": "Unburned",
"type": "patternSquares",
# "color": "#a1d574bf",
"color": f"{dNBR_classified_palette[2]}",
"background": f"{dNBR_classified_palette[2]}bf",
"size": 4,
"padding": 1.5,
"stagger": True,
},
{
"id": "LowSeverityBurns",
"type": "patternSquares",
# "color": "#f8ebb0bf",
"color": f"{dNBR_classified_palette[3]}",
"background": f"{dNBR_classified_palette[3]}bf",
"size": 5,
"padding": 3,
"stagger": True,
},
{
"id": "ModerateLowSeverityBurns",
"type": "patternDots",
# "color": "#f7a769bf",
"color": f"{dNBR_classified_palette[4]}",
"background": f"{dNBR_classified_palette[4]}bf",
"size": 4.5,
"padding": 4.5,
"stagger": True,
},
{
"id": "ModerateHighSeverityBurns",
"type": "patternDots",
# "color": "#e86c4ebf",
"color": f"{dNBR_classified_palette[5]}",
"background": f"{dNBR_classified_palette[5]}bf",
"size": 4,
"padding": 3,
"stagger": True,
},
{
"id": "HighSeverityBurns",
"type": "patternDots",
# "color": "#902cd6bf",
"color": f"{dNBR_classified_palette[6]}",
"background": f"{dNBR_classified_palette[6]}bf",
"size": 3,
"padding": 2,
"stagger": True,
},
],
fill=[
{"match": {"id": "Enhanced Regrowth (High)"}, "id": "EnhancedRegrowthHigh"},
{"match": {"id": "Enhanced Regrowth (Low)"}, "id": "EnhancedRegrowthLow"},
{"match": {"id": "Unburned"}, "id": "Unburned"},
{"match": {"id": "Low Severity Burns"}, "id": "LowSeverityBurns"},
{"match": {"id": "Moderate-Low Severity Burns"}, "id": "ModerateLowSeverityBurns"},
{"match": {"id": "Moderate-High Severity Burns"}, "id": "ModerateHighSeverityBurns"},
{"match": {"id": "High Severity Burns"}, "id": "HighSeverityBurns"},
],
theme={
"tooltip": {
"container": { # container within the tooltip
"background": "white", # background of the tooltip inside container
"fontSize": 14,
"font-family": "sans-serif",
"padding": 2,
"border-radius": 4
},
"basic": { # the box within the container within the tooltip
"whiteSpace": "pre",
"display": "flex",
"flex-direction": "row",
"alignItems": "center",
"justify-content": "space-around",
"background": "#0e1117",
"margin": 1,
"padding": 5,
"width": "fit-content",
"height": "fit-content",
"color": "white",
},
}
}
)
#### Area Calculation - END
##### Miscs Infos - START
with st.container():
st.divider()
# Results interpretation
st.write("#### Interpreting the Results")
st.write("This app is designed to provide an accessible tool for both technical and non-technical users to explore and interpret burn severity and land surface changes.")
st.write("The burn severity map is a valuable tool, its interpretation requires consideration of various factors. When exploring the dNBR map, keep in mind:")
st.write("- Clouds, atmospheric conditions, and water bodies can affect the map's appearance and so the surface area.")
st.write("- Satellite sensors have limitations in distinguishing surface types, leading to color variations.")
st.write("- NBR/dNBR values may subtley vary with type of vegetation and land cover changes.")
st.write("- The map provides visual insights rather than precise representations.")
st.write("Understanding these factors will help you interpret the results more effectively. This application aims to provide you with an informative visual aid for vegetation burn severity analysis.")
## NBR/Environmental Index
st.write("#### Usage the Environmental Index: NBR / dNBR")
st.write("The [Normalized Burn Ratio (NBR)](https://www.earthdatascience.org/courses/earth-analytics/multispectral-remote-sensing-modis/normalized-burn-index-dNBR/) is used to emphasize charred areas after a fire. The NBR vegetation index equation takes into account observations at both NIR and SWIR wavelengths: healthy vegetation has a high reflectance in the NIR spectrum, whereas recently burned sections of vegetation reflect strongly in the SWIR spectrum.")
st.write("NBR is calculated using satellite imagery that captures both Near-Infrared **(NIR)** and Short-Wave Infrared **(SWIR)** wavelengths. The formula is:")
st.latex(r'''
\text{NBR} = \frac{\text{NIR} - \text{SWIR}}{\text{NIR} + \text{SWIR}}
''')
st.write("dNBR (Difference NBR) is calculated by the difference of Pre-Fire NBR and Post-Fire-NBR values. The formula is:")
st.latex(r'''
\text{dNBR} = \text{NBR}_{pre-fire} - \text{NBR}_{post-fire}
''')
st.write("NBR values range from **[-1** to **1]**, with higher values indicating higher severity burns. Lower values represent unburned vegetated surfaces or enhanced regrowth.")
## Data
st.write("#### Data")
st.write("This app utilizes **Sentinel-2 Level-2A atmospherically corrected Surface Reflectance images**. The [Sentinel-2 satellite constellation](https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/applications) consists of twin satellites (Sentinel-2A and Sentinel-2B) that capture high-resolution multispectral imagery of the Earth's surface.")
st.write("The [Level-2A](https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a) products have undergone atmospheric correction, enhancing the accuracy of surface reflectance values. These images are suitable for various land cover and vegetation analyses, including NBR calculations.")
## Credits
st.write("##### Credit:")
st.caption("""The app was developped by [IndigoWizard](https://github.com/IndigoWizard) using; [Streamlit](https://streamlit.io/), [Google Earth Engine](https://github.com/google/earthengine-api) Python API and [Folium](https://github.com/python-visualization/folium). Wildfire icons created by <a href="https://www.flaticon.com/free-icons/wildfire" title="wildfire icons">Pomicon - Flaticon</a>""", unsafe_allow_html=True)
#### Miscs Info - END
##### Custom Styling
st.markdown(
"""
<style>
/*Map iframe*/
iframe {
width: 100%;
}
</style>
""", unsafe_allow_html=True)
# Run the app
if __name__ == "__main__":
main()