-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtextclassify.py
58 lines (46 loc) · 2.41 KB
/
textclassify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Dec 1 21:27:21 2019
@author: jacobwilkins
"""
import re, pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
from nltk.stem import WordNetLemmatizer
class Textclassify(object):
def __init__(self, trainData): self.trainData = trainData
def preprocess(self, x):
docs = []; stemmer = WordNetLemmatizer()
for k in range(0, len(x)):
doc = re.sub(r'\W', ' ', str(x[k])) # Remove all the special characters
doc = re.sub(r'\s+[a-zA-Z]\s+', ' ', doc) # remove all single characters
doc = re.sub(r'\^[a-zA-Z]\s+', ' ', doc) # Remove single characters from the start
doc = re.sub(r'\s+', ' ', doc, flags=re.I) # Substituting multiple spaces with single space
doc = re.sub(r'^b\s+', '', doc) # Removing prefixed 'b'
doc = doc.lower() # Converting to Lowercase
doc = doc.split() # Lemmatization
doc = [stemmer.lemmatize(word) for word in doc]
doc = ' '.join(doc); docs.append(doc)
return docs
def classify(self, testData):
x_test = [testData]; x_train = []; y_train = []
for d in self.trainData:
for key in d:
if key == 'text': x_train.append(d[key])
if key == 'genres':
if d[key] == []: y_train.append('other')
else:
for i in d[key]: y_train.append(i['name']); break
x_train = self.preprocess(x_train); x_test = self.preprocess(x_test)
trainData = pd.DataFrame({'plot': x_train, 'tags': y_train})
testData = pd.DataFrame({'plot': x_test, 'tags': ['Comedy']})
vectorizer = CountVectorizer(analyzer="word", tokenizer=None, preprocessor=None, stop_words=None, max_features=3000)
train_data_features = vectorizer.fit_transform(trainData['plot'])
train_data_features = train_data_features.toarray()
classifier = RandomForestClassifier(n_estimators=1000, random_state=0)
classifier = classifier.fit(train_data_features, trainData['tags'])
test_data_features = vectorizer.transform(testData['plot'])
test_data_features = test_data_features.toarray()
pred = classifier.predict(test_data_features)
return pred