forked from yjh0410/YOLO-Nano
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
246 lines (209 loc) · 8.85 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
import os
import cv2
import time
import numpy as np
import torch
from data.coco import coco_class_labels, coco_class_index
from data.transforms import ValTransforms
from data import config
def parse_args():
parser = argparse.ArgumentParser(description='YOLO Demo Detection')
# basic
parser.add_argument('--mode', default='image',
type=str, help='Use the data from image, video or camera')
parser.add_argument('--cuda', action='store_true', default=False,
help='Use cuda')
parser.add_argument('--path_to_img', default='data/demo/images/',
type=str, help='The path to image files')
parser.add_argument('--path_to_vid', default='data/demo/videos/',
type=str, help='The path to video files')
parser.add_argument('--path_to_saveVid', default='data/video/result.avi',
type=str, help='The path to save the detection results video')
parser.add_argument('-vs', '--visual_threshold', default=0.3,
type=float, help='visual threshold')
# model
parser.add_argument('-v', '--version', default='yolov1',
help='yolov1, yolov2, yolov3, yolov4, yolo_tiny, yolo_nano')
parser.add_argument('--num_queries', type=int, default=4,
help='number of queris of YOLOQ')
parser.add_argument('--trained_model', default='weights/',
type=str, help='Trained state_dict file path to open')
parser.add_argument('-size', '--img_size', default=640, type=int,
help='img_size')
parser.add_argument('--conf_thresh', default=0.1, type=float,
help='NMS threshold')
parser.add_argument('--nms_thresh', default=0.45, type=float,
help='NMS threshold')
return parser.parse_args()
def plot_bbox_labels(img, bbox, label, cls_color, test_scale=0.4):
x1, y1, x2, y2 = bbox
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
t_size = cv2.getTextSize(label, 0, fontScale=1, thickness=2)[0]
# plot bbox
cv2.rectangle(img, (x1, y1), (x2, y2), cls_color, 2)
# plot title bbox
cv2.rectangle(img, (x1, y1-t_size[1]), (int(x1 + t_size[0] * test_scale), y1), cls_color, -1)
# put the test on the title bbox
cv2.putText(img, label, (int(x1), int(y1 - 5)), 0, test_scale, (0, 0, 0), 1, lineType=cv2.LINE_AA)
return img
def visualize(img, bboxes, scores, cls_inds, class_colors, vis_thresh=0.3):
ts = 0.4
for i, bbox in enumerate(bboxes):
if scores[i] > vis_thresh:
cls_color = class_colors[int(cls_inds[i])]
cls_id = coco_class_index[int(cls_inds[i])]
mess = '%s: %.2f' % (coco_class_labels[cls_id], scores[i])
img = plot_bbox_labels(img, bbox, mess, cls_color, test_scale=ts)
return img
def detect(net,
device,
transform,
vis_thresh,
mode='image',
path_to_img=None,
path_to_vid=None,
path_to_save=None):
# class color
class_colors = [(np.random.randint(255),
np.random.randint(255),
np.random.randint(255)) for _ in range(80)]
save_path = os.path.join(path_to_save, mode)
os.makedirs(save_path, exist_ok=True)
# ------------------------- Camera ----------------------------
if mode == 'camera':
print('use camera !!!')
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
while True:
ret, frame = cap.read()
if ret:
if cv2.waitKey(1) == ord('q'):
break
img_h, img_w = frame.shape[:2]
size = np.array([[img_w, img_h, img_w, img_h]])
# prepare
x, _, _, scale, offset = transform(frame)[0]
x = x.unsqueeze(0).to(device)
# inference
t0 = time.time()
bboxes, scores, cls_inds = net(x)
t1 = time.time()
print("detection time used ", t1-t0, "s")
# rescale
bboxes -= offset
bboxes /= scale
bboxes *= size
frame_processed = visualize(img=frame,
bboxes=bboxes,
scores=scores,
cls_inds=cls_inds,
class_colors=class_colors,
vis_thresh=vis_thresh)
cv2.imshow('detection result', frame_processed)
cv2.waitKey(1)
else:
break
cap.release()
cv2.destroyAllWindows()
# ------------------------- Image ----------------------------
elif mode == 'image':
for i, img_id in enumerate(os.listdir(path_to_img)):
img = cv2.imread(path_to_img + '/' + img_id, cv2.IMREAD_COLOR)
img_h, img_w = img.shape[:2]
size = np.array([[img_w, img_h, img_w, img_h]])
# prepare
x, _, _, scale, offset = transform(img)[0]
x = x.unsqueeze(0).to(device)
# inference
t0 = time.time()
bboxes, scores, cls_inds = net(x)
t1 = time.time()
print("detection time used ", t1-t0, "s")
# rescale
bboxes -= offset
bboxes /= scale
bboxes *= size
img_processed = visualize(img=img,
bboxes=bboxes,
scores=scores,
cls_inds=cls_inds,
class_colors=class_colors,
vis_thresh=vis_thresh)
cv2.imshow('detection', img_processed)
cv2.imwrite(os.path.join(save_path, str(i).zfill(6)+'.jpg'), img_processed)
cv2.waitKey(0)
# ------------------------- Video ---------------------------
elif mode == 'video':
video = cv2.VideoCapture(path_to_vid)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
save_size = (640, 480)
save_path = os.path.join(save_path, 'det.avi')
fps = 15.0
out = cv2.VideoWriter(save_path, fourcc, fps, save_size)
while(True):
ret, frame = video.read()
if ret:
# ------------------------- Detection ---------------------------
img_h, img_w = frame.shape[:2]
size = np.array([[img_w, img_h, img_w, img_h]])
# prepare
x, _, _, scale, offset = transform(frame)[0]
x = x.unsqueeze(0).to(device)
# inference
t0 = time.time()
bboxes, scores, cls_inds = net(x)
t1 = time.time()
print("detection time used ", t1-t0, "s")
# rescale
bboxes -= offset
bboxes /= scale
bboxes *= size
frame_processed = visualize(img=frame,
bboxes=bboxes,
scores=scores,
cls_inds=cls_inds,
class_colors=class_colors,
vis_thresh=vis_thresh)
frame_processed_resize = cv2.resize(frame_processed, save_size)
out.write(frame_processed_resize)
cv2.imshow('detection', frame_processed)
cv2.waitKey(1)
else:
break
video.release()
out.release()
cv2.destroyAllWindows()
def run():
args = parse_args()
# use cuda
if args.cuda:
device = torch.device("cuda")
else:
device = torch.device("cpu")
# build model
if args.version == 'yolo_nano':
from models.yolo_nano import YOLONano
backbone = '1.0x'
model = YOLONano(device=device,
input_size=args.img_size,
num_classes=80,
anchor_size=config.MULTI_ANCHOR_SIZE_COCO,
backbone=backbone)
else:
print('Unknown version !!!')
exit()
# load weight
model.load_state_dict(torch.load(args.trained_model, map_location=device), strict=False)
model.to(device).eval()
print('Finished loading model!')
# run
detect(net=model,
device=device,
transform=ValTransforms(args.img_size),
mode=args.mode,
path_to_img=args.path_to_img,
path_to_vid=args.path_to_vid,
path_to_save=args.path_to_save,
thresh=args.visual_threshold)
if __name__ == '__main__':
run()