forked from pcb2gcode/pcb2gcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Fixed.hpp
515 lines (429 loc) · 12.1 KB
/
Fixed.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
/**
* http://www.codef00.com/coding.php
* Modified (pbirnzain)
*
* Copyright (c) 2008
* Evan Teran
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted, provided
* that the above copyright notice appears in all copies and that both the
* copyright notice and this permission notice appear in supporting
* documentation, and that the same name not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. We make no representations about the
* suitability this software for any purpose. It is provided "as is"
* without express or implied warranty.
*/
#ifndef FIXED_20060211_H_
#define FIXED_20060211_H_
#include <ostream>
#include <exception>
#include <cstddef> // for std::size_t
#include <climits> // for CHAR_BIT
#include <boost/operators.hpp>
#include <boost/cstdint.hpp>
#include <boost/utility/enable_if.hpp>
namespace numeric
{
template<std::size_t I, std::size_t F>
class Fixed;
namespace detail
{
template<class T>
struct bit_size
{
static const std::size_t size = sizeof(T) * CHAR_BIT;
};
// helper templates to make magic with types :)
// these allow us to determine resonable types from
// a desired size, they also let us infer the next largest type
// from a type which is nice for the division op
template<std::size_t T>
struct type_from_size
{
static const bool is_specialized = false;
typedef void value_type;
};
template<>
struct type_from_size<64>
{
static const bool is_specialized = true;
static const std::size_t size = 64;
typedef int64_t value_type;
typedef type_from_size<128> next_size;
};
template<>
struct type_from_size<32>
{
static const bool is_specialized = true;
static const std::size_t size = 32;
typedef int32_t value_type;
typedef type_from_size<64> next_size;
};
template<>
struct type_from_size<16>
{
static const bool is_specialized = true;
static const std::size_t size = 16;
typedef int16_t value_type;
typedef type_from_size<32> next_size;
};
template<>
struct type_from_size<8>
{
static const bool is_specialized = true;
static const std::size_t size = 8;
typedef int8_t value_type;
typedef type_from_size<16> next_size;
};
// this is to assist in adding support for non-native base
// types (for adding big-int support), this should be fine
// unless your bit-int class doesn't nicely support casting
template<class B, class N>
B next_to_base(const N& rhs)
{
return static_cast<B>(rhs);
}
struct divide_by_zero: std::exception
{
};
template<std::size_t I, std::size_t F>
void divide(const Fixed<I, F> &numerator, const Fixed<I, F> &denominator,
Fixed<I, F> "ient, Fixed<I, F> &remainder,
typename boost::enable_if_c<
detail::type_from_size<I + F>::next_size::is_specialized>::type* =
0)
{
static_assert(detail::type_from_size<I + F>::next_size::is_specialized, "");
typedef typename Fixed<I, F>::next_type next_type;
typedef typename Fixed<I, F>::base_type base_type;
static const std::size_t fractional_bits = Fixed<I, F>::fractional_bits;
next_type t(numerator.to_raw());
t <<= fractional_bits;
quotient = Fixed<I, F>::from_base(
detail::next_to_base<base_type>(t / denominator.to_raw()));
remainder = Fixed<I, F>::from_base(
detail::next_to_base<base_type>(t % denominator.to_raw()));
}
template<std::size_t I, std::size_t F>
void divide(Fixed<I, F> numerator, Fixed<I, F> denominator,
Fixed<I, F> "ient, Fixed<I, F> &remainder,
typename boost::disable_if_c<
detail::type_from_size<I + F>::next_size::is_specialized>::type* =
0)
{
// NOTE: division is broken for large types :-(
// especially when dealing with negative quantities
typedef typename Fixed<I, F>::base_type base_type;
static const int bits = Fixed<I, F>::total_bits;
if (denominator == 0)
{
throw divide_by_zero();
quotient = 0;
remainder = 0;
}
else
{
int sign = 0;
if (numerator < 0)
{
sign ^= 1;
numerator = -numerator;
}
if (denominator < 0)
{
sign ^= 1;
denominator = -denominator;
}
base_type n = numerator.to_raw();
base_type d = denominator.to_raw();
base_type x = 1;
base_type answer = 0;
while ((n >= d) && (((d >> (bits - 1)) & 1) == 0))
{
x <<= 1;
d <<= 1;
}
while (x != 0)
{
if (n >= d)
{
n -= d;
answer |= x;
}
x >>= 1;
d >>= 1;
}
quotient = answer;
remainder = n;
if (sign)
{
quotient = -quotient;
}
}
}
// this is the usual implementation of multiplication
template<std::size_t I, std::size_t F>
void multiply(const Fixed<I, F> &lhs, const Fixed<I, F> &rhs,
Fixed<I, F> &result,
typename boost::enable_if_c<
detail::type_from_size<I + F>::next_size::is_specialized>::type* =
0)
{
static_assert(detail::type_from_size<I + F>::next_size::is_specialized, "");
typedef typename Fixed<I, F>::next_type next_type;
typedef typename Fixed<I, F>::base_type base_type;
static const std::size_t fractional_bits = Fixed<I, F>::fractional_bits;
next_type t(
static_cast<next_type>(lhs.to_raw())
* static_cast<next_type>(rhs.to_raw()));
t >>= fractional_bits;
result = Fixed<I, F>::from_base(next_to_base<base_type>(t));
}
// this is the fall back version we use when we don't have a next size
// it is slightly slower, but is more robust since it doesn't
// require and upgraded type
template<std::size_t I, std::size_t F>
void multiply(const Fixed<I, F> &lhs, const Fixed<I, F> &rhs,
Fixed<I, F> &result,
typename boost::disable_if_c<
detail::type_from_size<I + F>::next_size::is_specialized>::type* =
0)
{
typedef typename Fixed<I, F>::base_type base_type;
static const std::size_t fractional_bits = Fixed<I, F>::fractional_bits;
static const std::size_t integer_mask = Fixed<I, F>::integer_mask;
static const std::size_t fractional_mask = Fixed<I, F>::fractional_mask;
// more costly but doesn't need a larger type
const base_type a_hi = (lhs.to_raw() & integer_mask) >> fractional_bits;
const base_type b_hi = (rhs.to_raw() & integer_mask) >> fractional_bits;
const base_type a_lo = (lhs.to_raw() & fractional_mask);
const base_type b_lo = (rhs.to_raw() & fractional_mask);
const base_type x1 = a_hi * b_hi;
const base_type x2 = a_hi * b_lo;
const base_type x3 = a_lo * b_hi;
const base_type x4 = a_lo * b_lo;
result = Fixed<I, F>::from_base(
(x1 << fractional_bits) + (x3 + x2) + (x4 >> fractional_bits));
}
}
// lets us do things like "typedef numeric::fixed_from_type<int32_t>::fixed_type fixed";
// NOTE: that we will use a type of equivalent size, not neccessarily the type
// specified. Should make little to no difference to the user
template<class T>
struct fixed_from_type
{
typedef Fixed<detail::bit_size<T>::size / 2, detail::bit_size<T>::size / 2> fixed_type;
};
/*
* inheriting from boost::operators enables us to be a drop in replacement for base types
* without having to specify all the different versions of operators manually
*/
template<std::size_t I, std::size_t F>
class Fixed: boost::operators<Fixed<I, F> >, boost::shiftable<Fixed<I, F> >
{
static_assert(detail::type_from_size<I + F>::is_specialized, "");
public:
static const std::size_t fractional_bits = F;
static const std::size_t integer_bits = I;
static const std::size_t total_bits = I + F;
typedef detail::type_from_size<total_bits> base_type_info;
typedef typename base_type_info::value_type base_type;
typedef typename base_type_info::next_size::value_type next_type;
private:
static const std::size_t base_size = base_type_info::size;
static const base_type fractional_mask = ~((~base_type(0))
<< fractional_bits);
static const base_type integer_mask = ~fractional_mask;
public:
static const base_type one = base_type(1) << fractional_bits;
public:
// constructors
Fixed() :
data_(0)
{
}
Fixed(long n) :
data_(base_type(n) << fractional_bits)
{
// TODO: assert in range!
}
Fixed(unsigned long n) :
data_(base_type(n) << fractional_bits)
{
// TODO: assert in range!
}
Fixed(int n) :
data_(base_type(n) << fractional_bits)
{
// TODO: assert in range!
}
Fixed(unsigned int n) :
data_(base_type(n) << fractional_bits)
{
// TODO: assert in range!
}
Fixed(float n) :
data_(static_cast<base_type>(n * one))
{
// TODO: assert in range!
}
Fixed(double n) :
data_(static_cast<base_type>(n * one))
{
// TODO: assert in range!
}
Fixed(const Fixed &o) :
data_(o.data_)
{
}
Fixed& operator=(const Fixed &o)
{
data_ = o.data_;
return *this;
}
private:
// this makes it simpler to create a fixed point object from
// a native type without scaling
// use "Fixed::from_base" in order to perform this.
struct no_scale
{
};
Fixed(base_type n, const no_scale &) :
data_(n)
{
}
public:
static Fixed from_base(base_type n)
{
return Fixed(n, no_scale());
}
public:
// comparison operators
bool operator==(const Fixed &o) const
{
return data_ == o.data_;
}
bool operator<(const Fixed &o) const
{
return data_ < o.data_;
}
public:
// unary operators
bool operator!() const
{
return !data_;
}
Fixed operator~() const
{
Fixed t(*this);
t.data_ = ~t.data_;
return t;
}
Fixed operator-() const
{
Fixed t(*this);
t.data_ = -t.data_;
return t;
}
Fixed& operator++()
{
data_ += one;
return *this;
}
Fixed& operator--()
{
data_ -= one;
return *this;
}
public:
// basic math operators
Fixed& operator+=(const Fixed &n)
{
data_ += n.data_;
return *this;
}
Fixed& operator-=(const Fixed &n)
{
data_ -= n.data_;
return *this;
}
Fixed& operator&=(const Fixed &n)
{
data_ &= n.data_;
return *this;
}
Fixed& operator|=(const Fixed &n)
{
data_ |= n.data_;
return *this;
}
Fixed& operator^=(const Fixed &n)
{
data_ ^= n.data_;
return *this;
}
Fixed& operator*=(const Fixed &n)
{
detail::multiply(*this, n, *this);
return *this;
}
Fixed& operator/=(const Fixed &n)
{
Fixed temp;
detail::divide(*this, n, *this, temp);
return *this;
}
Fixed& operator>>=(const Fixed &n)
{
data_ >>= n.to_int();
return *this;
}
Fixed& operator<<=(const Fixed &n)
{
data_ <<= n.to_int();
return *this;
}
public:
// conversion to basic types
int to_int() const
{
return (data_ & integer_mask) >> fractional_bits;
}
operator int() const
{
return this->to_int();
}
unsigned int to_uint() const
{
return (data_ & integer_mask) >> fractional_bits;
}
float to_float() const
{
return static_cast<float>(data_) / Fixed::one;
}
double to_double() const
{
return static_cast<double>(data_) / Fixed::one;
}
base_type to_raw() const
{
return data_;
}
public:
void swap(Fixed &rhs)
{
std::swap(data_, rhs.data_);
}
public:
base_type data_;
};
template<std::size_t I, std::size_t F>
std::ostream &operator<<(std::ostream &os, const Fixed<I, F> &f)
{
os << f.to_double();
return os;
}
}
#endif