-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_nlu_prompt.py
206 lines (169 loc) · 8.65 KB
/
main_nlu_prompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os, sys
import csv
from os.path import exists
import glob
from numpy import argmax
import pandas as pd
from tqdm import tqdm
from sklearn.metrics import f1_score, accuracy_score
from prompts import get_prompt
import datasets
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from utils.functions import load_model, WordSplitTokenizer
from utils.args_helper import get_parser, print_opts
from utils.data_utils import load_sequence_classification_dataset, SequenceClassificationDataset, load_dataset
from utils.metrics import sentiment_metrics_fn
from sklearn.metrics import classification_report
DEBUG=False
"""# Loading NLU Datasets"""
def to_prompt(input, prompt, labels, with_label=False):
# single label
if 'text' in input:
prompt = prompt.replace('[INPUT]', input['text'])
else:
prompt = prompt.replace('[INPUT_A]', input['text_1'])
prompt = prompt.replace('[INPUT_B]', input['text_2'])
# replace [OPTIONS] to A, B, or C
if "[OPTIONS]" in prompt:
new_labels = [f'{"or " if i == len(labels) - 1 else ""}{l}' for i, l in enumerate(labels)]
if len(new_labels) > 2:
prompt = prompt.replace('[OPTIONS]', ', '.join(new_labels))
else:
prompt = prompt.replace('[OPTIONS]', ' '.join(new_labels))
if with_label:
prompt = prompt.replace('[LABELS_CHOICE]', labels[input['label']])
return prompt
def load_nlu_tasks():
meta = []
for path in glob.glob('./data/*.csv'):
meta.append(tuple(path.split('/')[-1][:-4].split('-')[:3]))
meta = sorted(list(set(filter(lambda x: x[1] != 'mt' and x[1] != 'author', meta))))
return { (dataset, task, lang) : load_dataset(dataset, task, lang) for (dataset, task, lang) in meta }
@torch.no_grad()
def get_logprobs(model, tokenizer, prompt, label_ids=None, label_attn=None):
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to('cuda')
input_ids, output_ids = inputs["input_ids"], inputs["input_ids"][:, 1:]
if model.config.is_encoder_decoder:
outputs = model(**inputs, labels=label_ids)
logits = outputs.logits
logprobs = torch.gather(F.log_softmax(logits, dim=2), 2, label_ids.unsqueeze(2)) * label_attn.unsqueeze(2)
return logprobs.sum()
else:
outputs = model(**inputs, labels=input_ids)
logits = outputs.logits
logprobs = torch.gather(F.log_softmax(logits, dim=2), 2, output_ids.unsqueeze(2))
return logprobs.sum()
def predict_classification(model, tokenizer, prompt, labels):
if model.config.is_encoder_decoder:
labels_encoded = tokenizer(labels, add_special_tokens=False, padding=True, return_tensors='pt')
list_label_ids =labels_encoded['input_ids'].to('cuda')
list_label_attn =labels_encoded['attention_mask'].to('cuda')
probs = [
get_logprobs(model, tokenizer, prompt.replace('[LABELS_CHOICE]', ''), label_ids.view(1,-1), label_attn.view(1,-1))
for (label_ids, label_attn) in zip(list_label_ids, list_label_attn)
]
else:
probs = [get_logprobs(model, tokenizer, prompt.replace('[LABELS_CHOICE]', label)) for label in labels]
return probs
if __name__ == '__main__':
if len(sys.argv) != 2:
raise ValueError('main_nlu_prompt.py <model_path_or_name>')
MODEL = sys.argv[1]
os.makedirs('./outputs_nlu', exist_ok=True)
# Load Prompt
prompt_templates = get_prompt()
# Load Dataset
print('Load NLU Datasets...')
nlu_datasets = load_nlu_tasks()
print(f'Loaded {len(nlu_datasets)} NLU datasets')
for i, (dataset, task, lang) in enumerate(nlu_datasets.keys()):
print(f'{i} {dataset}_{task}_{lang}')
# Load Model
tokenizer = AutoTokenizer.from_pretrained(MODEL, truncation_side='left')
if "bloom" in MODEL or "xglm" in MODEL:
model = AutoModelForCausalLM.from_pretrained(MODEL).to('cuda')
else:
if "xxl" not in MODEL:
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL).to('cuda')
else:
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL, device_map="auto", load_in_8bit=True)
model.eval()
torch.no_grad()
metrics = { 'dataset':[], 'task':[], 'lang':[], 'prompt_id':[], 'accuracy':[], 'macro_f1':[], 'weighted_f1':[] }
for (dataset, task, lang), dset in nlu_datasets.items():
print(f'{dataset} | {task} | {lang}')
if task not in prompt_templates or prompt_templates[task] is None:
print('SKIP')
continue
# take test data
data = dset['test']
# preprocess label (lower case & translate)
try:
label_names = data.features['label'].names
except:
label_names = list(set(data['label']))
id_to_label_dict = { i : l for i, l in enumerate(label_names) }
label_names = [str(label).lower().replace("_"," ") for label in label_names]
# sample prompt
print(f"LABEL NAME: {label_names}")
for prompt_id, prompt_template in enumerate(prompt_templates[task]):
inputs = []
preds = []
golds = []
print(f'prompt_id: {prompt_id}, model: {MODEL.split("/")[-1]}')
print(f"SAMPLE PROMPT: {to_prompt(data[0], prompt_template, label_names)}")
# inference
if exists(f'outputs_nlu/{dataset}_{task}_{lang}_{prompt_id}_{MODEL.split("/")[-1]}.csv'):
print("Output exist, use partial log instead")
with open(f'outputs_nlu/{dataset}_{task}_{lang}_{prompt_id}_{MODEL.split("/")[-1]}.csv') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
inputs.append(row["Input"])
preds.append(row["Pred"])
golds.append(row["Gold"])
print(f"Skipping until {len(preds)}")
# if incomplete, continue
if len(preds) < len(data):
with torch.inference_mode():
for e, sample in enumerate(tqdm(data)):
if e < len(preds):
continue
# perform zero-shot / few-shot Inference
prompt_text = to_prompt(sample, prompt_template, label_names, with_label=False)
out = predict_classification(model, tokenizer, prompt_text, label_names)
pred = argmax([o.cpu().detach() for o in out])
inputs.append(prompt_text)
preds.append(id_to_label_dict[pred] if type(sample['label']) == str else pred)
golds.append(sample['label'])
# partial saving
if len(preds) % 10 == 0:
inference_df = pd.DataFrame(list(zip(inputs, preds, golds)), columns =["Input", 'Pred', 'Gold'])
inference_df.to_csv(f'outputs_nlu/{dataset}_{task}_{lang}_{prompt_id}_{MODEL.split("/")[-1]}.csv', index=False)
inference_df = pd.DataFrame(list(zip(inputs, preds, golds)), columns =["Input", 'Pred', 'Gold'])
inference_df.to_csv(f'outputs_nlu/{dataset}_{task}_{lang}_{prompt_id}_{MODEL.split("/")[-1]}.csv', index=False)
# if output log exists, skip
else:
print("Output exist, use existing log instead")
with open(f'outputs_nlu/{dataset}_{task}_{lang}_{prompt_id}_{MODEL.split("/")[-1]}.csv') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
inputs.append(row["Input"])
preds.append(row["Pred"])
golds.append(row["Gold"])
cls_report = classification_report(golds, preds, output_dict=True)
acc, macro_f1, weighted_f1 = cls_report['accuracy'], cls_report['macro avg']['f1-score'], cls_report['weighted avg']['f1-score']
print(f'{dataset}_{task}_{lang}')
print('accuracy', acc)
print('f1 macro', macro_f1)
print('f1 weighted', weighted_f1)
print("===\n\n")
metrics['dataset'].append(dataset)
metrics['task'].append(task)
metrics['lang'].append(lang)
metrics['prompt_id'].append(prompt_id)
metrics['accuracy'].append(acc)
metrics['macro_f1'].append(macro_f1)
metrics['weighted_f1'].append(weighted_f1)
pd.DataFrame.from_dict(metrics).reset_index().to_csv(f'outputs_nlu/nlu_results_{MODEL.split("/")[-1]}.csv', index=False)