forked from petercorke/robotics-toolbox-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DstarPO.m
executable file
·677 lines (595 loc) · 25.2 KB
/
DstarPO.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
%DstarPO D*-PO navigation class
%
% A concrete subclass of the Navigation class that implements the D*
% navigation algorithm; facilitates incremental replanning. This
% implementation of D* is intended for multiobjective optimization (MOO)
% problems - i.e. optimizes over several objectives/criteria - with the use
% of Pareto fronts (see Lavin paper).
%
% Methods::
% plan Compute the cost map given a goal and map
% path Compute a path to the goal
% visualize Display the obstacle map (deprecated)
% plot Display the obstacle map
% cost_get Return the specified cost layer
% costmap_modify Modify the costmap
% modify_cost Modify the costmap (deprecated, use costmap_modify)
% costmap_get Return the current costmap
% costmap_set Set the current costmap
% distancemap_get Set the current distance map
% display Print the parameters in human readable form
% char Convert to string
%
% Properties::
% TBD
%
% Example::
% load map1 % load map
% goal = [50,30];
% start=[20,10];
% ds = DstarPO(map); % create navigation object
% ds.plan(goal,1) % create plan for specified goal
% ds.path(start) % animate path from this start location
% Example 2:
% goal = [100;100];
% start = [1;1];
% ds = DstarPO(0); % create Navigation object with random occupancy grid
% ds.addCost(1,L); % add 1st add'l cost layer L
% ds.plan(goal,2); % setup costmap for specified goal
% ds.path(start); % plan solution path start-goal, animate
% P = as.path(start); % plan solution path start-goal, return path
%
% Notes::
% - Obstacles are represented by Inf in the costmap.
%
% References::
% - The D* algorithm for real-time planning of optimal traverses,
% A. Stentz, Tech. Rep. CMU-RI-TR-94-37, The Robotics Institute,
% Carnegie-Mellon University, 1994.
% - A Pareto Optimal D* Search Algorithm for Multiobjective Path Planning,
% A. Lavin.
% - Robotics, Vision & Control, Sec 5.2.2,
% Peter Corke, Springer, 2011.
%
% Author::
% Alexander Lavin based on Dstar by Peter Corke
%
% See also Navigation, Dstar, DstarMOO, Astar, DXform.
% Copyright (C) 1993-2015, by Peter I. Corke, Alexander Lavin
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
%
% This is an original algorithm written by Alexander Lavin.
% http://alexanderlavin.com
% Implementation notes:
%
% All the state is kept in the structure called d
% X is an index into the array of states.
% state pointers are kept as matlab array index rather than row,col format
classdef DstarPO < Navigation
properties (SetAccess=private, GetAccess=private)
costmap % world cost map: obstacle = Inf
G % index of goal point
N % number of objectives
% info kept per cell (state)
b % backpointer (0 means not set)
t % tag: NEW OPEN CLOSED
cost_g % path distance summation
cost_h % path heuristic (state to goal) cost
cost_01 % add'l cost layer 01 (unused)
cost_02 % add'l cost layer 02 (unused)
cost_03 % add'l cost layer 03 (unused)
% add more cost layers if needed...
priority
tie
% list of open states: 2xN matrix
% each open point is a column, row 1 = index of cell, row 2 = k
openlist
niter
changed
openlist_maxlen % keep track of maximum length
quiet
% tag state values
NEW = 0;
OPEN = 1;
CLOSED = 2;
end
methods
% constructor
function ds = DstarPO(world, varargin)
%DstarPO.DstarPO D*-PO constructor
%
% DS = Dstar(MAP, OPTIONS) is a D* navigation object, and MAP is an
% occupancy grid, a representation of a planar world as a
% matrix whose elements are 0 (free space) or 1 (occupied).
% The occupancy grid is coverted to a costmap with a unit cost
% for traversing a cell.
%
% Options::
% 'goal',G Specify the goal point (2x1)
% 'metric',M Specify the distance metric as 'euclidean' (default)
% or 'cityblock'.
% 'inflate',K Inflate all obstacles by K cells.
% 'quiet' Don't display the progress spinner
%
% Other options are supported by the Navigation superclass.
%
% Notes::
% - If MAP == 0 a random map is created.
%
% See also Navigation.Navigation.
% invoke the superclass constructor
ds = ds@Navigation(world, varargin{:});
opt.quiet = false;
opt = tb_optparse(opt, varargin);
ds.quiet = opt.quiet;
ds.occgrid2costmap(ds.occgrid);
% init the D* state variables
ds.reset();
if ~isempty(ds.goal)
ds.goal_change();
end
ds.changed = false;
end
function reset(ds)
%DstarPO.reset Reset the planner
%
% DS.reset() resets the D* planner. The next instantiation
% of DS.plan() will perform a global replan.
% build the matrices required to hold the state of each cell for D*
ds.b = zeros(size(ds.costmap), 'uint32'); % backpointers
ds.t = zeros(size(ds.costmap), 'uint8'); % tags
ds.cost_g = Inf*ones(size(ds.costmap)); % path cost estimate
ds.openlist = zeros(2,0); % the open list, one column per point
ds.openlist_maxlen = -Inf;
end
function goal_change(ds)
if isempty(ds.b)
return;
end
goal = ds.goal;
% keep goal in index rather than row,col format
ds.G = sub2ind(size(ds.occgrid), goal(2), goal(1));
ds.INSERT(ds.G, ds.projectCost(ds.G), 'goalset');
ds.cost_g(ds.G) = 0;
% new goal changes cost layers:
ds.calcHeuristic(ds.occgrid, ds.goal);
end
function s = char(ds)
%DstarPO.char Convert navigation object to string
%
% DS.char() is a string representing the state of the Dstar
% object in human-readable form.
%
% See also Dstar.display, Navigation.char.
% most of the work is done by the superclass
s = char@Navigation(ds);
% Dstar specific stuff
if ~isempty(ds.costmap)
s = char(s, sprintf(' costmap: %dx%d, open list %d', size(ds.costmap), numcols(ds.openlist)));
else
s = char(s, sprintf(' costmap: empty:'));
end
end
function plot(ds, varargin)
%DstarPO.plot Visualize navigation environment
%
% DS.plot() displays the occupancy grid and the goal distance
% in a new figure. The goal distance is shown by intensity which
% increases with distance from the goal. Obstacles are overlaid
% and shown in red.
%
% DS.plot(P) as above but also overlays a path given by the set
% of points P (Mx2).
%
% See also Navigation.plot.
plot@Navigation(ds, 'distance', ds.cost_h, varargin{:});
end
% invoked by Navigation.step
function n = next(ds, current)
if ds.changed
error('Cost map has changed, replan');
end
X = sub2ind(size(ds.costmap), current(2), current(1));
X = ds.b(X);
if X == 0
n = [];
else
[r,c] = ind2sub(size(ds.costmap), X);
n = [c;r];
end
end
function plan(ds, goal, N)
%DstarPO.plan Plan path to goal
%
% DS.plan() updates DS with a costmap of distance to the
% goal from every non-obstacle point in the map. The goal is
% as specified to the constructor.
%
% DS.plan(GOAL) as above but uses the specified goal.
%
% Note::
% - If a path has already been planned, but the costmap was
% modified, then reinvoking this method will replan,
% incrementally updating the plan at lower cost than a full
% replan.
%
% Inputs:
% goal: goal state coordinates
% N: number of optimization objectives; standard D* is 2
% (i.e. distance and heuristic)
ds.N = N; % number of optimization objectives
ds.openlist = zeros(ds.N+1,0);
% Setup cost layers. If a
% cost layer is goal-dependent, it's setup function needs to
% also be called in DS.goal_change(). If more cost layers are
% needed, add similar to DS.cost_01.
% initializations first:
ds.cost_g = zeros(size(ds.occgrid));
ds.cost_h = zeros(size(ds.occgrid)); % filled after setting goal below
% if add'l costs haven't been added with addCost()
if isempty(ds.cost_01)
ds.cost_01 = zeros(size(ds.occgrid));
end
if isempty(ds.cost_02)
ds.cost_02 = zeros(size(ds.occgrid));
end
if isempty(ds.cost_03)
ds.cost_03 = zeros(size(ds.occgrid));
end
if nargin > 1
ds.goal = goal; % invokes superclass method set.goal()
end
% for replanning no goal is needed,
if isempty(ds.goal)
error('must specify a goal point');
end
% Setup cost layers DS.cost_g and DS.cost_h.
% assign values to the distance cost layer, set as DS.costmap
ds.occgrid2costmap(ds.occgrid);
% assign values to the heuristic cost layer, set as DS.cost_h
ds.calcHeuristic(ds.occgrid, ds.goal);
% Additional cost layers are added by the user with the
% DS.addCost() method
% Cost priority/tiebreaker: cost_g (distance to node)
ds.priority = ds.cost_g;
ds.tie = 1; % first cost: cost_g
ds.niter = 0;
while true
if ~ds.quiet && mod(ds.niter, 20) == 0
ds.spinner();
end
ds.niter = ds.niter + 1;
if ds.PROCESS_STATE() < 0
break;
end
if ds.verbose
disp(' ')
end
end
if ~ds.quiet
fprintf('\r');
end
ds.changed = false;
end
function layer = cost_get(ds)
%DstarPO.cost_get Get the specified cost layer
layer = ds.cost_02;
end
function c = distancemap_get(ds)
%DstarPO.distancemap_get Get the current distance map
%
% C = DS.distancemap_get() is the current distance map. This map is the same size
% as the occupancy grid and the value of each element is the shortest distance
% from the corresponding point in the map to the current goal. It is computed
% by Dstar.plan.
%
% See also Dstar.plan.
c = ds.cost_h; % heuristic
end
function c = costmap_get(ds)
%DstarPO.costmap_get Get the current costmap
%
% C = DS.costmap_get() is the current costmap. The cost map is the same size
% as the occupancy grid and the value of each element represents the cost
% of traversing the cell. It is autogenerated by the class constructor from
% the occupancy grid such that:
% - free cell (occupancy 0) has a cost of 1
% - occupied cell (occupancy >0) has a cost of Inf
%
% See also Dstar.costmap_set, Dstar.costmap_modify.
c = ds.costmap;
end
function costmap_set(ds, costmap)
%DstarPO.costmap_set Set the current costmap
%
% DS.costmap_set(C) sets the current costmap. The cost map is the same size
% as the occupancy grid and the value of each element represents the cost
% of traversing the cell. A high value indicates that the cell is more costly
% (difficult) to traverese. A value of Inf indicates an obstacle.
%
% Notes::
% - After the cost map is changed the path should be replanned by
% calling DS.plan().
%
% See also Dstar.costmap_get, Dstar.costmap_modify.
if ~all(size(costmap) == size(ds.occgrid))
error('costmap must be same size as occupancy grid');
end
ds.costmap = costmap;
ds.changed = true;
end
function costmap_modify(ds, point, newcost)
%DstarPO.costmap_modify Modify cost map
%
% DS.costmap_modify(P, NEW) modifies the cost map at P=[X,Y] to
% have the value NEW. If P (2xM) and NEW (1xM) then the cost of
% the points defined by the columns of P are set to the corresponding
% elements of NEW.
%
% Notes::
% - After one or more point costs have been updated the path
% should be replanned by calling DS.plan().
% - Replaces modify_cost, same syntax.
%
% See also Dstar.costmap_set, Dstar.costmap_get.
if numel(point) == 2
% for case of single point ensure it is a column vector
point = point(:);
end
if numcols(point) ~= numcols(newcost)
error('number of columns in point must match columns in newcost');
end
for i=1:numcols(point)
X = sub2ind(size(ds.costmap), point(2,i), point(1,i));
ds.costmap(X) = newcost(i);
end
if ds.t(X) == ds.CLOSED
ds.INSERT(X, ds.h(X), 'modifycost');
end
ds.changed = true;
end
function addCost(ds, layer, values)
%DstarPO.addCost Add an additional cost layer
%
% DS.addCost(layer,values) adds the matrix specified by values as a
% cost layer.
% Inputs
% layer: 1, 2, or 3 to specify which cost layer to add
% values: normalized matrix the size of the environment (100x100)
if size(values)~=size(ds.occgrid)
display('Layer size does not match the environment')
return
end
if max(max(values))~=1 || min(min(values))~=0
display('Layer values are not normalized [0:1]')
return
end
if layer==1
ds.cost_01 = values;
elseif layer==2
ds.cost_02 = values;
elseif layer==3
ds.cost_03 = values;
else
display('Layer index out of range')
end
end
end % public methods
methods (Access=protected)
function occgrid2costmap(ds, og, cost)
if nargin < 3
cost = 1;
end
ds.costmap = og;
ds.costmap(ds.costmap==1) = Inf; % occupied cells have Inf driving cost
ds.costmap(ds.costmap==0) = cost; % unoccupied cells have driving cost
end
function calcHeuristic(ds, grid, goal)
ds.cost_h=zeros(size(grid));
for ii=1:size(grid,1)
for jj=1:size(grid,2)
ds.cost_h(ii,jj)=sqrt((ii-goal(1))^2+(jj-goal(2))^2);
end
end
end
% The main D* function as per the Stentz paper, comments Ln are the original
% line numbers.
function r = PROCESS_STATE(d)
% States with the lowest cost value are removed from the
% open list
% Get Pareto optimal point off the open list
[idx] = paretofront(normc(d.openlist(2:size(d.openlist,1),:)')); % w/ normalization
front = d.openlist(:,idx);
[k_old,col] = min(front(d.tie+1,:)); % d.tie specifies the row (cost_g) for tiebreaker
X = front(1,col); % L1
if isempty(X) % L2
r = -1;
return;
end
d.DELETE(X); % L3
d.priority = d.cost_g; % updates priority cost layer
if k_old < d.priority(X) % L4
d.message('k_old < h(X): %f %f\n', k_old, d.priority(X));
for Y=d.neighbours(X) % L5
if (d.priority(Y) <= k_old) && (d.priority(X) > d.updateCosts(Y,X,0)) % L6
d.b(X) = Y;
d.updateCosts(X,Y,d.N); %L7
end
end
end
% can we lower the path cost of any neighbours?
if k_old == d.priority(X) % L8
d.message('k_old == h(X): %f\n', k_old);
for Y=d.neighbours(X) % L9
if (d.t(Y) == d.NEW) || ... % L10-12
( (d.b(Y) == X) && (d.priority(Y) ~= d.updateCosts(Y,X,0)) ) || ...
( (d.b(Y) ~= X) && (d.priority(Y) > d.updateCosts(Y,X,0)) )
% Update and project the costs:
d.updateCosts(Y,X,d.N);
objspace = d.projectCost(Y,X);
d.b(Y) = X;
d.INSERT(Y, objspace, 'L13'); % L13
end
end
else % L14
d.message('k_old > h(X)');
for Y=d.neighbours(X) % L15
if (d.t(Y) == d.NEW) || ( (d.b(Y) == X) && (d.priority(Y) ~= d.updateCosts(Y,X,0)) )
d.updateCosts(Y,X,d.N);
objspace = d.projectCost(Y,X);
d.b(Y) = X;
d.INSERT(Y, objspace, 'L18'); % L18
else
if ( (d.b(Y) ~= X) && (d.priority(Y) > d.updateCosts(Y,X,0)) )
d.INSERT(X, d.projectCost(X), 'L21'); % L21
else
if (d.b(Y) ~= X) && (d.priority(X) > d.updateCosts(Y,X,0)) && ...
(d.t(Y) == d.CLOSED) && d.priority(Y) > k_old
d.INSERT(Y, d.projectCost(Y), 'L25'); % L25
end
end
end
end
end
r = 0;
return;
end % process_state
function k_new = updateCosts(ds, a, b, obj)
% NOTE: Only for costs that accumulate (i.e. sum) over the
% path, and for dynamic costs.
% E.g. the heuristic parameter DS.cost_h only needs updating
% when the goal state changes; it's values are stored for each
% cell.
%
% Location moving from state b to a.
if nargout > 0
k_new = ds.cost_g(b) + ds.dc(b,a);
return
end
if obj == 0 % just return what the new priority cost would be (k_new)
return
end
if obj > 1 % base case
ds.cost_g(a) = ds.cost_g(b) + ds.dc(b,a);
% (no heuristic update needed)
end
if obj > 2 % w/ cost_01: elevation
% (no elevation update needed)
end
if obj > 3 % w/ cost_02: solar
sV = [cos(ds.niter/100);sin(ds.niter/100)]; % rotates 1rad per 100 steps
ds.cost_02(a) = dot(sV,ds.vc(b,a));
end
if obj > 4 % w/ cost_03: risk
% (no risk update needed)
end
end
function pt = projectCost(ds, a, b)
% Returns the projection of state a into objective space. If
% specified, location is moving from b to a.
switch nargin
case 2
pt = [ds.cost_g(a);
ds.cost_h(a);
ds.cost_01(a);
ds.cost_02(a);
ds.cost_03(a);
];
case 3
pt = [ds.cost_g(b) + ds.dc(a,b);
ds.cost_h(a);
ds.cost_01(a);
ds.cost_02(a);
ds.cost_03(a);
];
otherwise
return
end
end
function kk = k(ds, X)
i = ds.openlist(1,:) == X;
kk = ds.openlist(2, i);
end
function INSERT(ds, X, pt, where)
% Add state X to the openlist with objective space values
% specified by pt.
% where is for diagnostic purposes only
ds.message('insert (%s) %d = %f\n', where, X, pt);
i = find(ds.openlist(1,:) == X);
if length(i) > 1
error('D*:INSERT: state in open list %d times', X);
end
if ds.t(X) == ds.NEW
% add a new column to the open list
ds.openlist = [ds.openlist [X; pt]];
elseif ds.t(X) == ds.OPEN
% k_new = min( ds.openlist(2,i), h_new );
elseif ds.t(X) == ds.CLOSED
if pt(ds.tie) < ds.priority(X) % break tie w/ ds.tie index
% add a new column to the open list
ds.openlist = [ds.openlist [X; pt]];
end
end
% keep track of the max length of the openlist:
if numcols(ds.openlist) > ds.openlist_maxlen
ds.openlist_maxlen = numcols(ds.openlist);
end
ds.t(X) = ds.OPEN;
end
function DELETE(ds, X)
ds.message('delete %d\n', X);
i = find(ds.openlist(1,:) == X);
if length(i) ~= 1
error('D*:DELETE: state %d doesnt exist', X);
end
ds.openlist(:,i) = []; % remove the column
ds.t(X) = ds.CLOSED;
end
function kmin = GET_KMIN(ds)
kmin = min(ds.openlist(2,:));
end
% return the distance of moving from state X to state Y
function cost = dc(ds, X, Y)
[r,c] = ind2sub(size(ds.costmap), [X; Y]);
dist = sqrt(sum(diff([r c]).^2));
dcost = (ds.costmap(X) + ds.costmap(Y))/2;
cost = dist * dcost;
end
% return the robot unit vector; direction of moving from state X to state Y
function vector = vc(ds, X, Y)
[Xi,Xj] = ind2sub(size(ds.occgrid),X);
[Yi,Yj] = ind2sub(size(ds.occgrid),Y);
vector = [Yi-Xi;Yj-Xj];
vector = vector/norm(vector);
% slope = vector(2) / vector(1);
% theta = dot([0,1],[vector])/(norm([0,1])*norm(vector));
end
% return index of neighbour states as a row vector
function Y = neighbours(ds, X)
dims = size(ds.costmap);
[r,c] = ind2sub(dims, X);
% list of 8-way neighbours
Y = [r-1 r-1 r-1 r r r+1 r+1 r+1; c-1 c c+1 c-1 c+1 c-1 c c+1];
% only use neighbors w/in grid bounds...
k = (min(Y)>0) & (Y(1,:)<=dims(1)) & (Y(2,:)<=dims(2));
Y = Y(:,k);
Y = sub2ind(dims, Y(1,:)', Y(2,:)')';
end
end % end of protected methods
end % classdef