This fold provides NanoDet inference code using Intel's OpenVINO Toolkit. Most of the implements in this fold are same as demo_ncnn.
Go to OpenVINO HomePage
Download a suitable version and install.
Follow the official Get Started Guides: https://docs.openvinotoolkit.org/latest/get_started_guides.html
Run this command in cmd. (Every time before using OpenVINO)
<INSTSLL_DIR>\openvino_2021\bin\setupvars.bat
Or set the system environment variables once for all:
Name | Value |
---|---|
INTEL_OPENVINO_DIR | <INSTSLL_DIR>\openvino_2021 |
INTEL_CVSDK_DIR | %INTEL_OPENVINO_DIR% |
InferenceEngine_DIR | %INTEL_OPENVINO_DIR%\deployment_tools\inference_engine\share |
HDDL_INSTALL_DIR | %INTEL_OPENVINO_DIR%\deployment_tools\inference_engine\external\hddl |
ngraph_DIR | %INTEL_OPENVINO_DIR%\deployment_tools\ngraph\cmake |
And add this to Path
%INTEL_OPENVINO_DIR%\deployment_tools\inference_engine\bin\intel64\Debug;%INTEL_OPENVINO_DIR%\deployment_tools\inference_engine\bin\intel64\Release;%HDDL_INSTALL_DIR%\bin;%INTEL_OPENVINO_DIR%\deployment_tools\inference_engine\external\tbb\bin;%INTEL_OPENVINO_DIR%\deployment_tools\ngraph\lib
Run this command in shell. (Every time before using OpenVINO)
source /opt/intel/openvino_2021/bin/setupvars.sh
Or edit .bashrc
vi ~/.bashrc
Add this line to the end of the file
source /opt/intel/openvino_2021/bin/setupvars.sh
-
Export ONNX model
python ./tools/export_onnx.py --cfg_path ${CONFIG_PATH} --model_path ${PYTORCH_MODEL_PATH}
-
Convert to OpenVINO
cd <INSTSLL_DIR>/openvino_2021/deployment_tools/model_optimizer
Install requirements for convert tool
sudo ./install_prerequisites/install_prerequisites_onnx.sh
Then convert model. Notice: mean_values and scale_values should be the same with your training settings in YAML config file.
python3 mo.py --input_model ${ONNX_MODEL} --mean_values [103.53,116.28,123.675] --scale_values [57.375,57.12,58.395] --output output --data_type FP32 --output_dir ${OUTPUT_DIR}
<OPENVINO_INSTSLL_DIR>\openvino_2021\bin\setupvars.bat
mkdir -p build
cd build
cmake ..
msbuild nanodet_demo.vcxproj /p:configuration=release /p:platform=x64
source /opt/intel/openvino_2021/bin/setupvars.sh
mkdir build
cd build
cmake ..
make
You can convert the model to openvino or use the converted model
First, move nanodet openvino model files to the build
folder and rename the files to nanodet.xml
, nanodet.mapping
, nanodet.bin
.
Then run these commands:
./nanodet_demo 0 0
./nanodet_demo 1 ${IMAGE_FOLDER}/*.jpg
./nanodet_demo 2 ${VIDEO_PATH}
./nanodet_demo 3 0
Model | Resolution | COCO mAP | CPU Latency (i7-8700) |
---|---|---|---|
NanoDet-Plus-m | 320*320 | 27.0 | 5.25ms / 190FPS |
NanoDet-Plus-m | 416*416 | 30.4 | 8.32ms / 120FPS |
NanoDet-Plus-m-1.5x | 320*320 | 29.9 | 7.21ms / 139FPS |
NanoDet-Plus-m-1.5x | 416*416 | 34.1 | 11.50ms / 87FPS |
If you want to use custom model, please make sure the hyperparameters
in nanodet_openvino.h
are the same with your training config file.
int input_size[2] = {416, 416}; // input height and width
int num_class = 80; // number of classes. 80 for COCO
int reg_max = 7; // `reg_max` set in the training config. Default: 7.
std::vector<int> strides = { 8, 16, 32, 64 }; // strides of the multi-level feature.