diff --git a/modules/dnn/src/layers/lrn_layer.cpp b/modules/dnn/src/layers/lrn_layer.cpp index 145793959b5a..c101d3041496 100644 --- a/modules/dnn/src/layers/lrn_layer.cpp +++ b/modules/dnn/src/layers/lrn_layer.cpp @@ -90,9 +90,9 @@ class LRNLayerImpl CV_FINAL : public LRNLayer virtual bool supportBackend(int backendId) CV_OVERRIDE { - return backendId == DNN_BACKEND_OPENCV || - backendId == DNN_BACKEND_HALIDE || - backendId == DNN_BACKEND_INFERENCE_ENGINE; + if (backendId == DNN_BACKEND_INFERENCE_ENGINE) + return (bias == 1) && (preferableTarget != DNN_TARGET_MYRIAD || type == SPATIAL_NRM); + return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE; } #ifdef HAVE_OPENCL @@ -382,10 +382,13 @@ class LRNLayerImpl CV_FINAL : public LRNLayer virtual Ptr initInfEngine(const std::vector >&) CV_OVERRIDE { #ifdef HAVE_INF_ENGINE + float alphaSize = alpha; + if (!normBySize) + alphaSize *= (type == SPATIAL_NRM ? size*size : size); #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5) InferenceEngine::Builder::NormLayer ieLayer(name); ieLayer.setSize(size); - ieLayer.setAlpha(alpha); + ieLayer.setAlpha(alphaSize); ieLayer.setBeta(beta); ieLayer.setAcrossMaps(type == CHANNEL_NRM); @@ -402,7 +405,7 @@ class LRNLayerImpl CV_FINAL : public LRNLayer ieLayer->_size = size; ieLayer->_k = (int)bias; ieLayer->_beta = beta; - ieLayer->_alpha = alpha; + ieLayer->_alpha = alphaSize; ieLayer->_isAcrossMaps = (type == CHANNEL_NRM); return Ptr(new InfEngineBackendNode(ieLayer)); #endif diff --git a/modules/dnn/src/op_inf_engine.cpp b/modules/dnn/src/op_inf_engine.cpp index 5dae7beaefd5..786b4e31d582 100644 --- a/modules/dnn/src/op_inf_engine.cpp +++ b/modules/dnn/src/op_inf_engine.cpp @@ -227,7 +227,7 @@ void InfEngineBackendNet::addLayer(InferenceEngine::Builder::Layer& layer) // By default, all the weights are connected to last ports ids. for (int i = 0; i < blobsIds.size(); ++i) { - netBuilder.connect((size_t)blobsIds[i], {(size_t)id, portIds[i]}); + netBuilder.connect((size_t)blobsIds[i], {(size_t)id, (size_t)portIds[i]}); } #endif } diff --git a/modules/dnn/test/test_halide_layers.cpp b/modules/dnn/test/test_halide_layers.cpp index 68037b1b98ca..bb605c05bcf1 100644 --- a/modules/dnn/test/test_halide_layers.cpp +++ b/modules/dnn/test/test_halide_layers.cpp @@ -227,8 +227,6 @@ TEST_P(LRN, Accuracy) std::string nrmType = get<4>(GetParam()); Backend backendId = get<0>(get<5>(GetParam())); Target targetId = get<1>(get<5>(GetParam())); - if (backendId == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException(""); LayerParams lp; lp.set("norm_region", nrmType); @@ -249,8 +247,8 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, LRN, Combine( /*input ch,w,h*/ Values(Vec3i(6, 5, 8), Vec3i(7, 11, 6)), /*local size*/ Values(3, 5), Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f), -/*alpha, beta,*/ Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f), -/*bias */ Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)), +/*alpha, beta, bias*/ Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f), + Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)), /*norm_by_size*/ Bool(), /*norm_type*/ Values("ACROSS_CHANNELS", "WITHIN_CHANNEL"), dnnBackendsAndTargetsWithHalide()